
Urago et al. Radiat Oncol          (2021) 16:175  
https://doi.org/10.1186/s13014-021-01896-1

RESEARCH

Evaluation of auto‑segmentation 
accuracy of cloud‑based artificial intelligence 
and atlas‑based models
Yuka Urago1,2, Hiroyuki Okamoto2*  , Tomoya Kaneda3, Naoya Murakami3, Tairo Kashihara3, Mihiro Takemori1,2, 
Hiroki Nakayama1,2, Kotaro Iijima2, Takahito Chiba2, Junichi Kuwahara2,4, Shouichi Katsuta4, Satoshi Nakamura2, 
Weishan Chang1, Hidetoshi Saitoh1 and Hiroshi Igaki3 

Abstract 

Background:  Contour delineation, a crucial process in radiation oncology, is time-consuming and inaccurate due to 
inter-observer variation has been a critical issue in this process. An atlas-based automatic segmentation was devel-
oped to improve the delineation efficiency and reduce inter-observer variation. Additionally, automated segmenta-
tion using artificial intelligence (AI) has recently become available. In this study, auto-segmentations by atlas- and 
AI-based models for Organs at Risk (OAR) in patients with prostate and head and neck cancer were performed and 
delineation accuracies were evaluated.

Methods:  Twenty-one patients with prostate cancer and 30 patients with head and neck cancer were evaluated. 
MIM Maestro was used to apply the atlas-based segmentation. MIM Contour ProtégéAI was used to apply the AI-
based segmentation. Three similarity indices, the Dice similarity coefficient (DSC), Hausdorff distance (HD), and mean 
distance to agreement (MDA), were evaluated and compared with manual delineations. In addition, radiation oncolo-
gists visually evaluated the delineation accuracies.

Results:  Among patients with prostate cancer, the AI-based model demonstrated higher accuracy than the atlas-
based on DSC, HD, and MDA for the bladder and rectum. Upon visual evaluation, some errors were observed in the 
atlas-based delineations when the boundary between the small bowel or the seminal vesicle and the bladder was 
unclear. For patients with head and neck cancer, no significant differences were observed between the two models 
for almost all OARs, except small delineations such as the optic chiasm and optic nerve. The DSC tended to be lower 
when the HD and the MDA were smaller in small volume delineations.

Conclusions:  In terms of efficiency, the processing time for head and neck cancers was much shorter than manual 
delineation. While quantitative evaluation with AI-based segmentation was significantly more accurate than atlas-
based for prostate cancer, there was no significant difference for head and neck cancer. According to the results of 
visual evaluation, less necessity of manual correction in AI-based segmentation indicates that the segmentation 
efficiency of AI-based model is higher than that of atlas-based model. The effectiveness of the AI-based model can be 
expected to improve the segmentation efficiency and to significantly shorten the delineation time.
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Background
In radiotherapy, radiation oncologists define the tumor 
and Organs at Risk (OARs) on computed tomography 
(CT) images in the treatment planning system (TPS) 
and their definitions are crucial to identify the radio-
therapy region for the assessment of therapeutic out-
comes and expected occurrence of toxicities. However, 
this process is generally time-consuming and burden-
some, given the need for manual delineations. For 
example, in head and neck cancers treated with inten-
sity-modulated radiotherapy (IMRT), the precise work 
of segmentation requires approximately 3 h [1], and it 
takes several days for the therapy regimen in addition 
to performing daily clinical work. Additionally, several 
studies have demonstrated that there is a significant 
deviation among experts [2–4]. Large inter-observer 
variation may cause inaccuracy in treatment. To stand-
ardize delineation and improve contouring efficiency 
in radiotherapy, automatic segmentation methods have 
been developed.

Atlas-based segmentation have been developed to 
improve contouring efficiency, which is expected to 
reduce the inter-observer variation and the burden on 
clinicians [1, 5–9]. Atlas-based segmentation is a tool 
that creates a database of contoured CT and automati-
cally delineates for new patients based on that data-
base. However, actual tissues have patterns of varying 
intensity, making it difficult for computer vision-based 
algorithms to work effectively in a uniform man-
ner. Recently, researchers have aimed to delineate 
using artificial intelligence (AI) technology based on 
deep-learning neural networks (DNNs). AI-based seg-
mentation is a tool to register contoured CT as train-
ing data, and delineate for new patients based on the 
learned network. Many investigations have attempted 
to develop their in-house AI-based model for applica-
tion for patients with various cancers for the assess-
ment of delineation accuracy [4, 7–11]. Although these 
studies state that the AI-based method provides greater 
accuracy and efficiency than ordinary methods, prob-
lems such as required technical skills of development of 
programing code to implement it and the great effort to 
collect contoured datasets still remain.

A commercial software has provided advanced tech-
nology for AI-based auto-segmentation models. Since 
this software uses an AI-database on the cloud, there 
is no necessity to create a database and it is easy to 
implement. If auto-segmentation accuracy is clinically 

acceptable, the delineation work can be significantly 
shortened, and radiotherapy can also be initiated 
sooner. For rapidly growing tumors, such as head and 
neck tumors, it is desirable to promptly conduct radio-
therapy or often apply adaptive radiotherapy [5].

Our study aims to evaluate the accuracy of an AI-
based auto-segmentation model as well as the con-
ventional atlas-based model in comparison with the 
manual model delineated by radiation oncologists. In 
this study, the evaluations were performed with effi-
ciency, similarity indices, statistical analysis, and visual 
evaluation for the patients with prostate cancer or head 
and neck cancer. This study is the first report to assess 
atlas- and AI-based delineation accuracy using AI-
based auto-segmentation model provided by commer-
cial software that has already been completely trained. 
By confirming the availability of AI-based model of the 
commercial software, it is expected to clinically utilize 
the AI-based segmentation without no effort or time to 
build the model.

Methods
Patients
The auto-segmentation accuracy for the bladder and 
the rectum for the patients with prostate cancer, the 
brain stem, mandible, eye, parotid gland, optic chiasm, 
optic nerve, and spinal cord for the patients with head 
and neck cancer were evaluated. The prostate was not 
evaluated because there are not prostate contours in 
manual delineations at our institution. In this study, tar-
get volumes, such as the Gross Tumor Volume or Clini-
cal Target Volume, were not considered. All organs at 
both sites were manually delineated by three radiation 
oncologists for patients with prostate cancer, and five 
for patients with head and neck cancer. The commer-
cial software MIM Maestro (ver. 7.0.3, Cleveland, OH, 
USA) was used to apply the atlas-based segmentation 
(SEGatlas) and compare the delineations. MIM Contour 
ProtégéAI (ver. 0.9), which is limited to research use at 
the time of this study, was used to apply the AI-based 
segmentation (SEGAI). The auto-segmentation accura-
cies of the two models were evaluated by the compari-
son with manual delineation as a reference. This study 
was approved by the institutional review board of the 
National Cancer Center Hospital in Japan (approval 
number: 2018–318), and was conducted according to 
the ethical standards of the Declaration of Helsinki.

Keywords:  Artificial intelligence, Automatic segmentation, Deep learning neural network, Prostate cancer, Head and 
neck cancer
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Atlas‑based segmentation
A total of 41 patients with prostate cancer treated at 
our institution were assessed in this study. Among all 
patients, 20 datasets (CT images with delineations) 
were registered in the atlas database to build the model. 
The remaining 21 patients were used for the model 
evaluation. Similarly, the total number of patients with 
head and neck cancer was 50. The number of datasets 
for the model and evaluation were 20 and 30, respec-
tively. The patients’ dataset for modeling was used only 
in the atlas-based condition. The workstation with 
2.5  GHz quad-core processor was used to execute the 
SEGatlas.

To perform SEGatlas, the atlas-database was built. 
The patients for modeling were registered in the MIM 
database. One patient was selected as the reference 
patient from among the registered patients. The other 
registered patients were rigidly aligned to the refer-
ence patient to calculate the similarity matrices to the 
reference patient. Similarity matrices for all registered 
patients were prepared in advance. As shown in Addi-
tional file  1: Figure S1, the workflow of the SEGatlas 
was as follows: The rigid alignment was performed 
between the test patient and the reference patient, and 
the similarity matrix was calculated to search for simi-
lar patients from among the registered patients. After 
identifying several patients with high similarity, the 
existing structures of the selected patients were prop-
agated to test patients based on the deformable image 
registration  (DIR) [12]. This process was performed 
several times, and multiple structures were created on 
test patient’s CT image for each site. The final structure 
was determined by the majority vote method.

The majority vote method in the SEGatlas was used 
to improve model accuracy. The structures from 5 
patients most similar to the test patient were selected 
from the database and DIR was performed between 
the 5 patients and the test patient. DIR was performed 
based on the intensity of CT image. From the propa-
gated 5 delineations, the area in which over 3 deline-
ations overlapped was specified the final contour. For 
small volume structures such as the eye, optic chiasm, 
and optic nerve, we adopted one candidate patient 
whose structure displayed the best matching to the test 
patient, instead of five, given the small region of over-
lapping organ volume.

For patients with prostate cancer, the rectum was 
delineated on the CT images by masking rectal gas to 
avoid the effect of gas in the rectum. After propagations 
at both sites, the created atlas-based delineations were 
subjected to hole-filling, smoothing, and cleaning of 
tiny fragments of the delineations.

AI‑based segmentation
The AI database on the MIM cloud was used. MIM 
Contour ProtégéAI is based on neural network for auto-
mated delineation on CT and magnetic resonance (MR) 
images. A neural network constructed of multiple layers 
is a mathematical model that imitates the network struc-
ture of neurons in the human brain [13]. Neural network 
is commonly used in image recognition by taking advan-
tage of the characteristic of learning from a large amount 
of data. The neural network model of Contour ProtégéAI 
is provided on the basis of the U-Net architecture [14]. 
U-Net is the model for semantic segmentation, which is 
a method of categorizing each pixel, based on the periph-
eral pixels. The AI database on the MIM cloud contains 
approximately 500–1000 registered training data for each 
treatment site. In the SEGAI, 21 patients with prostate 
cancer and 30 patients with head and neck cancer were 
evaluated.

Evaluation of segmentation accuracy
Three similarity metrics were used for evaluation: the 
Dice similarity coefficient (DSC) [15], Hausdorff distance 
(HD) [15], and mean distance to agreement (MDA) [16, 
17]. The DSC was obtained by dividing the overlapping 
volume of the two structures, A and B, by the mean vol-
ume of the two structures, as shown in the following 
equation:

When two structures, A and B, matched exactly, the 
DSC was considered to indicate unity. In this study, the 
delineation accuracies were determined to be excellent 
when the DSC value exceeded 0.8.

HD represents the distance between the two struc-
tures, denoted as A and B. HD can be calculated using 
the following equation:

where h(A, B), referred to as the directed HD, given by 
h(A,B) = maxa∈Aminb∈B�a− b� , where a and b rep-
resent any point at the outlines of structures A and B, 
and �a− b� is the Euclidean distance between a and b. 
MDA is similar to HD and can be derived by substitut-
ing the maximum with mean. If the outlines of the two 
structures are completely consistent, the HD and MDA 
approach zero.

The cranial-caudal length of the structures varies in 
the rectum and spinal cord, and the auto-segmentation 
accuracies cannot be accurately evaluated. Therefore, the 

(1)DSC(A,B) =
|A ∩ B|

(|A| + |B|)/2

(2)HD(A,B) = max(h(A,B), h(B,A))
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cranial-caudal length in these structures was the same as 
that of the manual structures created by erasing unneces-
sary delineations.

In addition, the relative volume errors ΔV in the vol-
ume of SEGatlas and SEGAI (Vauto) were calculated using 
the following equation with reference to the volume of 
the manual delineation (Vmanual). In this study, the mean 
and standard deviation of the relative error were also 
calculated.

To investigate whether each index of the DSC, HD, and 
MDA correlated with the volume, the correlation coef-
ficient was calculated. In addition, radiation oncologists 
visually evaluated the delineation accuracy of SEGatlas 
and SEGAI.

Statistical analysis
The R ver. 4.0.2 [R Core Team (2016) R: A language and 
environment for statistical computing. R Foundation 
for Statistical Computing, Vienna, Austria] was used 
for statistical analyses. For each index of the DSC, HD, 
and MDA, the test for independence from volume using 
Pearson’s product moment correlation coefficient was 
performed with a p value < 0.05. For each index of the 
DSC, HD, and MDA, the two-group difference test was 
performed with a p value < 0.05, for the SEGatlas and the 
SEGAI, respectively. First, the normality of the distribu-
tion was confirmed using the Shapiro–Wilk test. In cases 
of non-normality, the Wilcoxon signed-rank test was per-
formed. When the assumption of normality was met, the 
variance was tested by the F-test, and the Student’s t-test 
was performed when the variances of the two samples 
were equal, and the Welch’s t-test was performed when 
the variances were not equal. For comparisons between 
non-normally and normally distributed samples, the Wil-
coxon signed-rank test was performed.

Results
Segmentation efficiency
The processing time to create delineations was approxi-
mately 3  min per case on the atlas-based model and 
approximately 5  min (range, 3–10  min) per case on the 
AI-based model for the patients with prostate cancer. For 
patients with head and neck cancer, the processing times 
were both 6 min (range, 3–8 min).

Prostate cancer patients
Evaluation of segmentation accuracy
Figure 1 shows the DSC, HD, and MDA results for the 
bladder and rectum of patients with prostate cancer. 

(3)�V =
|Vauto − Vmanual|

Vmanual

In both the atlas- and AI-based models, the median 
DSC exceeded 0.8, indicating good agreement with the 
manual delineations. In the SEGAI, the median value 
was closer to unity, and the interquartile range was 
smaller than that of the SEGatlas. For HD, the median 
and interquartile range of AI-based assessment was 
smaller than that of the atlas-based assessment in both 
the bladder and the rectum. MDA results were similar 
to those of HD.

In the SEGatlas, the mean relative volume error in the 
bladder was 25.7 ± 35.8%, and the maximum error was 
171%. The mean relative volume error for the rectum was 
20.9 ± 14.3%, and the maximum error was 47.5%. In the 
SEGAI, the mean relative volume error for the bladder was 
6.2 ± 6.6% and the maximum error was 24.4%. The mean 
relative volume error for the rectum was 17.6 ± 10.1%, 
and the maximum error was 49.8%.

We also investigated the relationships between each 
index of DSC, HD, and MDA, and the volume. Additional 
file 2: Table S1 shows the Pearson’s correlation coefficient 
r between the volume and each index for the bladder and 
rectum for SEGatlas and SEGAI. No significant correlations 
between all three indexes and the volume were observed 
(p > 0.05).

Statistical analysis
As shown in Table  1, for each index of DSC, HD, and 
MDA of the bladder and rectum, two-group difference 
test was performed using the atlas- and AI-based deline-
ations. All indexes displayed a significant differences 
between the SEGatlas and SEGAI (p < 0.05).

Visual evaluation
Figure  2 shows several examples of SEGatlas, SEGAI, and 
manual delineations for the rectum and bladder with 
indications of the patient number. Some errors in the 
atlas-based delineation were detected near the bound-
ary when the boundary was unclear, such as the small 
bowel and the seminal vesicle. On the other hand, the AI-
based delineations were more consistent with the manual 
ones. The surrounding tissue, such as the small bowel, 
was unexpectedly included with the bladder in 17 of 21 
patients in the SEGatlas and 5 of 21 patients in the SEGAI.

Head and neck cancer patients
Evaluation of segmentation accuracy
Figure 3a shows the DSC of OARs for head and neck can-
cer patients. In the SEGAI, the median values of the brain 
stem, mandible, bilateral eyes, and spinal cord exceeded 
0.8. In the SEGatlas, the median value exceeded 0.8 for 
the mandible, bilateral eyes, and spinal cord. However, 
there were many organs with poor DSC, especially in the 



Page 5 of 13Urago et al. Radiat Oncol          (2021) 16:175 	

optic chiasm and optic nerve, which had a small volume. 
Figure  3b, c show HD and MDA. In one case, the larg-
est HD was observed for the mandible in the SEGAI. The 
values of the bilateral eyes were close to zero and agreed 
with the manual delineations. Additionally, the varia-
tion in MDA was lower than that in DSC. The interquar-
tile of the DSC for left and right eyes was 0.03 and 0.06, 
respectively (median 0.88 and 0.84), while the interquar-
tile of MDA was 0.03 and 0.05 (median 0.08 and 0.11), 
respectively.

The relative volume errors of the SEGatlas and SEGAI 
were calculated based on the volumes of the manual 
delineations. Additional file  3: Table  S2 shows the rela-
tive error in the volume for each organ. In the optic chi-
asm, the mean error was 72.9% in the atlas-based group 
and 65.7% in the AI-based group. We also investigated the 
correlation between each index of DSC, HD, and MDA, 
and the volume. Additional file  4: Table  S3 shows the 
Pearson’s correlation coefficients between the volume and 
each index.
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Fig. 1  The similarity metrics for the bladder and rectum for SEGatlas (atlas-based segmentation) and SEGAI (AI-based segmentation). a Dice similarity 
coefficient (DSC), b Hausdorff distance (HD), c mean distance to agreement (MDA)
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Fig. 2  Examples of manual and automatic delineations of the bladder and rectum. SEGAI: AI-based segmentation, SEGatlas: atlas-based 
segmentation
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Statistical analysis
Table  1 shows each index of DSC, HD, and MDA, and 
results of two-group difference test performed using the 
SEGatlas and SEGAI in head and neck cancer patients. 

Significant differences in all three indices were observed 
only for the right eye. No significant difference was 
detected among small tissues, such as the optic chiasm 
and optic nerve.
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Fig. 3  The similarity metrics for each organ of patients with head and neck cancer for SEGatlas (atlas-based segmentation) and SEGAI (AI-based 
segmentation). a Dice similarity coefficient (DCS), b Hausdorff distance (HD), c mean distance to agreement (MDA)
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Visual evaluation
Figure 4 shows an example of the SEGatlas and SEGAI and 
the manual delineations in patients with head and neck 
cancer, as well as the DSC results. In the mandible, both 
automatic delineations were very similar to manual delin-
eations in most cases. However, some instances included 
low DSC in the atlas-based assessment and there was 
insufficient delineation where there was a cavity within 
the bone. Additionally, on AI-based assessment, the 
delineation accuracy for cases after surgical resection of 
the mandible was inadequate, and this was an outlier in 
HD and MDA.

Figure 4b shows an example of the delineation of bilat-
eral eyeballs. In many cases of the eyes, automatic delin-
eations were similar to manual ones, but in some cases 
of atlas-based assessment, the delineation deviated sig-
nificantly, and the DSC was poor. In the worst case, the 
DSC was 0.56. The HD and MDA were 2.27 and 0.45 cm, 
respectively.

Figure  4c shows the delineation of the optic chiasm. 
Overall, the delineation accuracy was low. In the worst 
case, the DSC was 0.03. In cases with low DSC, there 
were many delineations that barely overlapped with 
the manual ones, even though there was only a slight 
deviation. The HD and MDA were 1.03 and 0.40  cm, 
respectively.

Figure  4d shows the delineation of the optic nerve. 
Overall, the delineation accuracy was low. In the worst 
case, the DSC was 0.001. Similar to the optic chiasm, 
there were many delineations that barely overlapped with 
the manual ones, even though there was only a slight 
deviation. In the SEGatlas, the delineation drawing the 
muscle around the eye as the optic nerve was observed. 
The HD and MDA were 1.63 and 0.68, respectively.

Discussion
There are limited investigations on assessment of accu-
racy of SEGAI, and this topic is still on investigation 
stages. The fact is that almost all of studies developed 
in-house software of SEGAI for various target and organs 
[4, 7–11]. Recently, commercial AI-based model became 
available, and we aimed to evaluate the AI-based model 
provided by the commercial software. Commercial AI-
based model, compared with in-house AI-based model, 
features reduction of effort and time on the training data 
collection and model construction. Our study provides 
useful information on the commission of a commercial 
AI-based model for clinical implementation.

The delineations of the bladder and rectum using AI-
based model was more accurate in all three indexes of 
DSC, HD, and MDA (Fig. 1). For instance, Fig. 1b shows 
that the difference in median HD for the two models was 
as large as 1.37  cm for the bladder and 0.45  cm for the 

rectum. In addition, the results of SEGatlas tended to have 
large outliers and all organs exhibited the interquartile 
percentile being larger than that of SEGAI (Fig. 1). Among 
the three indexes, significant differences were detected 
between SEGatlas and SEGAI. For visual evaluations, there 
were some errors in the atlas-based delineation near the 
boundary, particularly when the boundary was unclear, 
such as near the small bowel and seminal vesicle (Fig. 2). 
The AI-based delineations were relatively similar to 
manual delineations. For the rectum, many atlas-based 
delineations were significantly smaller than the manual 
ones. This is because the segmentation was performed by 
the majority vote method, which adopts the overlapping 
region of the objects of multiple candidate patients’ mod-
els. Although visual evaluation revealed that both atlas- 
and AI-based delineations require manual correction, 
fewer correction-required-SEGAI indicates the segmenta-
tion efficiency of AI-based model is higher than that of 
atlas-based model.

There were no significant differences in similarity 
indexes between the SEGatlas and SEGAI in head and neck, 
which was inconsistent with the results of Wen et al. [9] 
who evaluated four mastication muscles. Their results 
demonstrated that AI-models outperformed atlas-model. 
However, we evaluated various common head and neck 
organs, and the size and the form of organs, and CT-
values varied. Of all organs evaluated in this study, only 
the brainstem demonstrated that the AI-model was 
closer to 1 for DSC and closer to 0 for HD or MDA, while 
there was no significant difference (HD: p = 0.16, MDA: 
p = 0.27). Except for the right eye, all other organs dis-
played no significant differences, therefore, accuracy of 
the two models was comparable.

Regarding DSC (Fig.  3a, b), both SEGatlas and SEGAI 
displayed high segmentation accuracy in the mandible 
and eye. However, low accuracies in small volume organs, 
such as the optic nerve and optic chiasm, were observed. 
Alternatively, the HD demonstrated comparable or bet-
ter results in such organs (Fig. 3c, d), due to differences 
in the derivation of the two methods. The DSC is calcu-
lated from the overlapping of the two delineations and 
HD is calculated from the simple distance between the 
two delineations. In the case of small volume delineation, 
the DSC tends to be small, even if the displacement of the 
two delineations is acceptable. This suggests that not only 
DSC, but also HD or MDA, should be used for evalua-
tion, and utilizing only one index should be avoided. 
When evaluating the delineations, especially for small 
volumes, it is recommended to use multiple indexes 
properly and perform visual checks for evaluation.

The advantages and disadvantages of SEGatlas and SEGAI 
are described as follows: In the SEGAI, the delineations 
are created on the cloud-based system and downloaded 
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Fig. 4  Examples of manual and automatic delineations of the OARs for the head and neck cancer patients. a mandible, b eyeballs, c optic chiasm, d 
optic nerve
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in the Digital Imaging and Communication in Medicine 
(DICOM) format, Radiotherapy (RT) Structure, the effi-
ciency of SEGAI is, therefore, dependent on the internet 
environment rather than the processing capacity of a 
workstation. Additionally, a wide variety of delineations 
can be created because a large amount of training data 
are registered in the AI database. However, since train-
ing data from all over the world are registered on the 

cloud, data regarding the registered patients’ character-
istics are unavailable. The registered dataset may include 
a variety of patient characteristics. Therefore, the influ-
ence of variations in physiques between races remains 
unclear. Moreover, other institutional characteristics of 
delineation may be reflected. For instance, the deviation 
between the delineations for the femur heads and pros-
tate among institutions is possibly caused by reference to 

Fig. 4  continued
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a delineation guideline or each institution’s own proto-
col. In addition, the delineation accuracy for the bladder 
can be associated with bladder volume. If different blad-
der management protocols are included in the registered 
patients, delineation accuracy may probably worsen. 
Actually, a full bladder is commonly recommended for 
prostate cancer patients, and the effect associated with 
bladder volume is smaller. Since full bladder manage-
ment was applied in this study, the DSC of the bladder 
was 0.95, and it agreed with manual delineation. Nota-
bly, it should be validated whether the delineations by 
the AI-based model satisfy the institution’s own protocol 
prior to clinical implementation. Otherwise, if there is an 
overemphasis on delineation efficiency and an AI-based 
model is clinically implemented without the validation 
process presented in this study, it may unexpectedly pro-
mote deterioration of not only standardization of deline-
ations, but also quality of treatment. The SEGatlas requires 
more time to create delineations than SEGAI, and it is 
dependent on the specifications of the workstation. 
However, the SEGatlas can reflect institutional delinea-
tion protocols, because that institution’s patients can be 
registered with the modeling data. Registration of a large 
amount of modeling data to achieve efficient accuracy 
is necessary prior to use. These two models have some 
advantages and disadvantages. The automatic segmen-
tation method should be considered according to the 
purpose, institutional delineation protocol, and working 
environment.

The limitations of this study were that only the OARs 
were included, and the Gross Tumor Volume or Clinical 
Target Volume was not investigated. Although the MIM 
Contour ProtégéAI can automatically delineate target 
and normal tissues, target was not a focus of this study. 
Twenty datasets were used to build the atlas database 
in this study. The MIM Maestro recommends register-
ing over 20 datasets for the atlas-based model, however, 
the effect according to the number of datasets is unclear. 
Thus, improvement of delineation accuracy by increas-
ing the number of datasets requires further investigation. 
The delineation accuracies were evaluated using only 
similarity indices and visual evaluation, and the dosimet-
ric impact of segmentation inaccuracy remains unclear. 
In the future, we plan to assess delineation of other 
organs and targets. We also plan to perform MRI-based 
automatic segmentation.

Conclusions
The atlas- and AI-based delineation accuracies for OARs 
for patients with prostate and head and neck cancers 
were evaluated with manual delineations performed by 
radiation oncologists. SEGatlas and SEGAI are compa-
rable of efficiency. The costs in time for both automatic 

delineations methods are six minutes on the head and 
neck cases which is much shorter than the three hours 
required for manual delineation. On the other hand, on 
the quantitative evaluation using DSC, HD and MDA, 
higher accuracies were shown in SEGAI for prostate can-
cer while no significant difference is shown for head and 
neck cancer between these two models. According to the 
results of visual evaluation, even both atlas- and AI-based 
require manual correction, less necessity of correction in 
SEGAI indicates that the segmentation efficiency of AI-
based model is higher than that of atlas-based model. In 
conclusion, the effectiveness of the commercial AI-based 
model can be expected to improve the segmentation effi-
ciency and to significantly shorten the delineation time.
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