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Abstract 

Background:  With the rapid growth of deep learning research for medical applications comes the need for clinical 
personnel to be comfortable and familiar with these techniques. Taking a proven approach, we developed a straight-
forward open-source framework for producing automatic contours for head and neck planning computed tomogra-
phy studies using a convolutional neural network (CNN).

Methods:  Anonymized studies of 229 patients treated at our clinic for head and neck cancer from 2014 to 2018 were 
used to train and validate the network. We trained a separate CNN iteration for each of 11 common organs at risk, and 
then used data from 19 patients previously set aside as test cases for evaluation. We used a commercial atlas-based 
automatic contouring tool as a comparative benchmark on these test cases to ensure acceptable CNN performance. 
For the CNN contours and the atlas-based contours, performance was measured using three quantitative metrics and 
physician reviews using survey and quantifiable correction time for each contour.

Results:  The CNN achieved statistically better scores than the atlas-based workflow on the quantitative metrics for 7 
of the 11 organs at risk. In the physician review, the CNN contours were more likely to need minor corrections but less 
likely to need substantial corrections, and the cumulative correction time required was less than for the atlas-based 
contours for all but two test cases.

Conclusions:  With this validation, we packaged the code framework and trained CNN parameters and a no-code, 
browser-based interface to facilitate reproducibility and expansion of the work. All scripts and files are available in a 
public GitHub repository and are ready for immediate use under the MIT license. Our work introduces a deep learning 
tool for automatic contouring that is easy for novice personnel to use.

Keywords:  Deep learning, Software, Contouring, Head and neck, Open-source

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Background
Research interest in automatic organ segmentation for 
cancer treatment planning has rapidly increased in recent 
years. Manual contouring is a notably time-intensive 
process: it can take a trained physician several hours to 
fully contour a patient study [1]. Automatic methods 

aim to reduce this time, increase contour consistency, 
and improve contouring accuracy [2]. The increase in 
the number of studies on automatic contouring is attrib-
utable to advancements in the application of artificial 
neural networks, known as deep learning. For example, 
studies have demonstrated the accuracy and viability of 
the segmentation approach for lung cancer [3], prostate 
cancer [4, 5], head and neck cancer [6–9], and more [10, 
11]. Thus, deep learning should no longer be viewed as 
an experimental technique in medical image processing. 
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Nevertheless, the rapid expansion of the technique has 
divided researchers and clinicians.

New papers compete to prove state-of-the-art accu-
racy scores with new neural network algorithms, but 
the methods are often complex or unclear, the results 
can lack context, and the benefit to the average clinician 
is marginal. van Dijk et al. published a seminal study on 
deep learning segmentation for head and neck cancer 
in 2020 in which they performed thorough analyses and 
provided the results in a useful context; however, their 
method involves proprietary commercial software and 
the neural network structure was not clearly described 
[6]. Similarly, Liu et  al. had promising results using a 
patch-based approach to contour the prostate region but 
did not detail the architecture, making it difficult to rep-
licate their findings [5]. Zhong et al. described the archi-
tecture of their neural network in their report, but it is up 
to the reader to reproduce the code [12]. By contrast, van 
Rooij et  al. provide the URL for the source code of the 
neural network they used, although crucial information 
about data pre-processing was described only in general 
terms [7]. Aside from these examples, other studies focus 
on evaluating the artificial neural network, treating it as a 
“black box” [13–15].

We set out to create a clear, reproducible deep learn-
ing framework that clinics can use to explore modern 
automatic segmentation. In addition to diagramming the 
neural network architecture, this requires data handling 
steps both before and after the neural network itself. 
Furthermore, the transformation to and from DICOM-
compliant files is essential but often overlooked. To truly 
enable immediate reproduction and expansion of work in 
this area, the entire end-to-end code framework should 
be provided. This framework must include coded tools 
for data pre-processing, output cleaning, DICOM han-
dling, and more.

Our research presents a complete convolutional neu-
ral network (CNN) workflow for automatic segmenta-
tion of 11 common organs at risk (OARs) in patients 
with head and neck cancer that uses only open-source 
Python tools freely available online. To validate the per-
formance of the CNN, we benchmarked the results to 
those of a commercial atlas-based workflow that is avail-
able in our clinic, scoring each method quantitatively and 
qualitatively using accuracy metrics and expert physician 
review. To address the perceived shortage of ready-to-use 
deep learning tools, we made all necessary files available 
for this work, including the Python scripts which govern 
the data handling, CNN training, and contour generation 
processes, the pre-trained weights for immediate use, 
and the tools and templates to configure a simple web 
application to allow DICOM-compatible, browser-based 
utilization of the neural network.

Methods
Framework usability criteria
Several key usability criteria were established for an 
accessible deep learning contouring framework. First, the 
framework must be built to receive as input DICOM CT 
image files and produce as output a DICOM-compliant 
structure set file. This way, a user is not required to over-
see any data preparation or manipulation but only needs 
to provide the CT files to the framework; the output is 
then ready to be reviewed and incorporated back into 
the treatment planning workflow. Second, the framework 
must support both contour creation and CNN retraining 
on new data. This makes replication very straightforward 
and it facilitates the exploration of other segmentation 
tasks using this approach. Finally, the framework must 
be built with tools to establish a browser-based interface 
for users without Python familiarity. This can be accom-
plished by configuring the framework on an internal 
server, with the files supporting the browser interface 
available with the core code of the framework. Figure 1 
shows the design workflow for the framework as it should 
function when installed on an internal server managed by 
the clinic; note that there are only two configuration or 
decision points required of the user. The complete code 
for the deep learning pipeline as well as the code and 
design for the prototype browser-based interface can be 
found in a public GitHub repository [16].

Data collection
The initial development and validation of the CNN 
used head and neck data. The retrospective planning 
CT images and accompanying OAR labels from 229 
patients with head and neck cancer treated at our clinic 
between 2014 and 2018 were anonymized. Each study 
was acquired by helical scan with a large-bore GE Dis-
covery CT simulator (GE Healthcare, Chicago, IL) using 
a head and neck protocol of 120 kVp, auto mA, large 
field of view, 2.5-mm axial slice thickness, and 512 × 512 
pixel resolution. The manually defined OAR labels, 
approved by the physician at treatment planning, were 
used as the “ground truth” for CNN training. The 11 
OARs examined—brain, brainstem, both cochleae, both 
parotid glands, both submandibular glands, larynx, bra-
chial plexus, and spinal cord—were chosen on the basis 
of commonality in the dataset. After setting aside 19 
patients with approved contours for all 11 OARs as uni-
fied test cases, each OAR had a training set from 140 to 
210 patients. Table 1 shows the characteristics of patients 
in the training and test cohorts.

All image pixels were converted to Hounsfield units 
using DICOM metadata and resampled to a pixel size 
of 1 mm2 to standardize the representation. Each image 
was cropped to the centermost 256 × 256 pixels and 
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passed through a window/level (W/L) filter: a tissue 
filter (W/L: 400/40) for all OARs except spinal cord 
and brachial plexus, which were passed through a 
bone filter (W/L: 2,000/400). Finally, for each OAR’s 
training dataset, of the two-dimensional slices with 
no OAR data, every 20th slice was included. This step 

is important for small OARs: a full CT study often 
exceeds 200 slices, but an OAR like the parotid gland 
might only be present on 10 slices. Taking only every 
20th slice that does not contain OAR data helps balance 
the distribution. This enables the CNN to learn a repre-
sentation of images that do not contain any OAR data 

Fig. 1  Schematic of data flow for deep learning framework operation



Page 4 of 13Asbach et al. Radiation Oncology           (2022) 17:28 

but does not skew the primary training focus of accu-
rately labeling images that do.

Neural network structure and training
The CNN was modeled after the well-established U-Net 
structure [17]. Adaptations of the U-Net structure have 
proven successful in a number of medical contexts, from 
cell analysis [18, 19] to segmentation tasks [11] and 
beyond [20]. Figure 2 shows a visual of the CNN archi-
tecture. The CNN was built and trained in Python 3.7, 
using the deep learning packages Keras and TensorFlow, 
versions 2.3.1 and 2.2.0, respectively. Each OAR was 
trained in a separate training iteration using the same 
model architecture. The model used the Adam optimizer 
with an initial learning rate of 5 × 10−5 [21]. A 0.25-fac-
tor learning rate reduction was applied in the case of a 
training plateau, down to a minimum learning rate of 

1 × 10−6. The loss function, L, was defined as the sum of 
the Dice loss and the binary cross-entropy loss.

In Eq.  (1), Y  represents the ground truth array and P̂ 
represents the predictions generated by the CNN. The 
model was trained for 200 epochs with a batch size of 32. 
The last 15% of each training set was separated as valida-
tion data, which was used to benchmark the training at 
the end of each training epoch.

On-the-fly data augmentation was built into the train-
ing process using the tools in Keras to randomly modify 
training images as they are passed to the model. This, 
along with the dropout layers, prevents the model from 
overfitting to training data. These modifications were 
limited to maximums of 10° rotation, 15% translation 
(vertically or horizontally), 10% scaling, or 0.2° shear. 
Once the augmentation was added, independent training 
cycles were performed on each of the 11 OARs.

Once all training iterations were completed, a predicted 
structure set containing all 11 OARs was generated for 
each of the 19 test patients for evaluation. A threshold 
of 0.33 was applied to binarize the pixel values. Only the 
largest single volume was accepted as the CNN’s pre-
diction, and any discontinuous positive pixels were dis-
carded as outliers. Additionally, axial limits were applied 
according to the means and standard deviations of organ 
shape training data to prevent overprediction on the fol-
lowing OARs: parotid glands, submandibular glands, 
brainstem, and larynx. The mean height of each organ, 
plus either one or two standard deviations, depending 
on the organ, was set as a maximum height boundary for 
the prediction, and prediction data in excess of this limit 
were discarded.

Comparison to atlas method
The workflow converts the post-processed deep learn-
ing contours (DLCs) into a DICOM-compliant struc-
ture set file for direct comparison to the ground truth 
manual contours. Similarly, DICOM structure set files 
were generated on the 19 test patients using an atlas-
based method available in the MIM6 application (MIM 
version 6.9.4; MIM Software Inc., Beachwood, OH) as 
tuned for our clinic. The atlas-based contours (ABAS) 
were used as a performance benchmark to ensure 
that our developed CNN workflow did not generate 
inferior contours. To compare these two methods, 
each method was scored against the accepted ground 
truth contours using three quantitative performance 
metrics: Dice similarity coefficient (DSC), mean sur-
face distance (MSD), and 95th percentile Hausdorff 
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Table 1  Patient characteristics for training and test cohorts

Tumor staging ranges from TX/T0 (cannot be measured/found) to T4, with larger 
numbers indicating larger tumors. Node staging ranges from T0 (no cancer in 
nearby lymph nodes) to N3, with larger numbers representing greater presence 
of cancer in lymph nodes

Characteristic Dataset, No. (%)

Training (210) Test (19)

Age at diagnosis, median (range) 61 (40–84) 65 (53–88)

Sex
Female 38 (18.1) 5 (26.3)

Male 172 (81.9) 14 (73.7)

Primary tumor site
Base of tongue 45 (21.4) 2 (10.5)

Hypopharynx 10 (4.8) 1 (5.3)

Larynx 34 (16.2) 0 (0.0)

Nasopharynx 10 (4.8) 5 (26.3)

Oropharynx 21 (10.0) 4 (21.1)

Supraglottis 6 (2.9) 1 (5.3)

Tonsil 45 (21.4) 5 (26.3)

Other/unknown 39 (18.6) 1 (5.3)

Tumor stage
TX 6 (2.9) 0 (0.0)

T0 12 (5.7) 1 (5.3)

T1 34 (16.2) 3 (15.8)

T2 50 (23.8) 5 (26.3)

T3 87 (41.4) 9 (47.4)

T4 10 (4.8) 1 (5.3)

Unavailable 11 (5.2) 0 (0.0)

Node stage
N0 46 (21.9) 3 (15.8)

N1 37 (17.6) 2 (10.5)

N2 99 (47.1) 13 (68.4)

N3 17 (8.1) 1 (5.3)

Unavailable 11 (5.2) 0 (0.0)
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distance (HD). A paired, two-tailed Student t test was 
conducted to assess the statistical significance of per-
formance differences. In this analysis, the null hypoth-
esis was defined as no performance difference between 
the DLC and ABAS. A standard p value threshold of 
0.05 was used. A p value below this threshold indicated 
a statistically significant difference in the two results 
sets, allowing the null hypothesis to be rejected [22].

To properly contextualize the performance of each 
method in terms of potential benefit to the clinical 
workflow, both sets of contours were evaluated by a 
trained physician for acceptability. For each of the 19 
test cases, each contour was scored between 1 and 5 
according to the following scale: 1, no changes nec-
essary; 2, mild changes (not clinically significant); 
3, moderate changes (clinically significant); 4, unac-
ceptable contour, discard and segment manually; 5, 
structure failed to contour [23]. Although atlas-based 
workflows are available in many clinics, the output 
requires manual review before use in treatment plan-
ning [24, 25]. Thus, a valuable additional metric is the 
required correction time. For our test set, the evaluat-
ing physician recorded the time required for any cor-
rections that were necessary to bring the contour to 
clinical acceptability. Only time spent actively editing 
the contour was recorded.

Framework evaluation
The framework’s ability to generate DICOM-compliant 
structure set files—an essential prerequisite to enable 
physician evaluation in DICOM viewing software—was 
evaluated by using it to generate a file for each of the 19 
test cases. The process of generating these structure sets 
allowed for two important evaluations. First, it measures 
the expected performance of the framework against our 
previously stated usability criteria. Second, it allows an 
estimation of the expected time required to run the pro-
cess—an important factor for clinical implementation. 
For this, the only time assessed was that required after 
the DICOM image files were successfully transferred to 
temporary storage on the server, because the file trans-
fer speed is a function of technology infrastructure and 
is independent of our framework. Processing time for the 
deep learning framework was assessed on a custom com-
puter with an Intel i7-9700K processor, 32 GB of RAM, 
and an Nvidia GeForce RTX 2060 Super GPU.

Results
Box-and-whisker plots provide a useful visualization 
of the distribution of results with more detail than the 
standard deviation alone. The independent box-and-
whisker plots for all OARs considered can be seen for 
DSC, MSD, and HD in Fig. 3, and the mean and standard 

Fig. 2  U-Net convolutional neural network architecture
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Fig. 3  Box-and-whisker plots of each method, for each OAR, for all three quantitative metrics. For each plot, the y axis is oriented such that 
preferable metrics scores are at higher positions on the plot
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deviation of each OAR is shown in Table 2. For a more 
in-depth examination of the results, the per-patient 
scores on each metric are provided in the additional files 
[see Additional file 1]. These results and statistical evalu-
ation provide a comprehensive view of the performance 
of each method on each OAR. For DSC, higher scores are 
preferable: the scores for DLCs were significantly better 
than for ABAS for the submandibular glands as well as 
for the brainstem, brain, and brachial plexus (Fig. 3). For 
the MSD, lower values indicate closer alignment of the 
contours with the ground truth: similar to that for DSC, 
DLCs performed better for the submandibular glands, 
brainstem, brain, and brachial plexus but performed 
comparably to ABAS for the other OARs. For the HD, 
lower values indicate reduced maximum error: the DLCs 
were significantly better than ABAS for the submandibu-
lar glands, brachial plexus, and brainstem.

In Table  2, cells with bolded values indicate that a 
given method scored statistically better than the other 
method for that OAR. Notably, there was no OAR/metric 

combination for which the atlas method achieved signifi-
cantly better performance. For four of the OARs, neither 
method was statistically better across any of the three 
metrics. However, for the other seven OARs, the DLC 
was significantly better according to at least two of the 
three metrics.

Statistical significance is a useful initial review, but phy-
sician acceptance is the most meaningful criterion for a 
tool being considered for clinical application. Table  3 
shows the results of the physicians’ qualitative scoring. 
Although the DLCs often required minor adjustments, 
the ABAS more frequently required substantial correc-
tion. Accordingly, DLCs required less overall correction 
time than ABAS for 17 of 19 test patients, as seen in 
Fig. 4.

The generation of the test patient structure sets validated 
the first framework usability criterion—receiving DICOM 
image files as input and returning a DICOM structure 
set file as output—because the process was performed 
as it would be in a clinical setting. The second usability 

Table 3  Qualitative scoring by MD review for each OAR of each autocontouring method

DLC: Deep Learning Contour; ABAS: Atlas-based Contours. Grading scale: 1—No changes necessary; 2—Mild changes (not clinically significant); 3—Moderate changes 
(clinically significant); 4—Unacceptable contour, discard and segment manually; 5—Structure failed to contour

ROI DLC SCORING

1 2 3 4 5

Brain 74% 26% – – –

Brainstem 89% 11% – – –

Cochlea L 100% – – – –

Cochlea R 95% 5% – – –

Parotid L 5% 95% – – –

Parotid R 5% 95% – – –

Submandibular L 74% 21% 5% – –

Submandibular R 79% 16% 5% – –

Brachial plexus 32% 53% 15% – –

Spinal cord 69% 31% – – –

Larynx – 11% 89% – –

ROI ABAS SCORING

1 2 3 4 5

Brain 100% – – – –

Brainstem 100% – – – –

Cochlea L 63% 37% – – –

Cochlea R 69% 31% – – –

Parotid L 21% 79% – – –

Parotid R 16% 79% 5% – –

Submandibular L 5% 58% 37% – –

Submandibular R 15% 53% 21% 11% –

Brachial plexus 26% 16% 11% 47% –

Spinal cord 100% – – – –

Larynx – 26% 74% – –
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criterion—the capacity to retrain the network on new 
data—is fundamentally built into the framework, because 
the initial training was an essential task in the development 
of the framework. The final usability criterion—a browser-
based, no-code interface for use—was also used in the 
generation of the test patient structure sets. Images of this 
interface can be seen in Fig. 5.

Discussion
The results of the quantitative and qualitative evalua-
tions support the acceptability of the CNN framework 
for generating initial contours of the 11 OARs consid-
ered. Although the focus of this work was making a 
deep learning framework accessible, it is essential to 
establish the competence of the model. Figure  3 shows 

Fig. 4  Bar plot of total correction time required in physician review per test patient



Page 10 of 13Asbach et al. Radiation Oncology           (2022) 17:28 

Fig. 5  Example of provided browser interface sequence for simple deep learning contour generation
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the preferable performance of the DLC to the ABAS on 
nearly all OARs. The difference is clearest on the glandu-
lar OARs and brachial plexus, but improvement can also 
be seen on the brainstem and the brain. The larynx, spi-
nal cord, and cochleae are less clear, and the scores for 
the two methods are much closer. From the results of 
the statistical analysis, we know that there is not a sta-
tistically significant difference in performance for every 
OAR, even when the box-and-whisker plots show sepa-
ration. A p value of greater than 0.05 for a Student t test 
does not mean that the two methods perform equally 
well, only that neither method emerged as statistically 
superior. However, the fact that the ABAS was not statis-
tically significantly superior for any OAR, combined with 
the favorable qualitative review by the physician, gives 
us confidence that using the DLC in place of the ABAS 
in the clinical workflow would not result in decreased 
contour quality. The atlas-based method generated con-
tours approximately 30 s faster; this is likely attributable 
to the server-based computation resources used for the 
atlas workflow, whereas the deep learning framework was 
run on an individual computer. Time–cost optimization 
of the deep learning pipeline would be a useful future 
expansion of this work. Overall, we expect that the DLC 
will slightly increase contour quality while decreasing the 
time required for correction.

The performance of our DLC framework is compara-
ble to the results published in similar works. The work 
of van Dijk et al. is the most similar to ours: they used 
an ensemble of two-dimensional CNNs to produce 
head and neck contours and compared the results to 
an atlas-based method both qualitatively and quantita-
tively [6]. They reported better performance with DLC 
for glandular OARs, with a DSC of 0.81 ± 0.08 com-
pared to 0.72 ± 0.10 for ABAS, which closely matches 
our results for the parotid glands. Similar quantita-
tive performance was noted for other OARs common 
to both studies, such as brainstem and spinal cord. 
However, the work by van Dijk et al. [6] included com-
mercial deep learning software, which is needed to 
reproduce their study. Zhong et  al. recently reported 
a similar U-Net approach with qualitative and quan-
titative evaluation [12]. They used a single multi-class 
CNN and described a train-retrain cycle. The perfor-
mance of this network on the first pass is similar to or 
better than ours for shared OARs, with DSC values of 
0.79 for parotid glands, 0.79 for brainstem and spinal 
cord, and 0.72 for larynx; these scores improved further 
after their retrain process. Apart from a brief descrip-
tion of the neural network structure they used, there is 
little information about data processing or implemen-
tation and no code is provided [6]; thus, their work is 
also challenging to reproduce. Nikolov et al. published 

the results of a three-dimensional CNN that performed 
slightly better than our framework, but the code for 
their method “makes use of proprietary elements” and 
therefore cannot be shared [26]. Once again, reproduc-
tion is not possible. The output performance of our 
framework is in line with other published work, but we 
consistently found that missing or proprietary informa-
tion prevented reasonable reproduction or implemen-
tation of the methods.

We acknowledge that training and validating our 
framework on internal data sourced from our clinic 
does not demonstrate the generalizability of the pre-
trained CNN offered as part of the framework. If the 
CNN learned image features unique to our imaging 
protocols, it may perform worse on images from other 
sources. This is why the ability to retrain the CNN is 
crucial to the overall framework. Rather than attempt 
to create a CNN that universally contours CT data, we 
offer the scripts for simple retraining and performance 
evaluation. This allows researchers to adapt our meth-
ods specifically to their environments using their own 
image data.

Apart from the neural network itself, an impor-
tant benefit of our framework is the ability to interface 
directly with DICOM files as input and output. Typi-
cally, a researcher with interest in deep learning needs to 
reproduce a substantial amount of code to extract data 
and prepare it for input to a CNN training process. Addi-
tionally, scripts to process the output of the CNN into a 
clean, compliant DICOM structure set file are essential. 
All of these scripts are contained in our framework and 
support minimal-configuration use. After an initial setup, 
even users who do not know programming can generate 
contours. By providing these tools as part of our frame-
work, we offer an advanced starting point for entry into 
deep learning research.

Although we view this framework as primarily a 
research tool, it could be expanded and inserted into a 
regular clinical workflow. The pre-trained OARs in the 
framework were not comprehensive, but the provided 
training tool allows clinics to customize the CNN train-
ing to their data and needs. By using an internal computer 
to act as a server, a single configuration of the framework 
would be available to all clinical personnel through their 
web browsers without requiring the end users to interface 
with Python. Alternatively, some vendors of treatment 
planning software offer scripting application program-
ming interfaces that can integrate customized capabili-
ties into the treatment planning workflow [27–29]. Work 
is underway at our clinic to incorporate a more robust 
framework, based in concept on the work presented here, 
to enable clinicians with various levels of technical exper-
tise to access deep learning research tools.
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Conclusions
In this work, we present a feasible solution to bridge the 
gap between cutting-edge deep learning research and 
everyday clinical practice. With a small setup effort, our 
framework provides free, no-code utilization of deep 
learning autocontouring. This framework is deliberately 
designed to facilitate access to deep learning research: 
it includes all scripts and tools necessary to explore 
deep learning contouring research using DICOM files. 
We view this as an important contribution toward 
the treatment planning workflow. As the field contin-
ues to advance and deep learning techniques become 
more ubiquitous, familiarity with the techniques will be 
increasingly important for clinical personnel, and the 
need for researchers to create approachable point-of-
entry tools for clinics that are not bound by commercial 
contracts will continue to grow.
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