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Stereotactic MRI‑guided radiation 
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Abstract 

Background:  Normofractionated radiation regimes for definitive prostate cancer treatment usually extend over 
7–8 weeks. Recently, moderate hypofractionation with doses per fraction between 2.2 and 4 Gy has been shown to 
be safe and feasible with oncologic non-inferiority compared to normofractionation. Radiobiologic considerations 
lead to the assumption that prostate cancer might benefit in particular from hypofractionation in terms of tumor 
control and toxicity. First data related to ultrahypofractionation demonstrate that the overall treatment time can 
be reduced to 5–7 fractions with single doses > 6 Gy safely, even with simultaneous focal boosting of macroscopic 
tumor(s). With MR-guided linear accelerators (MR-linacs) entering clinical routine, invasive fiducial implantations 
become unnecessary. The aim of the multicentric SMILE study is to evaluate the use of MRI-guided stereotactic radio‑
therapy for localized prostate cancer in 5 fractions regarding safety and feasibility.

Methods:  The study is designed as a prospective, one-armed, two-stage, multi-center phase-II-trial with 68 patients 
planned. Low- and intermediate-risk localized prostate cancer patients will be eligible for the study as well as early 
high-risk patients (cT3a and/or Gleason Score ≤ 8 and/or PSA ≤ 20 ng/ml) according to d’Amico. All patients will 
receive definitive MRI-guided stereotactic radiation therapy with a total dose of 37.5 Gy in 5 fractions (single dose 
7.5 Gy) on alternating days. A focal simultaneous integrated boost to MRI-defined tumor(s) up to 40 Gy can optionally 
be applied. The primary composite endpoint includes the assessment of urogenital or gastrointestinal toxicity ≥ grade 
2 or treatment-related discontinuation of therapy. The use of MRI-guided radiotherapy enables online plan adaptation 
and intrafractional gating to ensure optimal target volume coverage and protection of organs at risk.

Discussion:  With moderate hypofractionation being the standard in definitive radiation therapy for localized prostate 
cancer at many institutions, ultrahypofractionation could be the next step towards reducing treatment time without 
compromising oncologic outcomes and toxicities. MRI-guided radiotherapy could qualify as an advantageous tool as 
no invasive procedures have to precede in therapeutic workflows. Furthermore, MRI guidance combined with gating 
and plan adaptation might be essential in order to increase treatment effectivity and reduce toxicity at the same time.
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Background
In 2021, the estimated number of new prostate cancer 
cases was 248,530 in the US accounting for 26% of all 
new cancer cases in males [1]. Worldwide, the number of 
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new prostate cancer cases was 1,414,259 in 2020 [2]. Due 
to its high prevalence and demographic changes towards 
growing proportions of elderly people in many western 
countries, there is a need for effective treatment alterna-
tives, both in terms of outcome and economic burden of 
the health care system. Also, the COVID-19 pandemic 
has shown that reduced treatment times can be beneficial 
with regard to limited treatment capacities. In primary 
treatment of prostate cancer, definitive radiation therapy 
plays a major role. Apart from surgical options, various 
treatment options are available for intermediate-risk 
(IR) and low-risk (LR) disease, including active surveil-
lance and brachytherapy for the latter. Normofraction-
ated image-guided intensity-modulated radiotherapy 
(IG-IMRT) has been the standard radiation scheme at 
many institutions, usually extending over 7–8 weeks [3]. 
Moderate hypofractionation using single doses between 
2.4 and 3.4 Gy/fraction has been shown to achieve very 
good clinical outcomes compared to normofractionated 
radiotherapy in patients with prostate cancer [4–7]. The 
CHHiP trial, one of the largest of these studies, having 
included more than 3000 patients with localized pros-
tate cancer, demonstrated noninferiority of moderate 
hypofractionation with 60  Gy in 20 fractions compared 
to conventional fractionation [4]. Therefore, moderate 
hypofractionation has become a recommended alter-
native in the German S3-guideline. Radiobiologic con-
siderations based on the linear-quadratic model lead to 
the assumption that prostate cancer might in particular 
benefit from hypofractionation in terms of tumor control 
and toxicity. The α/β value as measure of fractionation 
sensitivity is considered to be relatively low for prostate 
cancer cells in relation to its surrounding normal tissues, 
predicting higher sensitivity to fractional doses with-
out compromising toxicity. Several preclinical and clini-
cal studies have suggested α/β values of about 1.5 Gy for 
prostate cancer cells, which would theoretically lead to 
a better therapeutic ratio [8–13]. Considering the over-
all treatment time as another factor in calculation of the 
α/β value results in higher values of about 2–2.7 Gy [14]. 
In recent years, many patients have been treated with 
ultrahypofractionated radiation regimes, reducing treat-
ment to 3–10 fractions with a major part of published 
data focusing on regimes with only 5 fractions. Those 
studies showed excellent biochemical control rates of 
93–100% after 1–5 years in patients with LR or IR disease 
[15–22]. Widmark et al. were the first to publish 5-year-
results of a randomized phase III study, demonstrating 
non-inferiority of ultrahypofractionated radiation with 
42.7 Gy in seven fractions 3 days per week compared to 
78 Gy in 39 fractions with regard to failure-free survival 
and late toxicity [23]. When using normofractionation, 
the addition of a focal boost up to 95 Gy to MR-defined 

macroscopic tumor(s) improved biochemical disease-
free survival (bDFS) in the recent FLAME phase III trial 
without compromising toxicity in patients with IR and 
HR disease [24]. Furthermore, first toxicity data from 
the phase II hypo-FLAME trial showed that the addi-
tion of simultaneous focal boosting to the macroscopic 
tumor(s) to ultrahypofractionated SBRT of the prostate 
gland is safe with no grade ≥ 3 acute GU or GI toxicity 
and acceptable rates of grade 2 toxicities[25].

As MR-guided linear accelerators (MR-linacs) have 
entered clinical routine, new aspects in terms of image 
guidance and plan adaptation promise to further improve 
stereotactic body radiation therapy (SBRT) outcomes. 
Whereas cone-beam CTs or other X-ray based systems 
involve radiation exposure, image guidance using inte-
grated MR imaging does not. One of the major advan-
tages using magnetic resonance-guided radiotherapy 
(MRgRT) is the ability to visualize target volumes such 
as the prostate or organs at risk (OAR) before, after but 
also during radiation therapy [26]. This seems to increase 
accuracy of targeting and enables sparing of radiation 
dose to OAR in particular when using hypofractiona-
tion. First published data of clinical use are promising. In 
locally advanced pancreatic cancer, SBRT with 24 Gy in 
3 fractions could safely be applied without higher grade 
toxicity [27, 28]. Data by Rudra et  al. found that high 
dose SBRT (biologically effective dose [BED10Gy] > 70 Gy) 
using adaptive MRgRT for treatment of inoperable pan-
creatic cancer patient resulted in improved overall sur-
vival rates compared to standard doses [29]. We see great 
potential in the use of MRgRT for prostate SBRT, as OAR 
such as the rectum can be monitored closely in order to 
reduce therapy-related toxicity. On the other hand, the 
target volume itself can be displayed with excellent qual-
ity, which could result in higher treatment effectivity [30].

The aim of this prospective, multicentric phase II trial 
is to evaluate the incidence and grade of genitourinary 
(GU) and gastrointestinal (GI) toxicity and the inci-
dence of treatment-related discontinuations of therapy 
in patients with local LR and IR as well as early high-risk 
prostate cancer patients. It is the first prospective phase 
II trial combining MR-guided SBRT with optional simul-
taneous focal boosting of macroscopic tumor(s). The 
greater aim is to generate data for following trials, which 
could in the long term establish MRgRT in combination 
with ultrahypofractionation as a potential new time-
saving and economically favorable option for the named 
patient groups.

Methods
Study design
The study is designed as a prospective, one-armed, two-
stage, multi-center phase-II-trial, evaluating the safety 
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and feasibility of extreme hypofractionated radiotherapy 
with MRgRT in localized prostate cancer. After obtaining 
written informed consent, patient fulfilling the inclusion 
criteria will undergo treatment planning with non-con-
trast enhanced simulation MR imaging at the linac and 
standard computer tomography. Multi-parametric mag-
netic resonance imaging (mpMRI) of the prostate is 
included in the study protocol as an optional procedure. 
Fiducials should not be implanted into the prostate gland. 
Radiation therapy is applied as MRI-guided intensity-
modulated radiation therapy (IMRT) with gated dose 
delivery. Online plan adaptation should be performed 
at every treatment session. Systemic treatments, e.g. 
androgen deprivation therapies are not part of this study 
and should be handled according to current therapy 
guidelines.

Study objectives
The hypothesis of our study is that stereotactic MRI-
guided radiotherapy is safe for patients with low-, inter-
mediate- and early high-risk prostate cancer. The primary 
endpoint of our study is a composite endpoint with the 
occurrence of either any genitourinary (GU) or gastroin-
testinal (GI) toxicity ≥ grade 2 within one year after start 
of radiotherapy or treatment-related discontinuation of 
therapy being an event. Secondary endpoints include 
treatment-related mortality within one year and within 
5 years after start of radiation therapy, GU and GI toxic-
ity graded according to NCI CTCAE version 5.0 after one 
and five years from treatment start, biochemical progres-
sion free survival (bPFS) since treatment start defined 
as PSA recurrence according to the phoenix criteria 
(post-therapeutic nadir of PSA + 2  ng/ml) and andro-
gen deprivation therapy (ADT) free survival (3  months 
of neoadjuvant ADT is allowed). Furthermore, second-
ary endpoints include overall survival (OS) and quality of 
life (QOL), assessed with EORTC QLQ-C30 und -PR25 
questionnaires during and after treatment. Planning 
and treatment parameters as well as imaging and quality 
assurance results are assessed for further evaluation.

Patient population/patient selection
Inclusion criteria according to the protocol are:

•	 Histologically confirmed prostate cancer with Glea-
son-score grading and PSA parameters

•	 Low-/intermediate- and early high-grade (cT3a/
and or Gleason Score 8 and/or PSA ≤ 20 ng/ml) risk 
group according to d’Amico criteria

•	 International Prostate Symptom Score (IPSS) of ≤ 12
•	 Prostate gland volume < 80 cm3

•	 Karnofsky Index ≥ 70%
•	 Age ≥ 18 years

•	 Written informed consent

Exclusion criteria are the following:

•	 Patient’s refusal or incapability of informed consent
•	 Prior pelvic radiation therapy
•	 Prior local therapy of the prostate gland
•	 Lymphogenic metastases
•	 Stage IV (distant metastases)
•	 Contraindication to undergo MRI
•	 Participation in another clinical trial which might 

influence the results of the SMILE study

Sample size calculation
In order to estimate the sample size of our prospective 
phase II trial, we followed data published by Bruyn-
zeel et al. [30]. In their MRgRT prostate SBRT trial with 
5 × 7.25  Gy, the maximum cumulative grade ≥ 2 early 
GU and GI toxicity was 23.8%. We hypothesize that the 
rate of treatment-related therapy discontinuations can be 
neglected. It is our goal to show that the rate of events 
is below a clinically acceptable limit of 40%. A sample 
size of 68 patients with a planned interim analysis after 
30 patients was calculated in order to be able to reject 
the null hypothesis at the one-sided significance level 
of α = 0.025 with a statistical power of 80%. We chose 
Simon’s two stage design to reduce the expected number 
of patients under the null hypothesis compared to a sin-
gle stage design, as a premature study termination with 
acceptance of the null hypothesis is possible [31, 32]. If 
the null hypothesis is true, the expected sample size is 
42. As a discontinuation of therapy is included in the pri-
mary composite endpoint, missing values are not to be 
expected. The sample size calculations were performed 
using R (Version 3.6.1) with the R package OneArmPha-
seTwoStudy [33].

Statistical analysis
The statistical analysis includes all enrolled patients 
(Intention-to-treat- (ITT) population). Additionally, a 
per-protocol- (PP) analysis will be performed. Since this 
is an exploratory study all results will be interpreted 
descriptively. An interim analysis will be conducted when 
30 patients are evaluable for the primary endpoint. If an 
event is observed in at least 11 of these patients (cor-
responding to 37%), the study will be terminated with 
acceptance of the null hypothesis. In case of 10 or fewer 
events the study will be continued with recruitment of 38 
additional patients.

A 95% confidence interval, correcting for the two-stage 
design, will be calculated for the event rate of the primary 
endpoint. Kaplan–Meier curves will be computed for all 
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survival endpoints. Regression models will be used to 
analyze factors influencing the different endpoints. Miss-
ing values will not be imputed.

Contouring and dose specifications, MRgRT delivery
All patients are treated at a 0.35 Tesla (T) MRIdian 
Linac® system (ViewRay Inc., Oakwood, USA) with 
a 6-megavolt linear accelerator [34]. To prepare for 
the first MR planning scan, patients are instructed 
to have their bladder about half full (in house stand-
ard protocol: 250  ml of water 30  min before scan). A 
high-resolution MRI scan at the MRIdian linac with 
1.5 mm × 1.5 mm × 1.5 mm resolution with the patient 
in supine position is then acquired using a True FISP 
sequence with T2/T1-weighted contrast. For patient 
positioning, suitable immobilization devices such 
as knee cushions and footrests are used to generate 
reproduceable positioning. Delineation of the tar-
get volume and organs at risk is based on this plan-
ning scan. For dose calculation purposes, all patients 
undergo a computed tomography planning scan using 
the same positioning tools immediately after the MR 
simulation (usually within one hour). The simulation 
MRI scan is co-registered with the mpMRI sequences 
(T2w, DWI and DCE) in treatment position. The CTV 
includes the prostate and in case of intermediate risk 
profile the base of the seminal glands. A 3  mm mar-
gin is added to create the PTV. In case of optional 
simultaneous focal boost to macroscopic tumor(s), the 
GTV contains the dominant intraprostatic lesion(s) 
based on mpMRI according to the Prostate Imaging – 
Reporting and Data System Version 2 (PI-RADS™ v2) 
[35]. A PTV margin of 0–2  mm is added to the SIB 
GTV (at investigator discretion). Contouring of the 
GTV will be performed in collaboration with expe-
rienced uroradiologists. Apart from the usual pelvic 
organs at risk, the posterior third of the rectal wall 
should explicitly be delineated. Goal of the treatment 
plan is to achieve the best possible coverage of the tar-
get volume with maximal protection of the organs at 
risk. Radiotherapy is delivered every other day with a 
minimum time in between of 36 h. The total treatment 
time should not exceed 14  days. A homogenous dose 
of 37.5 Gy in 5 fractions (dose per fraction: 7.5 Gy) is 
prescribed to the PTV, corresponding to an EQD2

(α/β: 

2) of 89.0  Gy. RT plans are prescribed to the median 
dose aiming at 95% coverage of the PTV by 95% of the 
prescribed target dose. A dose per fraction of 8.0  Gy 
is prescribed to macroscopic tumor(s), in case of 
optional focal boosting. Maintaining OAR dose con-
straints is of first priority, accepting decreased GTV 
coverage and/or dose in case of predicted violation 

of constraints. Organ at risk constraints are based on 
data that have previously been published for prostate 
ultra-hypofractionation (Table  1) [30, 36]. MRI-based 
image guidance, Cine MR-enabled anatomy track-
ing and beam gating is performed at every treatment 
session according to the center’s standard operation 
procedures followed by online adaptation with re-con-
touring of organs at risks and target volume at every 
fraction (Fig. 1). The radiation plan should be adapted 
at every session. OAR contours and pre-treatment CT 
imaging are deformably registered to the MRI of the 
day using a vendor-supplied algorithm. CTV contours 
are then manually adapted by the attending radia-
tion oncologist, as well as OAR contours in a region 

Table 1  Dose constraints

OAR Constraint

Urethra + 2 mm D0.2 cc ≤ 37.5 Gy

Bladder D0.2 cc ≤ 38.5 Gy

Dmean ≤ 25 Gy

Rectum D0.2 cc ≤ 38.5 Gy

Bowel D0.5 cc ≤ 35 Gy

Fig. 1  Cine MRI sequence. Yellow structure: Gating margin 
(CTV + 3 mm). Red structure: deformably registered gating target. 
This screenshot is showing the instance when a large amount 
of rectal air is moving the prostate out of the gating margin, 
automatically shutting off beam delivery
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expanding 1 cm in cranio-caudal direction and 3 cm in 
all other directions from the PTV (PTVexpand) on the 
MRI of the day [37].

Follow‑Up
Participants are assessed according to the current Ger-
man S3 guidelines for at least 5  years. Measurement 
of PSA is scheduled after study enrollment (baseline), 
4–6 weeks after start of therapy, every 3 months during 
the first 2 years after treatment and twice a year during 
years 3–5. PSA measurements should always be carried 
out by the same laboratory in order to avoid variation due 
to differing measurement methods. Regular study follow-
up visits at the treating institution include (Table 2):

•	 update of medical history
•	 assessment of symptoms and treatment-related tox-

icity according to NCI CTCAE version 5.0
•	 assessment of quality of life using EORTC QLQ-C30 

and QLQ-PR25 questionnaires
•	 optional multiparametric MR imaging 6  weeks, 

6 months and 12 months after start of treatment

Trial organization and coordination
The SMILE study has been designed by the study ini-
tiators at the department of Radiation Oncology in 
cooperation with the Institute of Medical Biometry at 
the Heidelberg University Hospital. The department 
of Radiation Oncology is in charge of the overall trial 
management, database management, quality assurance 
including monitoring and reporting. The study investiga-
tors are experienced radiation oncologists specialized in 
the treatment of patients with urogenital malignancies. 
Patients will be recruited and treated by the physicians 
of the departments of Radiation Oncology at the Univer-
sity Hospital Heidelberg, the University Hospital Munich 
(LMU) and the University Hospital Zurich (Switzerland).

Ethics, informed consent and safety
The final protocol was approved by the ethics commit-
tee of the University of Heidelberg, Heidelberg, Germany 
(Nr.: S-915/2020; Munich: 21-0662; Zurich: 2021-D0032). 
The SMILE study complies with the Helsinki Declara-
tion in its recent German version, the principles of Good 
Clinical Practice (GCP) and the General Data Protection 
Regulation (GDPR) as well as the Federal Data Protection 
Act (FDPA). The trial will also be carried out in accord-
ance with local legal and regulatory requirements. The 
ClinicalTrials.gov identifier is NCT04845503.

Discussion
The Scandinavian trial by Widmark et  al. is the only 
study so far that has reported non-inferior outcome and 
toxicity 5  years after normofractionated vs. ultrahypo-
fractionated radiotherapy for intermediate-risk and a 
small proportion of high-risk prostate cancer patients 
[23]. Another non-inferiority trial, PACE-B, compared 
conventionally fractionated, moderately hypofraction-
ated radiotherapy (78 Gy in 39 fractions over 7–8 weeks 
or 62 Gy in 20 fractions over 4 weeks, respectively) and 
SBRT with 36.25  Gy in five fractions over 1–2  weeks. 
For PACE-B early toxicity results are available, showing 
no significant difference between the treatment arms 
with a slight trend in favor of the SBRT regime (23% vs. 
27%) [38]. In the HYPO-RT-PC trial, acute grade 2 or 
worse genitourinary toxicity was slightly but not signifi-
cantly higher in the SBRT (42.7  Gy in 7 fractions) arm 
(28% vs. 23%, p = 0.057) compared to normofractionation 
(78  Gy in 39 fractions) at the end of radiation therapy. 
The difference was significant after one year (6% vs. 2%, 
p = 0.0037), but disappeared after five years. GI toxic-
ity was not significantly different at any timepoint. MR 
imaging for target volume delineation or usage of IMRT 
were not mandatory in that trial, resulting in a large pro-
portion of patients treated with 3D-conformal RT [23]. 
In PACE-B, Cyberknife and conventional LINACs were 
used with mandatory IGRT and intra-fractional motion 
control. The only prospective data for MRgRT with an 
ultrahypofractionated treatment regime were published 
by Bruynzeel et al., reporting relatively low early GI and 
GU toxicity (23.8% and 5.0% respectively for the maxi-
mum cumulative grade ≥ 2 toxicity at any study time 
point), with the majority of enrolled patients having 
high-risk disease (59.4%) [30]. Bruynzeel et  al. reported 
a peak of GU toxicity at the end of treatment and dis-
cussed that their chosen 6  weeks follow up time point 
may have obscured very early increases in toxicity after 
the end of RT. Therefore, we planned a first assessment 
of toxicity 4 weeks after the end of RT (Table 1) [39]. The 
FLAME phase III trial has demonstrated that focal boost-
ing to intraprostatic lesion in normofractionated RT is 
safe and improves bDFS (92% vs. 85% after 5 years) with-
out compromising toxicity and quality of life compared 
to standard treatment without boost [24]. The same 
group’s hypo-FLAME trial is now following up patients 
treated with SBRT (35 Gy in 5 weekly fractions) with an 
integrated boost up to 50  Gy to mpMRI-defined tumor 
lesions. First published toxicity data are promising, show-
ing no acute ≥ grade 3 toxicities and acceptable 34.0% and 
5.0% grade 2 GU and GI toxicities [25]. MRgRT gener-
ally offers various advantages such as using small CTV to 
PTV margins, online CTV monitoring, daily plan reopti-
mization and the avoidance of gold marker implantation. 
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The latter is in particular beneficial for patients, obviation 
additional invasive procedures with encompassing risks 
such as infection. On the other hand, it is more time-con-
suming and cost intensive compared to other SBRT tech-
niques. Questions regarding cost-effectivity will have to 
be answered in future analyses. The aim of our study is to 
assess the safety and feasibility of ultrahypofractionated 
MRgRT in a prospective setting. The innovative approach 
of our trial clearly is the combination of MRgRT with 
ultrahypofractionated SBRT, allowing focal integrated 
boosting of mpMRI-defined tumor lesions.
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