Skip to main content

Prostate bed irradiation with alternative radio-oncological approaches (PAROS) - a prospective, multicenter and randomized phase III trial



For patients with treatment-naïve carcinoma of the prostate, hypofractionated irradiation becomes more and more popular. Due to the low α/β value of prostate cancer, increased single dose leading to a shortened treatment period seems to be safe and feasible. However, reliable data is lacking for post-prostatectomy patients so far. Further, the role of proton therapy is still under debate. Two prospective phase II trials with both, hypofractionated photon and proton therapy, provided promising results.

Methods/ design

The PAROS trial is a prospective, multicenter and randomized phase III trial for men with localized prostate carcinoma after surgery. Post-prostatectomy patients will be randomized to either normofractionated radiotherapy (nRT) with photons (70.0/ 2.0 Gy), or hypofractionated radiotherapy (hRT) with photons (57.0/ 3.0 Gy) or hRT with protons (57.0/ 3.0 Gy relative biological effectiveness [RBE]). Block randomization is stratified by Gleason Score (≤ 7 vs. > 7) and treatment indication (adjuvant vs. salvage). The trial is planned to enroll 897 patients. The primary objective is to show an improvement in the bowel-score according to EORTC QLQ-PR25 after proton therapy compared to photon irradiation (week 12 vs. baseline). Secondary aims are non-inferiority of hRT compared to nRT with regard to biochemical progression-free survival (bPFS), overall survival (OS), quality of life and toxicity.


The present study aims to evaluate the role of hypofractionated radiotherapy to the prostate bed with photons and protons leading to significant impact on future management of operated men with prostate cancer.

Trial registration

Deutsches Register klinischer Studien: DRKS00015231; registered 27 September 2018.


For patients with non-metastatic prostate carcinoma, surgery or radiotherapy with or without hormonal therapy (HT) are curative treatment options. After prostatectomy, irradiation can be performed as adjuvant therapy or after prostate specific antigen (PSA) rise. While several larger studies reported on the oncological benefit for postoperative radiotherapy [1, 2], there is only one prospective phase III trial evaluating the role of dose-escalated salvage irradiation so far [3]. One multicenter, prospective phase II study from Germany is currently analyzing the role of moderately dose-escalated salvage radiotherapy in combination with local hyperthermia [4].

For some years now, hypofractionated irradiation becomes more and more common for patients with prostate cancer. Many trials observed excellent clinical outcome after moderate hypofractionation for patients undergoing definitive radiotherapy [5,6,7,8]. As one of the largest studies, the CHHiP trial evaluated 3216 men with localized prostate cancer. With a median follow-up of 62.4 months, hypofractionated radiotherapy (hRT) with 60 Gy in 20 fractions was not inferior compared to conventional fractionation. At 5 years, 90.6% in the 60 Gy group and 88.3% in the 74 Gy group were free of biochemical or clinical failure [5]. Nowadays, hypofractionation is frequently proclaimed as the “new standard of care” for definitive radiotherapy of patients with prostate cancer. However, in the postoperative setting reliable data is missing with regard to hypofractionation. Few studies with mostly small numbers of patients reported on feasibility and toxicity. When using moderate hRT, postoperative radiotherapy seems to be safe and provided promising clinical results [9,10,11]. Lewis et al. observed no acute grade 3 toxicity and a 4-year bPFS of 75% in a cohort of 56 men. All patients obtained image-guided intensity-modulated radiation therapy (IMRT) in 2.5 Gy fractions [12]. Our institution also tested different approaches for hypofractionation after surgery: The PRIAMOS 1 trial evaluated treatment safety and toxicity of hRT of the prostate bed using IMRT and daily image-guidance. In this prospective phase II trial, 40 men received adjuvant or salvage irradiation with single doses of 3.0 Gy up to a total dose of 54.0 Gy. Treatment was tolerated well with no recorded side effects grade 3+ [13]. Very similar results were obtained when using proton therapy instead of photons. With the use of protons, patient-reported bowel-score according to EORTC QLQ-PR25 questionnaire was already improved at week 10 and reached borderline significance when compared to photon therapy [data unpublished]. Therefore, larger and randomized trials are of great interest evaluating the role of hRT for patients after prostatectomy.

The PAROS trial is designed as a prospective, multicenter and randomized 3-arm phase III trial evaluating toxicity and efficacy of hypofractionation for prostate cancer patients undergoing adjuvant or salvage irradiation.


Primary and secondary endpoints

The primary endpoint is defined as the change in the bowel-score according to EORTC QLQ-PR25 from baseline to 12 weeks after start of proton therapy compared to photon irradiation.

Secondary endpoints are bPFS after 5 years, quality of life (QoL) according to EORTC QLQ-C30 and –PR25 after 2 and 5 years, clinical symptoms and toxicity according to National Cancer Institute Common Terminology Criteria for Adverse Effects (NCI CTCAE) version 5.0 after 2 and 5 years as well as overall survival (OS) after 5 years.

Trial design

The trial is a prospective, multicenter, randomized phase III trial of patients with operated prostate carcinoma and is planned to enroll 897 patients with localized prostate cancer after prostatectomy. Patients will be randomized to one of the three arms: nRT with photons, hRT with photons or hRT with protons. Total dose is 70.0 Gy in 35 fractions for nRT with photons (arm 1), 57.0 Gy in 19 fractions for hRT with photons (arm 2) and 57.0 Gy relative biological effectiveness (RBE) in 19 fractions for hRT with protons (arm 3), respectively (Fig. 1). The study was designed as a multicenter trial in at least seven radio oncological centers in Germany and is conducted in accordance with the Declaration of Helsinki and the guidelines of Good Clinical Practice in their current versions. Before trial initiation, the study was approved by the local institutional review board and the expert committee of the German Society of Radiation Oncology. Written informed consent will be obtained from all patients prior to inclusion into the trial.

Fig. 1

PAROS trial flowsheet. nRT = normofractionated radiotherapy; hRT = hypofractionated radiotherapy; Gy = Gray; RBE = relative biological effectiveness

Inclusion and exclusion criteria

Inclusion criteria:

  • histologically proven, localized prostate cancer with classification according to Gleason Score/ WHO grading and initial PSA value

  • indication for adjuvant or salvage irradiation of the prostate bed after prostatectomy

  • no evidence of nodal/ bone or organ metastases in imaging according to national guidelines for patients with PSA persistence/ relapse and a PSA value of > 1 ng/ml

  • Karnofsky index ≥70%

  • age ≥ 18 years

  • written informed consent

Exclusion criteria:

  • hormonal therapy

  • macroscopic tumor/ R2 resection margin

  • nodal metastases

  • distant metastases (M1)

  • previous pelvic irradiation

  • concurrent participation in other clinical trials, which might influence the results of the present study

  • active medical implants without treatment approval at the time of proton therapy (e.g. defibrillator, pacemaker)

Pretreatment preparations/ randomization

When meeting the inclusion criteria, patients are informed about the trial including potential risks and benefits. After written informed consent, patients will be allocated (1:1:1) in concealed fashion into one of the three treatment arms (arms 1–3). Block randomization will be carried out with permuted block sizes and stratified by Gleason Score (GS) (≤ 7 vs. > 7) and treatment indication (adjuvant vs. salvage) using a centralized web-based tool ( Participating sites have to register at the randomization platform before. All required documentation will be transferred to the study center (Study Administration, Department of Radiation Oncology, Heidelberg University Hospital, INF 400, 69,120 Heidelberg).


Treatment planning and application will be performed at the site of study enrollment. For centers without a proton unit, patients randomized in arm 3 will be referred to one participating site with protons available. Patient positioning and immobilization will be performed according to institutional standards. Photon irradiation will be applied in IMRT/ image-guided radiotherapy (IGRT) technique, proton beam therapy is performed as active beam application (raster scanning method).

For contouring, the bladder, rectum, posterior third of the rectum, bowel (small bowel, colon/ sigma) and femoral heads will be defined as organs-at-risk (OAR). Target volume delineation will be done according to Radiation Therapy Oncology Group (RTOG) guidelines (post-OP prostate cancer). The planning target volume (PTV) will be obtained by adding a 5 mm (anterior-posterior; superior-inferior) and 7 mm (lateral direction) margin to the clinical target volume (CTV), respectively. Total dose will be prescribed to 50% of the PTV for each treatment arm. Equivalent dose in 2.0 Gy/ fraction (ED2) for hRT (arm 2 + 3) is 69.7 Gy, calculated for 2.0 Gy single dose considering an α/β value of 2.5. For proton irradiation, dose will be calculated with an RBE of 1.1 according to ICRU 78.

Dose to OAR may not exceed the tolerance dose (TD) 5/5 (toxic dose leading to 5% severe complications over 5 years). The maximum dose of PTV_rectum (defined as the intersection between PTV and the rectum) is 70.0 Gy (arm 1) and 57.0 Gy (RBE) (arm 2 + 3), respectively. In the hRT arm, maximal EQD2 for the rectum is 66.5 Gy (RBE) (α/β value of 4).

Follow-up/ evaluation of efficacy and safety parameters

The first follow-up examination will be performed at 12 weeks after the start of irradiation. While regular urooncological aftercare will be organized according to national guidelines, follow-up vists within the trial will be scheduled after 6, 12, 24, 36 and 60 months (Table 1). PSA levels can also be received from the treating urologist every 3months for the first 2 years and semi-annually thereafter.

Table 1 Time schedule for the present trial

Acute and chronic toxicity will be evaluated according to NCI CTCAE version 5.0 during and after the treatment. EORTC QLQ-C30 and -PR25 questionnaires are used to collect data on QoL.

Biochemical failure is defined as two consecutive increases of PSA from nadir according to national guidelines [14,15,16,17]. bPFS is defined as time from first diagnosis to biochemical failure. OS is defined as time from the first diagnosis to death from any course. If the respective event has been observed, the patient is censored at the date of the last follow-up examination.

Sample size calculation

The sample size calculation is based on the primary endpoint change in the bowel-score according to EORTC QLQ-PR25 from baseline to 12 weeks. Based on numerous trials, we assume a change of 6.5 points in the standard arm (arm 1). Based on the two phase II trials mentioned above, we assume a change of 6.5 points in arm 2 as well and a change of 2.5 points in arm 3. Equal standard deviation of 15 points is expected for all arms. In the primary analysis, arm 1 will be compared with arm 3 and arm 2 with arm 3. To control the overall type I error of 5%, local significance levels of 2.5% according to Bonferroni were applied in the sample size calculation. To achieve a power of 80% with the assumptions above, a sample size of 269 per arm results for the two-sided t-test. Calculations have been performed using PASS 14.0.8. The primary analysis will be performed applying the Bonferroni Holm procedure and the factors used in the stratified randomization will be considered. This will lead to an increase in power. Based on the experiences from previous studies, a conservative rate of drop-outs and loss to follow-ups of 10% is expected. To compensate for this loss in information, 299 patients per arm are required resulting in a total of 897 patients to be randomized.

Statistical analysis

In the primary analysis, arm 1 vs. arm 3 and arm 2 vs. arm 3 will be compared regarding the primary endpoint applying a linear regression model including the stratification variables used in the randomisation procedure and center. Primarily, the analysis will be based on the Intention to treat population which consists of all randomized patients treated at least for 1 week in the arm as randomized. Missing values for the primary endpoint will be imputed using multiple imputations under the “missing at random” assumption and the results will be pooled. To control the global type I error rate with 5%, the Bonferroni Holm procedure will be applied. In case that at least one of the two comparisons can be considered significant, arm 1 vs. 2 will be compared at a significance level of 5%, still controlling the global significance level of 5%.

In addition, a complete case analysis will be carried out. In the per protocol set only patients who were treated as described in the protocol with complete documentation of relevant data will be considered. This set will be analyzed as well as sensitivity analysis.

Time to event endpoints will be analyzed using Cox proportional hazard models adjusting for the stratification variables used in the randomization procedure. All secondary endpoints will be descriptively analyzed using statistical methods as appropriate for the underlying distribution of the data.

Safety endpoints will be analyzed based on the safety population which comprises all patients who had at least 1 day of treatment, considered in the arm as treated. Rates of acute and chronic toxicity will be calculated together with corresponding 95 confidence intervals for group comparisons. Descriptive p-values for the chi-squared test will be provided. Statistical methods will be used to assess the quality of the data, homogeneity of treatment groups, endpoints and safety of the two intervention groups. Details of the statistical analysis will be fixed at the latest in the Statistical Analysis Plan (SAP) to be prepared before database closure. This also includes the definition of the analysis populations.


After prostatectomy, irradiation is recommended for several patients with prostate cancer due to various criteria like positive resection margins or PSA relapse. Although prostate specific membrane antigen (PSMA) positron emission tomography (PET)/CT is now available for recurrent disease, detection rates are limited; especially for low and very low PSA levels. Several studies reported on a probability of about 50% in detecting macroscopic tumor at PSA levels of < 0.5 ng/ml [18, 19]. Currently, there is no evidence for prolonging adjuvant or salvage radiotherapy to reach higher detection rates from PSMA PET/CT. Therefore, radiotherapy is often prescribed to the prostate bed assuming this localization has the highest risk for prostate cancer cells.

Today, nRT with photons is considered as the standard of care for patients undergoing irradiation after prostatectomy. However, treatment time covers a period of several weeks for each patient so far. Due to the low α/β value of prostate cancer compared to relevant normal tissue, hypofractionation seems to be feasible and safe without an increase of late reactions. However, inconsistent data exist so far with regard to chronic side effects: While several studies reported on similar late toxicity when using postoperative, hRT [12, 20], Cozzarini et al. observed a higher risk of late urinary toxicity in a relatively small group of patients who underwent hypofractionation. In this retrospective analysis, the 5-year risk of severe (grade ≥ 3) late urinary side effects increased in the heterogeneous cohort of patients treated with different hRT regimes compared to men treated with normofractionation [21]. Even though results should be interpreted with caution due to the retrospective character of the study and the small number of patients in the different hRT subgroups, additional research is imperative.

Further, the role of post-prostatectomy proton therapy is still unclear. Due to its physical characteristics, dose to the target volume can be achieved more efficiently with the use of particles like protons while leading to an optimized sparing of the surrounding OAR. Apart from previous in-house data, normofractionated proton therapy is likely to be feasible and safe with a favorable toxicity profile also in postoperative setting. Deville et al. observed no acute and late adverse effects grade ≥ 3 in a cohort of 100 men undergoing post-prostatectomy nRT with a median follow-up of 25 months [22]. Nevertheless, the potential reduction of side effects by the use of protons is highly debated due to the fact, that parts of the OAR are included in the target volume for both, protons and photons. Prospective, randomized trials are lacking so far.

The PAROS trial aims to evaluate the role of hypofractionated irradiation with either photons or protons for patients with prostate carcinoma after surgery. The study results will impact future management and treatment recommendations for this large group of patients.

Trial status/ planned end of the study

Recruitment of the present trial was initiated in late 2018 and is expected to end in Q4 of 2023. The regular end of study participation for each patient is 60 months after the end of treatment (last patient out expected in Q4 2028/ Q1 2029).

Availability of data and materials

The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.



biochemical progression-free survival


Computed tomography


Clinical target volume


Equivalent dose in 2.0 Gy/ fraction


Gleason Score




hypofractionated radiotherapy


Hormonal therapy


Image-guided radiotherapy


Intensity-modulated radiation therapy


National Cancer Institute Common Terminology Criteria for Adverse Effects


normofractionated radiotherapy


Organs at risk


Overall survival


Positron emission tomography


Prostate specific antigen


Prostate specific membrane antigen


Planning target volume


Quality of Life


Quality of life


Relative biological effectiveness


Radiation Therapy Oncology Group


Tolerance dose


World health organization


  1. 1.

    Bolla M, Poppel H, Tombal B, Vekemans K, Da Pozzo L, de Reijke TM, Verbaeys A, Bosset JF, van Velthoven R, Colombel M, van de Beek C, Verhagen P, van den Bergh A, Sternberg C, Gasser T, van Tienhoven G, Scalliet P, Haustermans K, Collette L. European organisation for research and treatment of cancer, radiation oncology and genito-urinary groups.: postoperative radiotherapy after radical prostatectomy for high-risk prostate cancer: long-term results of a randomised controlled trial (EORTC trial 22911). Lancet. 2012;380:2018–27.

    Article  Google Scholar 

  2. 2.

    Wiegel T, Bottke D, Steiner U, Siegmann A, Golz R, Störkel S, Willich N, Semjonow A, Souchon R, Stöckle M, Rübe C, Weissbach L, Althaus P, Rebmann U, Kälble T, Feldmann HJ, Wirth M, Hinke A, Hinkelbein W, Miller K. Phase III postoperative adjuvant radiotherapy after radical prostatectomy compared with radical prostatectomy alone in pT3 prostate cancer with postoperative undetectable prostate-specific antigen: ARO 96-02/AUO AP 09/95. J Clin Oncol. 2009;27:2924–30.

    Article  Google Scholar 

  3. 3.

    Ghadjar P, Hayoz S, Bernhard J, Zwahlen DR, Hölscher T, Gut P, Guckenberger M, Hildebrandt G, Müller AC, Plasswilm L, Papachristofilou A, Stalder L, Biaggi-Rudolf C, Sumila M, Kranzbühler H, Najafi Y, Ost P, Azinwi NC, Reuter C, Bodis S, Kaouthar K, Wust P, Thalmann GN, Aebersold DM. Acute toxicity and quality of life after dose-intensified salvage radiation therapy for biochemically recurrent prostate cancer after prostatectomy: first results of the randomized trial SAKK 09/10. J Clin Oncol. 2015;33:4158–66.

    CAS  Article  Google Scholar 

  4. 4.

    Müller AC, Zips D, Heinrich V, Lamprecht U, Voigt O, Burock S, Budach V, Wust P, Ghadjar P. Regional hyperthermia and moderately dose-escalated salvage radiotherapy for recurrent prostate cancer. Protocol of a phase II trial. Radiat Oncol. 2015;10:138.

    Article  Google Scholar 

  5. 5.

    Dearnaley D, Syndikus I, Mossop H, Khoo V, Birtle A, Bloomfield D, Graham J, Kirkbride P, Logue J, Malik Z, Money-Kyrle J, O’Sullivan JM, Panades M, Parker C, Patterson H, Scrase C, Staffurth J, Stockdale A, Tremlett J, Bidmead M, Mayles H, Naismith O, South C, Gao A, Cruickshank C, Hassan S, Pugh J, Griffin C, Hall E, CHHiP Investigators. Conventional versus hypofractionated high-dose intensity-modulated radiotherapy for prostate cancer: 5-year outcomes of the randomised, non-inferiority, phase 3 CHHiP trial. Lancet Oncol. 2016;17:1047–60.

    Article  Google Scholar 

  6. 6.

    Incrocci L, Wortel RC, Alemayehu WG, Aluwini S, Schimmel E, Krol S, van der Toorn PP, Jager H, Heemsbergen W, Heijmen B, Pos F. Hypofractionated versus conventionally fractionated radiotherapy for patients with localised prostate cancer (HYPRO): final efficacy results from a randomised, multicentre, open-label, phase 3 trial. Lancet Oncol. 2016;17:1061–9.

    Article  Google Scholar 

  7. 7.

    Lee WR, Dignam JJ, Amin MB, Bruner DW, Low D, Swanson GP, Shah AB, D’Souza DP, Michalski JM, Dayes IS, Seaward SA, Hall WA, Nguyen PL, Pisansky TM, Faria SL, Chen Y, Koontz BF, Paulus R, Sandler HM. Randomized phase III noninferiority study comparing two radiotherapy fractionation schedules in patients with low-risk prostate Cancer. J Clin Oncol. 2016;34:2325–32.

    Article  Google Scholar 

  8. 8.

    Pollack A, Walker G, Horwitz EM, Price R, Feigenberg S, Konski AA, Stoyanova R, Movsas B, Greenberg RE, Uzzo RG, Ma C, Buyyounouski MK. Randomized trial of hypofractionated external-beam radiotherapy for prostate cancer. J Clin Oncol. 2013;31:3860–8.

    Article  Google Scholar 

  9. 9.

    Alongi F, Cozzi L, Fogliata A, Iftode C, Comito T, Clivio A, Villa E, Lobefalo F, Navarria P, Reggiori G, Mancosu P, Clerici E, Tomatis S, Taverna G, Graziotti P, Scorsetti M. Hypofractionation with VMAT versus 3DCRT in post-operative patients with prostate cancer. Anticancer Res. 2013;33:4537–43.

    PubMed  Google Scholar 

  10. 10.

    Cuccia F, Mortellaro G, Serretta V, Valenti V, Tripoli A, Gueci M, Luca N, Casto AL, Ferrera G. Hypofractionated postoperative helical tomotherapy in prostate cancer: a mono-institutional report of toxicity and clinical outcomes. Cancer Manag Res. 2018;10:5053–60.

    Article  Google Scholar 

  11. 11.

    Fersino S, Tebano U, Mazzola R, Giaj-Levra N, Ricchetti F, Di Paola G, Fiorentino A, Sicignano G, Naccarato S, Ruggieri R, Cavalleri S, Alongi F. Moderate Hypofractionated Postprostatectomy volumetric modulated arc therapy with daily image guidance (VMAT-IGRT): a mono-institutional report on feasibility and acute toxicity. Clin Genitourin Cancer. 2017;15:e667–73.

    Article  Google Scholar 

  12. 12.

    Lewis SL, Patel P, Song H, Freedland SJ, Bynum S, Oh D, Palta M, Yoo D, Oleson J, Salama JK. Image guided Hypofractionated Postprostatectomy intensity modulated radiation therapy for prostate Cancer. Int J Radiat Oncol Biol Phys. 2016;94:605–11.

    Article  Google Scholar 

  13. 13.

    Katayama S, Striecker T, Kessel K, Sterzing F, Habl G, Edler L, Debus J, Herfarth K. Hypofractionated IMRT of the prostate bed after radical prostatectomy: acute toxicity in the PRIAMOS-1 trial. Int J Radiat Oncol Biol Phys. 2014;90:926–33.

    Article  Google Scholar 

  14. 14.

    Dutch Urological Association. Prostate Cancer. Nation-wide guideline. Version 1.0. Maastricht: Dutch Urological Association; 2007.

    Google Scholar 

  15. 15.

    Amling CL, Bergstralh EJ, Blute ML, Slezak JM, Zincke H. Defining prostate specific antigen progression after radical prostatectomy: what is the most appropriate cut point? J Urol. 2001;165:1146–51.

    CAS  Article  Google Scholar 

  16. 16.

    Stephenson AJ, Kattan MW, Eastham JA, Dotan ZA, Bianco FJ Jr, Lilja H, Scardino PT. Defining biochemical recurrence of prostate cancer after radical prostatectomy: a proposal for a standardized definition. J Clin Oncol. 2006;24:3973–8.

    CAS  Article  Google Scholar 

  17. 17.

    Freedland SJ, Sutter ME, Dorey F, Aronson WJ. Defining the ideal cutpoint for determining PSA recurrence after radical prostatectomy. Prostate-specific antigen. Urology. 2003;61:365–9.

    Article  Google Scholar 

  18. 18.

    Eiber M, Maurer T, Souvatzoglou M, Beer AJ, Ruffani A, Haller B, Graner FP, Kübler H, Haberkorn U, Eisenhut M, Wester HJ, Gschwend JE, Schwaiger M. Evaluation of hybrid 68Ga-PSMA ligand PET/CT in 248 patients with biochemical recurrence after radical prostat ectomy. J Nucl Med. 2015;56:668–74.

    Article  Google Scholar 

  19. 19.

    Perera M, Papa N, Christidis D, Wetherell D, Hofman MS, Murphy DG, Bolton D, Lawrentschuk N. Sensitivity, specificity, and predictors of positive 68Ga-prostate-specific membrane antigen positron emission tomography in advanced prostate Cancer: a systematic review and meta-analysis. Eur Urol. 2016;70:926–37.

    Article  Google Scholar 

  20. 20.

    Tandberg DJ, Oyekunle T, Lee WR, Wu Y, Salama JK, Koontz BF. Postoperative radiation therapy for prostate Cancer: comparison of conventional versus Hypofractionated radiation regimens. Int J Radiat Oncol Biol Phys. 2018;101:396–405.

    Article  Google Scholar 

  21. 21.

    Cozzarini C, Fiorino C, Deantoni C, Briganti A, Fodor A, La Macchia M, Noris Chiorda B, Rancoita PM, Suardi N, Zerbetto F, Calandrino R, Montorsi F, Di Muzio N. Higher-than-expected severe (grade 3-4) late urinary toxicity after postprostatectomy hypofractionated radiotherapy: a single-institution analysis of 1176 patients. Eur Urol. 2014;66:1024–30.

    Article  Google Scholar 

  22. 22.

    Deville C Jr, Jain A, Hwang WT, Woodhouse KD, Both S, Wang S, Gabriel PE, Christodouleas JP, Bekelman J, Tochner Z, Vapiwala N. Initial report of the genitourinary and gastrointestinal toxicity of post-prostatectomy proton therapy for prostate cancer patients undergoing adjuvant or salvage radiotherapy. Acta Oncol. 2018;57:1506–14.

    CAS  Article  Google Scholar 

Download references


The authors gratefully acknowledge all participating centers. We also acknowledge financial support by the Deutsche Forschungsgemeinschaft within the funding programme Open Access Publishing, by the Baden-Württemberg Ministry of Science, Research and Arts and by Ruprechts-Karls-University Heidelberg.


Not applicable.

Author information




SAK, SK, CJ, AS, JD and KH have developed the trial concept and wrote the study protocol. AS is responsible for statistical considerations. SAK, SK, MFH, JD and KH will recruit patients, perform planning and provide patients care. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Stefan A. Koerber.

Ethics declarations

Ethics approval and consent to participate

The PAROS trial was approved by the Heidelberg institutional review board and the expert committee of the German Society of Radiation Oncology. Written informed consent will be obtained from all patients prior to inclusion into the trial.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( applies to the data made available in this article, unless otherwise stated.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Koerber, S.A., Katayama, S., Sander, A. et al. Prostate bed irradiation with alternative radio-oncological approaches (PAROS) - a prospective, multicenter and randomized phase III trial. Radiat Oncol 14, 122 (2019).

Download citation


  • Prostate cancer
  • Prostate bed
  • Hypofractionation
  • Protons
  • Radiotherapy
  • Salvage