Ahmad SS, Duke S, Jena R, Williams MV, Burnet NG. Advances in radiotherapy. BMJ. 2012;345:e7765. https://doi.org/10.1136/bmj.e7765.
Article
CAS
PubMed
Google Scholar
Jaffray DA. Image-guided radiotherapy: from current concept to future perspectives. Nat Rev Clin Oncol. 2012;9(12):688–99. https://doi.org/10.1038/nrclinonc.2012.194.
Article
CAS
PubMed
Google Scholar
Delaney G, Jacob S, Featherstone C, Barton M. The role of radiotherapy in cancer treatment: estimating optimal utilization from a review of evidence-based clinical guidelines. Cancer. 2005;104(6):1129–37. https://doi.org/10.1002/cncr.21324.
Article
PubMed
Google Scholar
Barnett GC, West CM, Dunning AM, Elliott RM, Coles CE, Pharoah PDP, et al. Normal tissue reactions to radiotherapy: towards tailoring treatment dose by genotype. Nat Rev Cancer. 2009;9(2):134–42. https://doi.org/10.1038/nrc2587.
Article
CAS
PubMed
PubMed Central
Google Scholar
Begg AC, Stewart FA, Vens C. Strategies to improve radiotherapy with targeted drugs. Nat Rev Cancer. 2011;11(4):239–53. https://doi.org/10.1038/nrc3007.
Article
CAS
PubMed
Google Scholar
Park SY, Lee CJ, Choi JH, Kim JH, Kim JW, Kim JY, et al. The JAK2/STAT3/CCND2 axis promotes colorectal cancer stem cell persistence and radioresistance. J Exp Clin Cancer Res. 2019;38(1):399. https://doi.org/10.1186/s13046-019-1405-7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Buckley AM, Lynam-Lennon N, O’Neill H, O’Sullivan J. Targeting hallmarks of cancer to enhance radiosensitivity in gastrointestinal cancers. Nat Rev Gastroenterol Hepatol. 2020;17(5):298–313. https://doi.org/10.1038/s41575-019-0247-2.
Article
CAS
PubMed
Google Scholar
Bentzen SM, Overgaard J. Patient-to-patient variability in the expression of radiation-induced normal tissue injury. Semin Radiat Oncol. 1994;4(2):68–80. https://doi.org/10.1053/SRAO00400068.
Article
CAS
PubMed
Google Scholar
Andreassen CN, Alsner J. Genetic variants and normal tissue toxicity after radiotherapy: a systematic review. Radiother Oncol. 2009;92(3):299–309. https://doi.org/10.1016/j.radonc.2009.06.015.
Article
CAS
PubMed
Google Scholar
Viaud S, Saccheri F, Mignot G, Yamazaki T, Daillère R, Hannani D, et al. The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide. Science. 2013;342(6161):971–6. https://doi.org/10.1126/science.1240537.
Article
CAS
PubMed
PubMed Central
Google Scholar
Iida N, Dzutsev A, Stewart CA, Smith L, Bouladoux N, Weingarten RA, et al. Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment. Science. 2013;342(6161):967–70. https://doi.org/10.1126/science.1240527.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vétizou M, Pitt JM, Daillère R, Lepage P, Waldschmitt N, Flament C, et al. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science. 2015;350(6264):1079–84. https://doi.org/10.1126/science.aad1329.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sivan A, Corrales L, Hubert N, Williams JB, Aquino-Michaels K, Earley ZM, et al. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science. 2015;350(6264):1084–9. https://doi.org/10.1126/science.aac4255.
Article
CAS
PubMed
PubMed Central
Google Scholar
Frank M, Hennenberg EM, Eyking A, Rünzi M, Gerken G, Scott P, et al. TLR signaling modulates side effects of anticancer therapy in the small intestine. J Immunol. 2015;194(4):1983–95. https://doi.org/10.4049/jimmunol.1402481.
Article
CAS
PubMed
Google Scholar
Manichanh C, Varela E, Martinez C, Antolin M, Llopis M, Doré J, et al. The gut microbiota predispose to the pathophysiology of acute postradiotherapy diarrhea. Am J Gastroenterol. 2008;103(7):1754–61. https://doi.org/10.1111/j.1572-0241.2008.01868.x.
Article
CAS
PubMed
Google Scholar
Nam YD, Kim HJ, Seo JG, Kang SW, Bae JW. Impact of pelvic radiotherapy on gut microbiota of gynecological cancer patients revealed by massive pyrosequencing. PLoS ONE. 2013;8(12):e82659. https://doi.org/10.1371/journal.pone.0082659.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang A, Ling Z, Yang Z, Kiela PR, Wang T, Wang C, et al. Gut microbial dysbiosis may predict diarrhea and fatigue in patients undergoing pelvic cancer radiotherapy: a pilot study. PLoS ONE. 2015;10(5):e0126312. https://doi.org/10.1371/journal.pone.0126312.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mitra A, Grossman Biegert GW, Delgado AY, Karpinets TV, Solley TN, Mezzari MP, et al. Microbial diversity and composition is associated with patient-reported toxicity during chemoradiation therapy for cervical cancer. Int J Radiat Oncol Biol Phys. 2020;107(1):163–71. https://doi.org/10.1016/j.ijrobp.2019.12.040.
Article
PubMed
PubMed Central
Google Scholar
Saeed A, Eshrat FF, Umar S, Saeed A. The duplex interaction of microbiome with chemoradiation and immunotherapy: potential implications for colorectal cancer. Curr Colorectal Cancer Rep. 2019;15(3):98–104. https://doi.org/10.1007/s11888-019-00435-1.
Article
PubMed
PubMed Central
Google Scholar
Alexander JL, Wilson ID, Teare J, Marchesi JR, Nicholson JK, Kinross JM. Gut microbiota modulation of chemotherapy efficacy and toxicity. Nat Rev Gastroenterol Hepatol. 2017;14(6):356–65. https://doi.org/10.1038/nrgastro.2017.20.
Article
CAS
PubMed
Google Scholar
Roy S, Trinchieri G. Microbiota: a key orchestrator of cancer therapy. Nat Rev Cancer. 2017;17(5):271–85. https://doi.org/10.1038/nrc.2017.13.
Article
CAS
PubMed
Google Scholar
Baskar R, Dai J, Wenlong N, Yeo R, Yeoh KW. Biological response of cancer cells to radiation treatment. Front Mol Biosci. 2014;1:24. https://doi.org/10.3389/fmolb.2014.00024.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kareva I. Metabolism and gut microbiota in cancer immunoediting, CD8/Treg Ratios, immune cell homeostasis, and cancer (immuno)therapy: concise review. Stem Cells. 2019;37(10):1273–80. https://doi.org/10.1002/stem.3051.
Article
PubMed
Google Scholar
Helmink BA, Khan MAW, Hermann A, Gopalakrishnan V, Wargo JA. The microbiome, cancer, and cancer therapy. Nat Med. 2019;25(3):377–88. https://doi.org/10.1038/s41591-019-0377-7.
Article
CAS
PubMed
Google Scholar
Chan SL. Microbiome and cancer treatment: are we ready to apply in clinics? Prog Mol Biol Transl Sci. 2020;171:301–8. https://doi.org/10.1016/bs.pmbts.2020.04.004.
Article
PubMed
Google Scholar
Gately S. Human microbiota and personalized cancer treatments: role of commensal microbes in treatment outcomes for cancer patients. Cancer Treat Res. 2019;178:253–64. https://doi.org/10.1007/978-3-030-16391-4_10.
Article
CAS
PubMed
Google Scholar
Hekmatshoar Y, Rahbar Saadat Y, Hosseiniyan Khatibi SM, Ozkan T, Zununi Vahed F, Nariman-Saleh-Fam Z, et al. The impact of tumor and gut microbiotas on cancer therapy: beneficial or detrimental? Life Sci. 2019;233:116680. https://doi.org/10.1016/j.lfs.2019.116680.
Article
CAS
PubMed
Google Scholar
Wheeler KM, Liss MA. The microbiome and prostate cancer risk. Curr Urol Rep. 2019;20(10):66. https://doi.org/10.1007/s11934-019-0922-4.
Article
PubMed
Google Scholar
Scott AJ, Merrifield CA, Younes JA, Pekelharing EP. Pre-, pro- and synbiotics in cancer prevention and treatment—a review of basic and clinical research. Ecancermedicalscience. 2018;12:869. https://doi.org/10.3332/ecancer.2018.869.
Article
PubMed
PubMed Central
Google Scholar
Kim YS, Kim J, Park SJ. High-throughput 16S rRNA gene sequencing reveals alterations of mouse intestinal microbiota after radiotherapy. Anaerobe. 2015;33:1–7. https://doi.org/10.1016/j.anaerobe.2015.01.004.
Article
CAS
PubMed
Google Scholar
Jang BS, Chang JH, Chie EK, Kim K, Park JW, Kim MJ, et al. Gut Microbiome composition is associated with a pathologic response after preoperative chemoradiation in patients with rectal cancer. Int J Radiat Oncol Biol Phys. 2020;107(4):736–46. https://doi.org/10.1016/j.ijrobp.2020.04.015.
Article
PubMed
Google Scholar
Touchefeu Y, Montassier E, Nieman K, Gastinne T, Potel G, Bruley des Varannes S, et al. Systematic review: the role of the gut microbiota in chemotherapy- or radiation-induced gastrointestinal mucositis: current evidence and potential clinical applications. Aliment Pharmacol Ther. 2014;40(5):409–21. https://doi.org/10.1111/apt.12878.
Article
CAS
PubMed
Google Scholar
Riquelme E, Zhang Y, Zhang L, Montiel M, Zoltan M, Dong W, et al. Tumor microbiome diversity and composition influence pancreatic cancer outcomes. Cell. 2019;178(4):795-806.e12. https://doi.org/10.1016/j.cell.2019.07.008.
Article
CAS
PubMed
PubMed Central
Google Scholar
Uribe-Herranz M, Rafail S, Beghi S, Gil-de-Gómez L, Verginadis I, Bittinger K, et al. Gut microbiota modulate dendritic cell antigen presentation and radiotherapy-induced antitumor immune response. J Clin Invest. 2020;130(1):466–79. https://doi.org/10.1172/JCI124332.
Article
CAS
PubMed
Google Scholar
Cui M, Xiao H, Li Y, Zhou L, Zhao S, Luo D, et al. Faecal microbiota transplantation protects against radiation-induced toxicity. EMBO Mol Med. 2017;9(4):448–61. https://doi.org/10.15252/emmm.201606932.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cui M, Xiao H, Luo D, Zhang X, Zhao S, Zheng Q, et al. Circadian rhythm shapes the gut microbiota affecting host radiosensitivity. Int J Mol Sci. 2016;17(11):1786. https://doi.org/10.3390/ijms17111786.
Article
CAS
PubMed Central
Google Scholar
Chan S, Rowbottom L, McDonald R, Bjarnason GA, Tsao M, Danjoux C, et al. Does the time of radiotherapy affect treatment outcomes? A review of the literature. Clin Oncol (R Coll Radiol). 2017;29(4):231–8. https://doi.org/10.1016/j.clon.2016.12.005.
Article
CAS
Google Scholar
Kuwahara Y, Oikawa T, Ochiai Y, Roudkenar MH, Fukumoto M, Shimura T, et al. Enhancement of autophagy is a potential modality for tumors refractory to radiotherapy. Cell Death Dis. 2011;2(6):e177. https://doi.org/10.1038/cddis.2011.56.
Article
CAS
PubMed
PubMed Central
Google Scholar
Digomann D, Kurth I, Tyutyunnykova A, Chen O, Löck S, Gorodetska I, et al. The CD98 heavy chain is a marker and regulator of head and neck squamous cell carcinoma radiosensitivity. Clin Cancer Res. 2019;25(10):3152–63. https://doi.org/10.1158/1078-0432.CCR-18-2951.
Article
CAS
PubMed
Google Scholar
Digomann D, Linge A, Dubrovska A. SLC3A2/CD98hc, autophagy and tumor radioresistance: a link confirmed. Autophagy. 2019;15(10):1850–1. https://doi.org/10.1080/15548627.2019.1639302.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yu T, Guo F, Yu Y, Sun T, Ma D, Han J, et al. Fusobacterium nucleatum promotes chemoresistance to colorectal cancer by modulating autophagy. Cell. 2017;170(3):548-63.e16. https://doi.org/10.1016/j.cell.2017.07.008.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kalluri R, Zeisberg M. Fibroblasts in cancer. Nat Rev Cancer. 2006;6(5):392–401. https://doi.org/10.1038/nrc1877.
Article
CAS
PubMed
Google Scholar
Crawford PA, Gordon JI. Microbial regulation of intestinal radiosensitivity. Proc Natl Acad Sci USA. 2005;102(37):132254–9. https://doi.org/10.1073/pnas.0504830102.
Article
CAS
Google Scholar
Grootaert C, Van de Wiele T, Van Roosbroeck I, Possemiers S, Vercoutter-Edouart AS, Verstraete W, et al. Bacterial monocultures, propionate, butyrate and H2O2 modulate the expression, secretion and structure of the fasting-induced adipose factor in gut epithelial cell lines. Environ Microbiol. 2011;13(7):1778–89. https://doi.org/10.1111/j.1462-2920.2011.02482.x.
Article
CAS
PubMed
Google Scholar
Korecka A, de Wouters T, Cultrone A, Lapaque N, Pettersson S, Doré J, et al. ANGPTL4 expression induced by butyrate and rosiglitazone in human intestinal epithelial cells utilizes independent pathways. Am J Physiol Gastrointest Liver Physiol. 2013;304(11):G1025–37. https://doi.org/10.1152/ajpgi.00293.2012.
Article
CAS
PubMed
Google Scholar
Demers M, Dagnault A, Desjardins J. A randomized double-blind controlled trial: impact of probiotics on diarrhea in patients treated with pelvic radiation. Clin Nutr. 2014;33(5):761–7. https://doi.org/10.1016/j.clnu.2013.10.015.
Article
PubMed
Google Scholar
Sonis ST, Elting LS, Keefe D, Peterson DE, Schubert M, Hauer-Jensen M, et al. Perspectives on cancer therapy-induced mucosal injury: pathogenesis, measurement, epidemiology, and consequences for patients. Cancer. 2004;100(9 Suppl):1995–2025. https://doi.org/10.1002/cncr.20162.
Article
PubMed
Google Scholar
Lalla RV, Sonis ST, Peterson DE. Management of oral mucositis in patients who have cancer. Dent Clin North Am. 2008;52(1):61–77. https://doi.org/10.1016/j.cden.2007.10.002.
Article
PubMed
PubMed Central
Google Scholar
Al-Qadami G, Van Sebille Y, Le H, Bowen J. Gut microbiota: implications for radiotherapy response and radiotherapy-induced mucositis. Expert Rev Gastroenterol Hepatol. 2019;13(5):485–96. https://doi.org/10.1080/17474124.2019.1595586.
Article
CAS
PubMed
Google Scholar
Ferreira MR, Muls A, Dearnaley DP, Andreyev HJ. Microbiota and radiation-induced bowel toxicity: lessons from inflammatory bowel disease for the radiation oncologist. Lancet Oncol. 2014;15(3):e139–47. https://doi.org/10.1016/S1470-2045(13)70504-7.
Article
PubMed
Google Scholar
Gerassy-Vainberg S, Blatt A, Danin-Poleg Y, Gershovich K, Sabo E, Nevelsky A, et al. Radiation induces proinflammatory dysbiosis: transmission of inflammatory susceptibility by host cytokine induction. Gut. 2018;67(1):97–107. https://doi.org/10.1136/gutjnl-2017-313789.
Article
CAS
PubMed
Google Scholar
Goudarzi M, Mak TD, Jacobs JP, Moon BH, Strawn SJ, Braun J, et al. An integrated multi-omic approach to assess radiation injury on the host-microbiome axis. Radiat Res. 2016;186(3):219–34. https://doi.org/10.1667/RR14306.1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Montassier E, Batard E, Massart S, Gastinne T, Carton T, Caillon J, et al. 16S rRNA gene pyrosequencing reveals shift in patient faecal microbiota during high-dose chemotherapy as conditioning regimen for bone marrow transplantation. Microb Ecol. 2014;67(3):690–9. https://doi.org/10.1007/s00248-013-0355-4.
Article
CAS
PubMed
Google Scholar
Neemann K, Freifeld A. Clostridium difficile-associated diarrhea in the oncology patient. J Oncol Pract. 2017;13(1):25–30. https://doi.org/10.1200/JOP.2016.018614.
Article
PubMed
Google Scholar
van Vliet MJ, Harmsen HJ, de Bont ES, Tissing WJ. The role of intestinal microbiota in the development and severity of chemotherapy-induced mucositis. PLoS Pathog. 2010;6(5):e1000879. https://doi.org/10.1371/journal.ppat.1000879.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wardill HR, Gibson RJ, Van Sebille YZA, Secombe KR, Coller JK, White IA, et al. Irinotecan-induced gastrointestinal dysfunction and pain are mediated by common TLR4-dependent mechanisms. Mol Cancer Ther. 2016;15(6):1376–86. https://doi.org/10.1158/1535-7163.MCT-15-0990.
Article
CAS
PubMed
Google Scholar
Riehl T, Cohn S, Tessner T, Schloemann S, Stenson WF. Lipopolysaccharide is radioprotective in the mouse intestine through a prostaglandin-mediated mechanism. Gastroenterology. 2000;118(6):1106–16. https://doi.org/10.1016/s0016-5085(00)70363-5.
Article
CAS
PubMed
Google Scholar
Riehl TE, Newberry RD, Lorenz RG, Stenson WF. TNFR1 mediates the radioprotective effects of lipopolysaccharide in the mouse intestine. Am J Physiol Gastrointest Liver Physiol. 2004;286(1):G166–73. https://doi.org/10.1152/ajpgi.00537.2002.
Article
CAS
PubMed
Google Scholar
Egan LJ, Eckmann L, Greten FR, Chae S, Li ZW, Myhre GM, et al. IκB-kinaseβ-dependent NF-κB activation provides radioprotection to the intestinal epithelium. Proc Natl Acad Sci USA. 2004;101(8):2452–7. https://doi.org/10.1073/pnas.0306734101.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gori S, Inno A, Belluomini L, Bocus P, Bisoffi Z, Russo A, Arcaro G. Gut microbiota and cancer: how gut microbiota modulates activity, efficacy and toxicity of antitumoral therapy. Crit Rev Oncol Hematol. 2019;143:139–47. https://doi.org/10.1016/j.critrevonc.2019.09.003.
Article
PubMed
Google Scholar
Pandey KR, Naik SR, Vakil BV. Probiotics, prebiotics and synbiotics—a review. J Food Sci Technol. 2015;52(12):7577–87. https://doi.org/10.1007/s13197-015-1921-1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang M, Sun K, Wu Y, Yang Y, Tso P, Wu Z. Interactions between intestinal microbiota and host immune response in inflammatory bowel disease. Front Immunol. 2017;8:942. https://doi.org/10.3389/fimmu.2017.00942.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cousin FJ, Jouan-Lanhouet S, Théret N, Brenner C, Jouan E, Le Moigne-Muller G, et al. The probiotic Propionibacterium freudenreichii as a new adjuvant for TRAIL-based therapy in colorectal cancer. Oncotarget. 2016;7(6):7161–78. https://doi.org/10.18632/oncotarget.6881.
Article
PubMed
PubMed Central
Google Scholar
Lenoir M, Del Carmen S, Cortes-Perez NG, Lozano-Ojalvo D, Muñoz-Provencio D, Chain F, et al. Lactobacillus casei BL23 regulates Treg and Th17 T-cell populations and reduces DMH-associated colorectal cancer. J Gastroenterol. 2016;51(9):862–73. https://doi.org/10.1007/s00535-015-1158-9.
Article
CAS
PubMed
Google Scholar
Del Carmen S, de Moreno de LeBlanc A, Levit R, Levit R, Azevedo V, Langella P, et al. Anti-cancer effect of lactic acid bacteria expressing antioxidant enzymes or IL-10 in a colorectal cancer mouse model. Int Immunopharmacol. 2017;42:122–9. https://doi.org/10.1016/j.intimp.2016.11.017.
Article
CAS
PubMed
Google Scholar
Mohania D, Kansal VK, Kruzliak P, Kumari A. Probiotic Dahi containing Lactobacillus acidophilus and Bifidobacterium bifidum modulates the formation of aberrant crypt foci, mucin-depleted foci, and cell proliferation on 1,2-dimethylhydrazine-induced colorectal carcinogenesis in Wistar rats. Rejuvenation Res. 2014;17(4):325–33. https://doi.org/10.1089/rej.2013.1537.
Article
CAS
PubMed
Google Scholar
Ho CL, Tan HQ, Chua KJ, Kang A, Lim KH, Ling KL, et al. Engineered commensal microbes for diet-mediated colorectal-cancer chemoprevention. Nat Biomed Eng. 2018;2(1):27–37. https://doi.org/10.1038/s41551-017-0181-y.
Article
CAS
PubMed
Google Scholar
Franko J, Raman S, Krishnan N, Frankova D, Tee MC, Brahmbhatt R, et al. Randomized trial of perioperative probiotics among patients undergoing major abdominal operation. J Am Coll Surg. 2019;229(6):533-40.e1. https://doi.org/10.1016/j.jamcollsurg.2019.09.002.
Article
PubMed
Google Scholar
Chowdhury AH, Adiamah A, Kushairi A, Varadhan KK, Krznaric Z, Kulkarni AD, et al. Perioperative probiotics or synbiotics in adults undergoing elective abdominal surgery: a systematic review and meta-analysis of randomized controlled trials. Ann Surg. 2020;271(6):1036–47. https://doi.org/10.1097/SLA.0000000000003581.
Article
PubMed
Google Scholar
Casas-Solís J, Huizar-López MDR, Irecta-Nájera CA, Pita-López ML, Santerre A. Immunomodulatory effect of lactobacillus casei in a murine model of colon carcinogenesis. Probiotics Antimicrob Proteins. 2019. https://doi.org/10.1007/s12602-019-09611-z.
Article
Google Scholar
Krebs B. Prebiotic and synbiotic treatment before colorectal surgery–randomised double blind trial. Coll Antropol. 2016;40(1):35–40.
CAS
PubMed
Google Scholar
Krebs B, Horvat M, Golle A, Krznaric Z, Papeš D, Augustin G, et al. A randomized clinical trial of synbiotic treatment before colorectal cancer surgery. Am Surg. 2013;79(12):E340–2.
Article
PubMed
Google Scholar
Worthley DL, Le Leu RK, Whitehall VL, Conlon M, Christophersen C, Belobrajdic D, et al. A human, double-blind, placebo-controlled, crossover trial of prebiotic, probiotic, and synbiotic supplementation: effects on luminal, inflammatory, epigenetic, and epithelial biomarkers of colorectal cancer. Am J Clin Nutr. 2009;90(3):578–86. https://doi.org/10.3945/ajcn.2009.28106.
Article
CAS
PubMed
Google Scholar
Lamichhane P, Maiolini M, Alnafoosi O, Hussein S, Alnafoosi H, Umbela S, et al. Colorectal cancer and probiotics: are bugs really drugs? Cancers (Basel). 2020;12(5):1162. https://doi.org/10.3390/cancers12051162.
Article
CAS
Google Scholar
Liu MM, Li ST, Shu Y, Zhan HQ. Probiotics for prevention of radiation-induced diarrhea: a meta-analysis of randomized controlled trials. PLoS ONE. 2017;12(6):e0178870. https://doi.org/10.1371/journal.pone.0178870.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gibson GR, Hutkins R, Sanders ME, Prescott SL, Reimer RA, Salminen SJ, et al. Expert consensus document: the international scientific association for probiotics and prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat Rev Gastroenterol Hepatol. 2017;14(8):491–502. https://doi.org/10.1038/nrgastro.2017.75.
Article
PubMed
Google Scholar
Qamar TR, Syed F, Nasir M, Rehman H, Zahid MN, Liu RH, et al. Novel combination of prebiotics galacto-oligosaccharides and inulin-inhibited aberrant crypt foci formation and biomarkers of colon cancer in Wistar rats. Nutrients. 2016;8(8):465. https://doi.org/10.3390/nu8080465.
Article
CAS
PubMed Central
Google Scholar
Skiba MB, Kohler LN, Crane TE, Jacobs ET, Shadyab AH, Kato I, et al. The association between prebiotic fiber supplement use and colorectal cancer risk and mortality in the women’s health initiative. Cancer Epidemiol Biomark Prev. 2019;28(11):1884–90. https://doi.org/10.1158/1055-9965.
Article
CAS
Google Scholar
Kaźmierczak-Siedlecka K, Daca A, Fic M, van de Wetering T, Folwarski M, Makarewicz W. Therapeutic methods of gut microbiota modification in colorectal cancer management—fecal microbiota transplantation, prebiotics, probiotics, and synbiotics. Gut Microbes. 2020;11(6):1518–30. https://doi.org/10.1080/19490976.2020.1764309.
Article
PubMed
PubMed Central
Google Scholar
Eid N, Osmanova H, Natchez C, Walton G, Costabile A, Gibson G, et al. Impact of palm date consumption on microbiota growth and large intestinal health: a randomised, controlled, cross-over, human intervention study. Br J Nutr. 2015;114(8):1226–36. https://doi.org/10.1017/S0007114515002780.
Article
CAS
PubMed
Google Scholar
Le Leu RK, Winter JM, Christophersen CT, Young GP, Humphreys KJ, Hu Y, et al. Butyrylated starch intake can prevent red meat-induced O6-methyl-2-deoxyguanosine adducts in human rectal tissue: a randomised clinical trial. Br J Nutr. 2015;114(2):220–30. https://doi.org/10.1017/S0007114515001750.
Article
CAS
PubMed
PubMed Central
Google Scholar
Molan AL, Liu Z, Plimmer G. Evaluation of the effect of blackcurrant products on gut microbiota and on markers of risk for colon cancer in humans. Phytother Res. 2014;28(3):416–22. https://doi.org/10.1002/ptr.5009.
Article
CAS
PubMed
Google Scholar
Windey K, De Preter V, Huys G, Broekaert WF, Delcour JA, Louat T, et al. Wheat bran extract alters colonic fermentation and microbial composition, but does not affect faecal water toxicity: a randomised controlled trial in healthy subjects. Br J Nutr. 2015;113(2):225–38. https://doi.org/10.1017/S0007114514003523.
Article
CAS
PubMed
Google Scholar
Mehta RS, Nishihara R, Cao Y, Song M, Mima K, Qian ZR, et al. Association of dietary patterns with risk of colorectal cancer subtypes classified by Fusobacterium nucleatum in tumor tissue [published correction appears in JAMA Oncol. 2019;5(4):579]. JAMA Oncol. 2017;3(7):921–7. https://doi.org/10.1001/jamaoncol.2016.6374.
Article
PubMed
PubMed Central
Google Scholar
Limburg PJ, Mahoney MR, Ziegler KL, Sontag SJ, Schoen RE, Benya R, et al. Randomized phase II trial of sulindac, atorvastatin, and prebiotic dietary fiber for colorectal cancer chemoprevention. Cancer Prev Res (Phila). 2011;4(2):259–69. https://doi.org/10.1158/1940-6207.CAPR-10-0215.
Article
CAS
Google Scholar
Martin OC, Lin C, Naud N, Tache S, Raymond-Letron I, Corpet DE, et al. Antibiotic suppression of intestinal microbiota reduces heme-induced lipoperoxidation associated with colon carcinogenesis in rats. Nutr Cancer. 2015;67(1):119–25. https://doi.org/10.1080/01635581.2015.976317.
Article
CAS
PubMed
Google Scholar
Ushijima H, Horyozaki A, Maeda M. Anisomycin-induced GATA-6 degradation accompanying a decrease of proliferation of colorectal cancer cell. Biochem Biophys Res Commun. 2016;478(1):481–5. https://doi.org/10.1016/j.bbrc.2016.05.139.
Article
CAS
PubMed
Google Scholar
Prabhu VV, Hong B, Allen JE, Zhang S, Lulla AR, Dicker DT, et al. Small-molecule prodigiosin restores p53 tumor suppressor activity in chemoresistant colorectal cancer stem cells via c-Jun-mediated ΔNp73 inhibition and p73 activation. Cancer Res. 2016;76(7):1989–99. https://doi.org/10.1158/0008-5472.CAN-14-2430.
Article
CAS
PubMed
Google Scholar
Klose J, Eissele J, Volz C, Schmitt S, Ritter A, Ying S, et al. Salinomycin inhibits metastatic colorectal cancer growth and interferes with Wnt/β-catenin signaling in CD133+ human colorectal cancer cells. BMC Cancer. 2016;16(1):896. https://doi.org/10.1186/s12885-016-2879-8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bullman S, Pedamallu CS, Sicinska E, Clancy TE, Zhang X, Cai D, et al. Analysis of Fusobacterium persistence and antibiotic response in colorectal cancer. Science. 2017;358(6369):1443–8. https://doi.org/10.1126/science.aal5240.
Article
CAS
PubMed
PubMed Central
Google Scholar
Montrose DC, Zhou XK, McNally EM, Sue E, Yantiss RK, Gross SS, et al. Celecoxib alters the intestinal microbiota and metabolome in association with reducing polyp burden. Cancer Prev Res (Phila). 2016;9(9):721–31. https://doi.org/10.1158/1940-6207.CAPR-16-0095.
Article
CAS
Google Scholar
Yu YN, Yu TC, Zhao HJ, Sun TT, Chen HM, Chen HY, et al. Berberine may rescue Fusobacterium nucleatum-induced colorectal tumorigenesis by modulating the tumor microenvironment. Oncotarget. 2015;6(31):32013–26. https://doi.org/10.18632/oncotarget.5166.
Article
PubMed
PubMed Central
Google Scholar
Wu M, Wu Y, Deng B, Li J, Cao H, Qu Y, et al. Isoliquiritigenin decreases the incidence of colitis-associated colorectal cancer by modulating the intestinal microbiota. Oncotarget. 2016;7(51):85318–31. https://doi.org/10.18632/oncotarget.13347.
Article
PubMed
PubMed Central
Google Scholar
McFadden RM, Larmonier CB, Shehab KW, Midura-Kiela M, Ramalingam R, Harrison CA, et al. The role of curcumin in modulating colonic microbiota during colitis and colon cancer prevention. Inflamm Bowel Dis. 2015;21(11):2483–94. https://doi.org/10.1097/MIB.0000000000000522.
Article
PubMed
Google Scholar
Tomasello G, Mazzola M, Jurjus A, Cappello F, Carini F, Damiani P, et al. The fingerprint of the human gastrointestinal tract microbiota: a hypothesis of molecular mapping. J Biol Regul Homeost Agents. 2017;31(1):245–9.
CAS
PubMed
Google Scholar
El Rakaiby M, Dutilh BE, Rizkallah MR, Boleij A, Cole JN, Aziz RK. Pharmacomicrobiomics: the impact of human microbiome variations on systems pharmacology and personalized therapeutics. OMICS. 2014;18(7):402–14. https://doi.org/10.1089/omi.2014.0018.
Article
CAS
Google Scholar
Cao H, Xu M, Dong W, Deng B, Wang S, Zhang Y, et al. Secondary bile acid-induced dysbiosis promotes intestinal carcinogenesis. Int J Cancer. 2017;140(11):2545–56. https://doi.org/10.1002/ijc.30643.
Article
CAS
PubMed
Google Scholar
Castellarin M, Warren RL, Freeman JD, Dreolini L, Krzywinski M, Strauss J, et al. Fusobacterium nucleatum infection is prevalent in human colorectal carcinoma. Genome Res. 2012;22(2):299–306. https://doi.org/10.1101/gr.126516.111.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ding X, Li Q, Li P, Chen X, Xiang L, Bi L, et al. Fecal microbiota transplantation: A promising treatment for radiation enteritis? Radiother Oncol. 2020;143:12–8. https://doi.org/10.1016/j.radonc.2020.01.011.
Article
CAS
PubMed
Google Scholar
Xiao HW, Cui M, Li Y, Dong JL, Zhang SQ, Zhu CC, et al. Gut microbiota-derived indole 3-propionic acid protects against radiation toxicity via retaining acyl-CoA-binding protein. Microbiome. 2020;8(1):69. https://doi.org/10.1186/s40168-020-00845-6.
Article
PubMed
PubMed Central
Google Scholar
Pamer EG. Fecal microbiota transplantation: effectiveness, complexities, and lingering concerns. Mucosal Immunol. 2014;7(2):210–4. https://doi.org/10.1038/mi.2013.117.
Article
CAS
PubMed
Google Scholar
Borody TJ, Paramsothy S, Agrawal G. Fecal microbiota transplantation: indications, methods, evidence, and future directions. Curr Gastroenterol Rep. 2013;15(8):337. https://doi.org/10.1007/s11894-013-0337-1.
Article
PubMed
PubMed Central
Google Scholar
Hoffmann D, Palumbo F, Ravel J, Roghmann MC, Rowthorn V, von Rosenvinge E. Improving regulation of microbiota transplants. Science. 2017;358(6369):1390–1. https://doi.org/10.1126/science.aaq0034.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ronda C, Chen SP, Cabral V, Yaung SJ, Wang HH. Metagenomic engineering of the mammalian gut microbiome in situ. Nat Methods. 2019;16(2):167–70. https://doi.org/10.1038/s41592-018-0301-y.
Article
CAS
PubMed
PubMed Central
Google Scholar
Song W, Anselmo AC, Huang L. Nanotechnology intervention of the microbiome for cancer therapy. Nat Nanotechnol. 2019;14(12):1093–103. https://doi.org/10.1038/s41565-019-0589-5.
Article
CAS
PubMed
Google Scholar
Chowdhury S, Castro S, Coker C, Hinchliffe TE, Arpaia N, Danino T. Programmable bacteria induce durable tumor regression and systemic antitumor immunity. Nat Med. 2019;25(7):1057–63. https://doi.org/10.1038/s41591-019-0498-z.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sola-Oladokun B, Culligan EP, Sleator RD. Engineered probiotics: applications and biological containment. Annu Rev Food Sci Technol. 2017;8:353–70. https://doi.org/10.1146/annurev-food-030216-030256.
Article
PubMed
Google Scholar
Kommineni S, Bretl DJ, Lam V, Chakraborty R, Hayward M, Simpson P, et al. Bacteriocin production augments niche competition by enterococci in the mammalian gastrointestinal tract. Nature. 2015;526(7575):719–22. https://doi.org/10.1038/nature15524.
Article
CAS
PubMed
PubMed Central
Google Scholar
Özel B, Şimşek Ö, Akçelik M, Saris PEJ. Innovative approaches to nisin production. Appl Microbiol Biotechnol. 2018;102(15):6299–307. https://doi.org/10.1007/s00253-018-9098-y.
Article
CAS
PubMed
Google Scholar
Suwan K, Yata T, Waramit S, Przystal JM, Stoneham CA, Bentayebi K, et al. Next-generation of targeted AAVP vectors for systemic transgene delivery against cancer. Proc Natl Acad Sci USA. 2019;116(37):18571–7. https://doi.org/10.1073/pnas.1906653116.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kingwell K. Bacteriophage therapies re-enter clinical trials. Nat Rev Drug Discov. 2015;14(8):515–6. https://doi.org/10.1038/nrd4695.
Article
CAS
PubMed
Google Scholar
Costea PI, Coelho LP, Sunagawa S, Munch R, Huerta-Cepas J, Forslund K, et al. Subspecies in the global human gut microbiome. Mol Syst Biol. 2017;13(12):960. https://doi.org/10.15252/msb.20177589.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wirbel J, Pyl PT, Kartal E, Zych K, Kashani A, Milanese A, et al. Meta-analysis of fecal metagenomes reveals global microbial signatures that are specific for colorectal cancer. Nat Med. 2019;25(4):679–89. https://doi.org/10.1038/s41591-019-0406-6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang X, Figeys D. Perspective and guidelines for metaproteomics in microbiome studies. J Proteome Res. 2019;18(6):2370–80. https://doi.org/10.1021/acs.jproteome.9b00054.
Article
CAS
PubMed
Google Scholar
Lloyd-Price J, Arze C, Ananthakrishnan AN, Schirmer M, Avila-Pacheco J, Poon TW, et al. Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases. Nature. 2019;569(7758):655–62. https://doi.org/10.1038/s41586-019-1237-9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yimagou EK, Baudoin JP, Abdallah RA, Di Pinto F, Bou Khalil JY, Raoult D. Full-repertoire comparison of the microscopic objects composing the human gut microbiome with sequenced and cultured communities. J Microbiol. 2020;58(5):377–86. https://doi.org/10.1007/s12275-020-9365-3.
Article
CAS
PubMed
Google Scholar
Haase S, Haghikia A, Wilck N, Müller DN, Linker RA. Impacts of microbiome metabolites on immune regulation and autoimmunity. Immunology. 2018;154(2):230–8. https://doi.org/10.1111/imm.12933.
Article
CAS
PubMed
PubMed Central
Google Scholar
Morrison DJ, Preston T. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes. 2016;7(3):189–200. https://doi.org/10.1080/19490976.2015.1134082.
Article
PubMed
PubMed Central
Google Scholar