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Abstract 

Background:  Any Monte Carlo simulation of dose delivery using medical accelerator-generated megavolt photon 
beams begins by simulating electrons of the primary electron beam interacting with a target. Because the elec-
tron beam characteristics of any single accelerator are unique and generally unknown, an appropriate model of an 
electron beam must be assumed before MC simulations can be run. The purpose of the present study is to develop a 
flexible framework with suitable regression models for estimating parameters of the model of primary electron beam 
in simulators of medical linear accelerators using real reference dose profiles measured in a water phantom.

Methods:  All simulations were run using PRIMO MC simulator. Two regression models for estimating the parameters 
of the simulated primary electron beam, both based on machine learning, were developed. The first model applies 
Principal Component Analysis to measured dose profiles in order to extract principal features of the shapes of the 
these profiles. The PCA-obtained features are then used by Support Vector Regressors to estimate the parameters of 
the model of the electron beam. The second model, based on deep learning, consists of a set of encoders processing 
measured dose profiles, followed by a sequence of fully connected layers acting together, which solve the regres-
sion problem of estimating values of the electron beam parameters directly from the measured dose profiles. Results 
of the regression are then used to reconstruct the dose profiles based on the PCA model. Agreement between the 
measured and reconstructed profiles can be further improved by an optimization procedure resulting in the final esti-
mates of the parameters of the model of the primary electron beam. These final estimates are then used to determine 
dose profiles in MC simulations.

Results:  Analysed were a set of actually measured (real) dose profiles of 6 MV beams from a real Varian 2300 C/D 
accelerator, a set of simulated training profiles, and a separate set of simulated testing profiles, both generated for 
a range of parameters of the primary electron beam of the Varian 2300 C/D PRIMO simulator. Application of the 
two-stage procedure based on regression followed by reconstruction-based minimization of the difference between 
measured (real) and reconstructed profiles resulted in achieving consistent estimates of electron beam parameters 
and in a very good agreement between the measured and simulated photon beam profiles.

Conclusions:  The proposed framework is a readily applicable and customizable tool which may be applied in tun-
ing virtual primary electron beams of Monte Carlo simulators of linear accelerators. The codes, training and test data, 
together with readout procedures, are freely available at the site: https://​github.​com/​tabor​zbisl​aw/​DeepB​eam.
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Introduction
External photon beam therapy (EBT) is nowadays the 
most common cancer radiotherapy modality. The key 
factors which determine the success of EBT are correct 
and accurate treatment therapy planning and quality 
assurance procedures prior to delivery of the therapeu-
tic dose. Designing a therapy plan is a multi-dimensional 
optimization problem. The treatment planning system 
(TPS) designs therapy plan to match the therapy goals 
within specified clinical tolerances. Only after assuring 
that these goals are met, may the quality assurance pro-
cedures of dose delivery be implemented and the patient 
treated.

Currently, treatment planning systems calculate the 
dose distribution within an irradiated volume based 
on approximate algorithms like Pencil Beam Convolu-
tion (PBC) [1], Anisotropic Analytical Algorithm (AAA) 
[2] or ACUROSE XB (AXB) algorithm [3]. Monte Carlo 
(MC) modelling is an alternative approach to calculate 
dose distributions [4]. An advantage of MC over most 
analytical-based algorithms is that the latter are adequate 
for dose calculations in homogeneous media but they 
could be rather crude approximations whenever inhomo-
geneities are present. In contrast, MC simulations, while 
also based on approximations (mostly in the transport 
physics and cross sections estimation), have been dem-
onstrated to be superior over analytical algorithms when 
it comes to dose distributions calculations in heterogene-
ous volumes [5]. However, while being potentially very 
accurate and extremely valuable in gaining thorough 
understanding of all phenomena related to dose deposi-
tion in various media, it is also a very challenging task 
[4]. This is due not only to the high computational effort 
required by MC modelling, but also because of the tun-
ing process which must be carefully implemented to 
match MC-calculated doses and doses measured under 
controlled conditions. This tuning process involves find-
ing an appropriate model of a primary electron beam of a 
medical linear accelerator being simulated.

Any MC simulation of dose delivery by megavolt pho-
ton beams from a medical linear accelerator commences 
by simulating the primary beam of high-energy elec-
trons which leave the acceleration tube of the linac with 
an energy of several MeV impinging a tungsten target 
to generate megavolt photons via bremsstrahlung. The 
spatial distribution of dose delivered by the thus gener-
ated photon beam to a water phantom or to the patient’s 
tumour volume, crucially depends on the characteristics 

of the primary electron beam. Yet, the primary electron 
beam characteristics of any individual accelerator are 
unique. Moreover, the characteristics of their primary 
electron beams may vary not only between linacs of the 
same type, but may also vary in time within the same 
accelerator, due to ageing effects [6–8]. Unfortunately, 
the geometry and spectra of the primary electron beam 
are neither known exactly nor easily measurable, except 
by quite specialized equipment, which is not readily 
available in a typical clinical radiotherapy environment 
[9, 10].

For this reason, to run MC simulations, an appropri-
ate model of the electron beam must be designed, which 
includes a model of its electron energy spectrum and 
model of its spatial distribution. Typically, no less than 
four parameters are needed to characterise a MC-sim-
ulated electron beam of a medical linear accelerator—
namely the mean energy of electrons in the beam, the 
full width at half-maximum of the electron energy spec-
trum in the beam by assuming the energy distribution is 
a Gaussian function, the radial distribution of electrons 
in the beam, and the angular divergence of this beam. 
Clearly, in order to generate a clinically realistic MC sim-
ulation of dose delivery from any individual accelerator, 
the parameters of the model of the electron beam must 
be determined specifically for that accelerator [11].

For above-discussed reasons, availability of a well-
defined and realistically executable procedure of speci-
fying the parameters of the model of a primary electron 
beam in an individual linear accelerator is of major 
importance in the subsequent application of MC-based 
modelling of clinical procedures using this particular 
accelerator. Notably, parameters of a MC model of the 
electron beam of a linac can only be determined indi-
rectly by analysing a number of depth and lateral dose-
profiles measured in specified conditions, best in a 
standard water phantom.

Due to the fundamental importance of this issue, 
several studies have been published proposing vari-
ous experimental setups and methods of such analy-
sis [6–9, 11–17]. These studies are briefly reviewed in 
Related works section of Additional file 1 accompanying 
this paper. It follows that in most cases a trial-and-error 
approach has been adopted to determine parameters of 
a model of a primary electron beam. No phenomenologi-
cal model enabling the values of primary electron beam 
parameters to be estimated directly from the measured 
dose profiles has been proposed. The proposed tuning 
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procedures are often very specific with respect to the 
data required to determine the parameters of a model of 
a primary electron beam.

In contrast to such studies, we propose a flexible frame-
work, termed DeepBeam, such that its user may collect 
the profile data using dosimetry tools and protocols at 
her/his disposal and select the profiles to be measured 
according to her/his best experience. Then, a regression 
model is created which can be directly and routinely used 
to estimate the parameters of the model of the primary 
electron beam. The proposed framework, apart from 
tuning electron beams of Monte Carlo simulators of real 

linear accelerators may also be applied in routine quality 
assurance of an operating linear accelerator—not only 
to verify its beam stability via dose profile analysis, but 
also to indicate which of the beam parameters had likely 
changed and by how much. The complete code of this 
framework and the data used for training the regression 
models are freely available at https://​github.​com/​tabor​
zbisl​aw/​DeepB​eam.

Material and methods
The MC simulator and sources of data
While the proposed framework for tuning primary elec-
tron beams of MC simulators of linear accelerators can 
be used for any such simulator, the present study is 
based on data generated by the PRIMO simulator, ver-
sion 0.1.5.1307 [18] (www.​primo​proje​ct.​net). PRIMO is 
a freely-distributed application used for simulating radia-
tion transport during radiotherapy [8, 17, 18]. It is based 
on the PENELOPE 2011 [19] general purpose Monte 
Carlo engine and allows simulation of dose delivery to be 
performed for a few linear accelerator models, based on 
their geometry, as provided by their manufacturers. This 
last feature is especially important, as details of accel-
erator geometry are usually confidential and may not 
be available from the manufacturer, even upon request. 
Hence, using PRIMO, attention could be focussed on the 
primary goal of designing a framework for tuning the 
electron beam of this simulator without undue concern 
with simulation details related to the physics, materials 
or the geometry configuration of the simulated accelera-
tor system.

All simulations were run using the PRIMO Varian Cli-
nac 2300 C/D simulator operating in photon mode at a 
nominal energy of 6 MV. Electron beam simulation in 
PRIMO is configured by specifying values of four beam 

parameters: E—the initial electron beam energy (in 
MeV), σE—the full-width-at-half-maximum (FWHM) 
of the primary beam energy distribution (in MeV), 
s—the focal spot FWHM (in cm), and α—the angular 
beam divergence (in degrees). The developed framework 
should however be readily adaptable if different primary 
beam parameters were specified in the PRIMO simula-
tor, or if other MC simulators of linear accelerators were 
applied.

Simulated input data
To generate training data for the machine learning frame-
work, the simulations were run for a total of 300 tuples 
(E, σE, s, α) within the set S such that:

At the first simulation stage, 108 histories (a history cor-
responds to a single electron of the virtual primary beam) 
were simulated for each tuple (E, σE, s, α) and the phase-
space file (PSF) above the secondary collimators was 
saved for further purposes. At this first stage, the splitting 
roulette variance reduction technique [20] was used with 
the size of the splitting region set to the largest region, 
i.e. to the 40 × 40 cm2 field. The saved PSFs were then 
used to simulate radiation transport to a homogeneous 
cubic water phantom for three fields: 3 × 3 cm2, 10 × 10 
cm2, and 30 × 30 cm2. The size of the phantom was set 
to 50 × 50 × 50 cm3. The doses in the phantom were tal-
lied within a regular grid of 0.5 × 0.5 × 0.5 cm3 voxels. 
The respective faces of the phantom were set parallel to 
the respective main axes of the coordinate frame of ref-
erence of the accelerator. The main axis of the phantom 
coincided with the photon beam axis. The source-to-sur-
face distance (SSD) was set at 100 cm, the isocentre being 
located at the front surface of the phantom. Splitting in 
the water phantom was selected as the variance reduc-
tion method [20] at this simulation stage, with a splitting 
factor of 300. The uncertainty of the dose values tallied in 
the water phantom always remained within 1.5% (which 
corresponds to two standard deviations of MC calculated 
dose). The calculated 3D spatial distribution of doses 
within the phantom was saved to a text file, separately for 
each tuple (E, σE, s, α) and for each field. A total of 900 3D 
dose files were collected. Each 3D dose file contained 106 
dose values calculated by PRIMO at (x,y,z) coordinates 
given by the following coordinate ranges:

(1)S = {(E, σE , s,α) : E ∈ {5.6, 5.8, 6.0, 6.2, 6.4}, σE ∈ {0.0, 0.5, 1.0},

s ∈ {0.0, 0.1, 0.2, 0.3, 0.4},α ∈ {0, 1, 2, 3}}.

(2)
x ∈ {−25+ 0.25+ 0.5 ∗ i, i = 1...100}

y ∈ {−25+ 0.25+ 0.5 ∗ j, j = 1...100}

z ∈
{

0.25+ 0.5 ∗ k , k = 1...100
}

,

https://github.com/taborzbislaw/DeepBeam
https://github.com/taborzbislaw/DeepBeam
http://www.primoproject.net
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where the z axis is parallel to the radiation field axis. To 
generate testing data for the machine learning frame-
work, the simulations were run further for 25 tuples (E, 
σE, s, α) with primary beam parameters sampled ran-
domly from the following sets of values:

Applying the above sampling scheme, it was assured 
that the primary electron beam parameters (E, σE, s, α) 
in the testing set never coincided with parameters used 
for generating the training set, and consequently, that the 
electron beam parameters for the testing set were well 
separated from the electron beam parameter selected for 
training.

All simulations were run using the PlGrid infrastruc-
ture (Prometheus grid, https://​kdm.​cyfro​net.​pl/​por-
tal/​Main_​page) and required a total real time of about 
2.5 months. During the simulation period 12 Prometheus 
nodes run the PRIMO software, each node equipped 
with two Intel Xeon E5-2680v3 processors, 24 cores in 
total, and 128 GB RAM. The simulation of a single case, 
i.e., of three fields for a single tuple (E, σE, s, α), required 
about 40 CPU hours. As the operating system installed 
on the nodes is Linux CentOS 7, while PRIMO is a Win-
dows application, wine software (https://​www.​winehq.​
org/) was installed and configured in order to use PRIMO 
in graphic mode under Linux exactly as if Windows were 
the operating system.

Measured input data
Dose profiles were measured in water for the 6 MV pho-
ton beam of a clinically exploited Clinac 2300C/D medi-
cal accelerator at the Krakow Branch of the National 
Research Institute of Oncology. A PTW MP3 Water 
Phantom and PTW Markus Type 23,343 and PTW 
Semiflex Type 31,010 ionization chambers were used 
for dosimetry. PTW Mephysto software was applied for 
data collection. Three experimental setups of dose pro-
file measurements were arranged, as described in more 
detail in the Results section.

Applied models and computational framework
The task to solve is a regression problem, i.e., given dose 
profiles in a water phantom, the parameters (E, σE, s, α) of 
the primary electron beam are to be estimated. To prepare 
training and test data, each 3D dose spatial distribution 
was normalized to the dose value calculated along the pho-
ton beam axis at the depth of maximum (Dmax = 1.4 cm), 
which was then set to 100% (such normalization is not 
essential if not implemented in a clinical measurement 

(3)

E ∈ {5.65+ i · 0.05, i = 0...14} \ {5.8, 6.0, 6.2}

σE ∈ {0.1+ i · 0.1, i = 0...8} \ {0.5}

s ∈ {0.05+ i ∗ 0.1, i = 0...3}

α ∈ {0.5+ i ∗ 0.25, i = 0...9} \ {1, 2}

system). Next, from each 3D dose file six profiles were 
extracted: one depth profile along the axis of the radia-
tion field, and five lateral profiles at depths: 1.4 cm, 5 cm, 
10 cm, 20 cm, and 30 cm. To match the resolution of the 
simulated profiles and the typical spatial resolution of clin-
ical dosimetry systems (usually 1 mm), linear interpolation 
was applied to the tallied simulated doses during profile 
extraction. Additionally, as PRIMO assumes the electron 
beam spot to be of circular shape, the lateral dose profiles 
extracted from the 3D dose files consisted of averages over 
two perpendicular lateral dose profiles over the x and y 
directions. Such averaging is not a necessary condition and 
may be skipped if a more complex, e.g., elliptic, electron 
spot shape is assumed by the accelerator simulator.

The extracted dose profiles (18 profiles for each tuple 
(E, σE, s, α)) represent a reasonable maximum set ProfMAX 
of dose profiles to be used in the proposed machine 
learning framework. Moreover, the extracted depth dose 
profiles span the range of z ∈  < 0.3 cm, 49.7 cm > , while 
all the extracted lateral dose profiles span the range of 
x ∈  < -24.7  cm, 24.7  cm > , i.e., the maximum ranges for 
the geometry of the simulated water phantom and for the 
spatial resolution of the grid of tallied dose values.	

The proposed framework is customizable, meaning 
that any subset of the dose profiles can be selected from 
the complete set of dose profiles to match the needs of 
an individual user. The ranges over which the profiles 
are measured can also be arbitrarily selected to match 
the measurement ranges of real profiles. For example, 
the user may decide to build her/his regression model 
which predicts the parameters of the model of the elec-
tron beam (E, σE, s, α) from the depth dose profiles and 
from lateral dose profiles at 10 cm depth, all collected for 
10 × 10 cm2 and 30 × 30 cm2 fields, depth dose profiles 
measured up to 35  cm, and lateral dose profiles meas-
ured over the ranges between − 10 cm and + 10 cm and 
between -20 cm to + 20 cm, for 10 × 10 cm2 and 30 × 30 
cm2 fields, respectively. Given these user-defined con-
straints the framework finds the optimum regression 
model, as described in the following sections.

PCA + SVR regression model
Let Prof = {Prof1, Prof2,…, Profn} represent a user-
selected subset of ProfMAX. A user-selected spatial range 
Rangei is associated with each Profi (Rangei would typi-
cally be the user-dependent spatial range over which 
Profi is measured under clinical settings). Each subscript i 
corresponds to a unique field size and a unique dose pro-
file type (either depth or lateral, at one of the five depths: 
Dmax = 1.4 cm, 5 cm, 10 cm, 20 cm, or 30 cm).

As each dose profile Profi is sampled within a given 
spatial resolution (usually 1  mm), it may be considered 
a 1D vector of some dimensionality (dependent of the 

https://kdm.cyfronet.pl/portal/Main_page
https://kdm.cyfronet.pl/portal/Main_page
https://www.winehq.org/
https://www.winehq.org/
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sampling resolution and the sampling range Rangei). The 
regression task which is to be solved can be formulated 
as follows:

where Par is any element of the tuple (E, σE, s, α), fPar is 
the regression function and εPar is the residual term. The 
components of each Profi are however strongly correlated 
as they represent dose values measured at neighbour-
ing spatial locations. For this reason, the model given by 
Eq. (4) may not be very effective, as the set of explanatory 
variables (arguments of fPar) contains a high contribution 
of redundant information.

To resolve this redundancy problem dimensionality 
reduction is applied. Typically, dose profiles are specified by 
applying some ad-hoc features, such as width at half maxi-
mum, width of penumbra regions, “wing heights” in lateral 
profiles, etc. Here, rather than rely on such hand-crafted 
features, Principal Component Analysis (PCA) is applied 
to the analysed profiles [21]. PCA is a method for finding 
uncorrelated variables from correlated ones (in our case—
consecutive dose values along depth and lateral profiles). 
Finding such new variables reduces to solving an eigen-
value/eigenvector problem, and the new variables are linear 
combination of the old ones. Moreover, each PCA feature 
is assigned a percentage of the total variance of profile 
shapes it explains. As demonstrated in what follows, three 
most important PCA features usually explain over 98% of 
the variability of shapes of the training dose profiles. PCA 
reduces the dimensionality of the space of explanatory vari-
ables by a factor of 102—the final set of features consists of 
3n elements (explanatory variables)—three features for each 
profile Profi in Prof. The learnt PCA models were saved in 
respective files (a separate PCA model MPCA,i file for each 
index i) and subsequently used at the stage of model testing.

Clearly, for each i—index there are 300 training profiles 
{Profi,1, Profi,2,…,Profi,300} corresponding to 300 different 
tuples {(E, σE, s, α)1, (E, σE, s, α)2,…, (E, σE, s, α)300} and 
a single PCA model MPCA,i which extracts three features 
(Fi,1, Fi,2, Fi,3)k from Profi,k. Hence, the regression prob-
lem, after dimensionality reduction, becomes:

where Par is any element of the tuple (E, σE, s, α), f PCAPAR  is 
the PCA-based regression function and εPCA is the resid-
ual term. To learn the regression functions, the following 
training set, Tr, was applied:

(4)Par = fPar
(

Prof 1,Prof 2, ...,Prof n
)

+ ǫPar ,

(5)Par = f PCAPAR

(

F1,1, F1,2, F1,3, F2,1, F2,2, F2,3, ..., Fn,1, Fn,2, Fn,3
)

+ ǫPCA,

(6)Tr =
{

(E, σE , s,α)K ,
{(

F1,1, F1,2, F1,3
)

K
,
(

F2,1, F2,2, F2,3
)

K
, ...,

(

Fn,1, Fn,2, Fn,3
)

K

}

,K = 1..300
}

.

Support Vector Regression (SVR) with radial basis func-
tion (rbf) kernel was selected as the regressor [22] though 
other options are also available. SVR with rbf kernel first 
transforms the explanatory variables (PCA features in our 
case) to some high dimensional space and then, in this 
high dimensional space, replaces nonlinear relationship 
of Eq.  (5) with a multilinear one between transformed 
explanatory variables and explained variables (electron 
beam parameters in our case). This high dimensional mul-
tilinear relationship is then used to make predictions. The 
best regression models were selected using a fivefold cross 
validation run on Tr. After training, four f PCAPAR  regressors 
were obtained, one per E, σE, s, and α. The regression mod-
els were saved to files and subsequently used in testing.

The deep learning regression model
The processing pipeline described in the previous sec-
tion consists of two separate steps: feature extraction, 
and training of four regressors. In the current section an 
end-to-end regression model is described which, dur-
ing training, learns both dose profile data representation 
and regression functions simultaneously for all primary 
beam parameters (E, σE, s, α). The model presented here 
is based on deep learning. The architecture of the deep 
learning (DL) model is outlined in Fig. 1.

The architecture is designed to follow the same pro-
cessing steps as the approach described in the previous 
section. In short, each Profi in Prof is a separate input 
for the DL model and is processed by a separate encoder 
block. Each encoder block consists of a few convolution 
blocks. Each convolution block consists of two 1D con-
volutions (filter size equal to 3, number of filters equal 
to 16, 32, 64, etc. in the consecutive convolution blocks, 
ReLU activation) followed by a MaxPool1D layer which 
reduces the size of the data by a factor of two. The num-
ber L of convolution blocks in each encoder block is 
selected based on the length N of the input of this block, 
according to the formula L = int(log2N/3), i.e., the num-
ber of features learnt by any encoder block cannot be 
less than 3. Each encoder block ends with 1D convolu-
tion with a single filter of unit size. The outputs of the 
encoder blocks are then concatenated to form a 1D vec-

tor of features (in analogy to PCA features). This feature 
vector is then processed by two fully connected layers of 
size 100 and ReLU activation. The output of the last fully 
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Fig. 1  Scheme of the deep learning regression model architecture
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connected layer is next fed into the final fully connected 
layer with four outputs and no activation. These outputs 
are expected to deliver estimates of E, σE, s, and α.

The training data TrDL for the DL model is:

The model is trained for 300 epochs using the Adam 
optimizer and a constant learning rate equal to 0.0001. 
The loss function selected for this regression problem 
was mean square error between the model outputs and 
the values of primary electron beam parameters for 
which the dose profiles at the model input were obtained. 
A 20% portion of the training set was randomly selected 
for model validation. The best model found during train-
ing was saved to a file and used in subsequent testing.

Testing the models
At the stage of model testing, the testing profiles were 
fed at the input of either the PCA + SVR or DL models. 
The PCA + SVR model first extracts the features from the 
testing profiles based on PCA models learnt on the train-
ing set. These test features are then processed by SVR 
regressors which return the predicted values of E, σE, s, 
and α. In the case of the DL model the raw testing pro-
files are fed at the input of the DL model which returns 
the predicted values of E, σE, s, and α. The true and pre-
dicted values of E, σE, s, and α are then compared using 
correlation analysis and linear regression.

(7)TrDL =
{

(E, σE , s,α)K , {Prof 1,K ,Prof 2,K , ...,Prof n,K },K = 1...300
}

.

Optimizing the solution with profiles reconstructed 
from regression results
The regression results can be further improved by mini-
mizing the difference between the actual profiles being 
fed at the input of regressors and profiles reconstructed 
from the regression results. In particular, the param-
eters of the model of the primary electron beam for the 
training set Tr (Eq. (6)) have the form of a regular grid S, 
defined in Eq.  (1), embedded within a 4D hypercube H. 
With every node Q of S associated are PCA features cor-
responding to the dose profiles determined for primary 
electron beam model parameters (E, σE, s, α)Q assigned 
to Q. The regressions return a point P = (E, σE, s, α)PRED 
within H (see Fig.  2 for a 2D example). Consecutively, 
using interpolation, PCA features corresponding to P 
may be determined, and next an inverse PCA transform 
applied to them in order to reconstruct profiles from 
the results of regression models (E, σE, s, α)PRED. Thus, 
for each Profi in Prof a reconstructed profile RecProfi(P) 
obtains, which in general differs from Profi. This differ-
ence can then be further minimized using one of several 
optimization methods, with (E, σE, s, α)PRED as the start-
ing point for such minimization. Namely, beginning with 
P = (E, σE, s, α)PRED, PMIN = (E, σE, s, α)MIN is sought, such 
that:

where wi is the weight assigned to the i-th profile. In the 
experiments all wi were set to unity but in general the 
user may set these according to her/his actual needs. The 
minimization problem defined in Eq. (8) was solved using 
the SLSQP method [23].

Applied software
All models were implemented in Python 3.6.10. The scipy 
library (version 1.5.2) was used to implement regression 
models using PCA and SVR. The same library was used 
to run interpolation over 3D dose distributions to extract 
dose profiles, optimization of the regression results and 
profile reconstruction from regression results. The DL 
model was implemented using the keras (version 2.3.1) 
library. All codes, pretrained models, as well as training 
and testing data, are freely available at https://​github.​
com/​tabor​zbisl​aw/​DeepB​eam.

(8)PMIN = argmin
P∈H

∑n

i=1
wi�Prof i − RecProf i(P)�

2
,

Fig. 2  Scheme of the method of reconstructing profiles from 
regression results

https://github.com/taborzbislaw/DeepBeam
https://github.com/taborzbislaw/DeepBeam
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Results
Analysis of simulated training data
Detailed analysis of simulated training data formed the 
basis for model design decisions and aided in select-
ing the best hyperparameters (that is, parameters C and 
epsilon of SVR, see for example https://​scikit-​learn.​org/​
stable/​modul​es/​gener​ated/​sklea​rn.​svm.​SVR.​html) for the 
developed model. Following these decisions, a final veri-
fication of the performance of the model was performed 
using only test data. Thus, test data were never used in 
model fine-tuning.

The first issue considered was what number of PCA 
features extracted from the profiles explains what frac-
tion of the variability in the shapes of profiles. The results 
shown in Selecting the number of PCA features section 
of Additional file 1 indicate that three PCA features suf-
fice in explaining most of the variability of the shapes of 
profiles.

The second issue considered was how selection of dose 
profiles influences precision of estimation of the parame-
ters of a primary electron beam model. The results shown 
in Selecting dose profiles section of Additional file  1 

indicate that a total of six profiles—one depth profile 
and two lateral profile, and any two of three fields (3 × 3 
cm2, 10 × 10 cm2, or 30 × 30 cm2) would be sufficient in 
obtaining precise predictions of E, s, and α values.

Considering the above-discussed results obtained 
using training, the final design decision was made to 
train regressors based on PCA features extracted from 
a total of six profiles, i.e., three profiles (depth, lateral at 
Dmax = 1.4  cm depth and lateral at 10  cm depth) of two 
field sizes (10 × 10 cm2 and 30 × 30 cm2).

The testing results for the PCA + SVR model are shown 
in Fig. 3. Models trained on the training data were applied 
to previously unseen testing data and the predicted val-
ues of primary beam parameters compared to the ground 
truth data, i.e., the values of primary beam parameters 
applied in the generation of simulated profiles. Notably, 
the values of the coefficient of determination for the test-
ing data were only slightly lower than those obtained for 
the training data—implying that the regressors were not 
overfitted. Also shown in this figure are best-fitted lin-
ear regression lines to demonstrate the precision with 
which the model is able to predict the primary beam 

Fig. 3  Testing results for the PCA + SVR model

Fig. 4  Testing results for the deep learning (DL) model

https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVR.html
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVR.html
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parameters. The slopes of these regression lines are all 
close to 1.0. The prediction errors were estimated as val-
ues of standard deviation of the difference between the 
true and predicted values of the primary electron beam 
parameter, and were equal to 0.03  MeV, 0.007  cm, and 
0.13 degrees for E, s, and α, respectively.

The testing results for the deep learning model 
trained on the same set of profiles as those used for the 
PCA + SVR model are shown in Fig.  4. The results for 
the deep learning model are slightly inferior to those 
obtained for the PCA + SVR model which is not surpris-
ing, since the deep model was trained only on 300 sets 
of profiles, which may not be sufficient for a deep learn-
ing task. Further refinements would certainly be pos-
sible, however in that case more data would need to be 
generated. Yet, as demonstrated in the next section, both 
models offer good starting points for optimization-based 
estimates of the parameters of a model of the primary 
electron beam from clinical measurements, leading to 
virtually the same final results. The prediction errors for 
the deep model were equal to 0.065 MeV, 0.023 cm, and 
0.21 degrees for E, s, and α, respectively.

Discrepancies between the slopes of the best fit lines 
and the ideal 1.0 value are due to the noise present in 

the training data, which, although being relatively low 
(1.5%) is however higher than that in real measure-
ments. Decreasing the noise level to 0.5% would however 
increase the computation time by a factor of 9 which is 
unrealistic in view of the computational expense. The 
optimization procedure which follows the regression, as 
described in the previous section, resolves this issue.

Analysis of clinical data
The developed framework was used to find the values 
of primary electron beam parameters which could best 
reproduce real profiles measured using the 6 MV photon 
beam of a Clinac 2300C/D medical accelerator in a PTW 
MP3 Water Phantom. The applied input fields and pro-
files, obtained beam parameters, and mean errors of the 
reconstructed dose distributions against those measured, 
for three cases of experimental setups discussed below, 
are gathered in Table 1. The measured and reconstructed 
profiles for the respective sets of input profiles in each of 
these three cases are compared in Fig. 5.

Three experimental design cases were investigated, 
where different sets of measured profiles (as shown in the 
second and third columns of Table 1) were used as input. 
In each of the three cases, the models were trained on a 

Table 1  Results of SVR regression and deep model analysis of clinical profile data

The results for three experimental setups (Cases 1–3)) are reported in the table. The applied input fields and profiles are shown in columns 2 and 3. Values of 
PCA + SVR or DL- predicted beam parameters are shown in in columns 4, 5, and 6. The mean absolute differences between the measured profiles and profiles 
reconstructed using final estimation parameters, and the corresponding 1D gamma index passing rates for dose tolerance equal to 3% of dose at depth of maximum 
absorption and distance to agreement tolerance equal to 3 mm, are shown in columns 7 and 8

Case ID Applied
Fields

Applied Profiles Beam parameters Mean absolute 
error between 
measured and 
reconstructed 
profiles [%]

1D Gamma passing 
rate between 
measured and 
reconstructed 
profiles [%]

SVR regression
EPRED, sPRED, aPRED

DL regression
EPRED, sPRED, aPRED

Final estimation
EFINAL, sFINAL, 
aFINAL

1 3 × 3 cm2 Depth profile 5.54 MeV, 0.0 cm, 
1.97O

6.02 MeV, 0.0 cm, 
2.35O

5.86 MeV, 0.0 cm, 
2.44O

0.33 100.0

Lateral at Dmax 0.94 92.9

10 × 10 cm2 Depth profile 0.50 100.0

Lateral at Dmax 1.03 95.7

30 × 30 cm2 Lateral at Dmax 0.90 97.6

2 10 × 10 cm2 Depth profile 5.47 MeV, 0.23 cm, 
2.08O

5.50 MeV, 0.18 cm, 
2.41O

5.60 MeV, 0.25 cm, 
2.39O

0.33 100.0

Lateral at 10 cm 
depth

0.41 100.0

30 × 30 cm2 Lateral at Dmax 0.49 98.6

Lateral at 10 cm 
depth

0.26 100.0

3 10 × 10 cm2 Depth profile 5.43 MeV, 0.24 cm, 
1.95O

5.62 MeV, 0.27 cm, 
2.47O

5.60 MeV, 0.24 cm, 
2.41O

0.35 100.0

Lateral at Dmax 0.75 96.3

Lateral at 10 cm 
depth

0.40 99.4

30 × 30 cm2 Depth profile 0.26 100.0

Lateral at Dmax 0.43 98.1

Lateral at 10 cm 
depth

0.20 100.0
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Fig. 5  Measured and reconstructed dose profiles. Measured (real) depth and lateral profiles and respective profiles reconstructed using PCA and 
the finally estimated beam parameters (listed in column 6 of Table 1), for three cases of experimental design. The specification of profiles compared 
in each panel are listed in columns 2 and 3 of Table 1: a Case 1; b Case 2; c Case 3
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set of training profiles corresponding to those measured, 
after suitable adjustment of the ranges of the training 
profiles. Following this training, the measured profiles 
were then input to the trained PCA + SVR or DL models 
to obtain the values of the parameters of the model of the 
primary electron beam, EPRED, sPRED, and αPRED, shown 
in the fourth and fifth columns of Table  1, respectively. 
Because there was no possibility to train a regressor for 
predicting the value of σE, σE = 0.50  MeV was consist-
ently used throughout. These initial predictions were 
next fed as input to the reconstruction-based minimiza-
tion procedure. After optimizing these predicted values 
for either model, usually identical (or very similar) sets 
of finally estimated parameter values: EFINAL, sFINAL, and 
αFINAL, shown in column 6 of Table  1, were obtained. 
These finally estimated electron beam model parameters 
values were then used to calculate the reconstructed dose 
profiles. The mean values of absolute differences between 
the measured and reconstructed profiles, and the cor-
responding 1D gamma index passing rates for dose tol-
erance equal to 3% of dose at depth of maximum and 
distance to agreement tolerance equal to 3 mm, are given 
in the last two columns of Table  1. The measured and 
reconstructed profiles in each of the three experimental 
cases are compared in Fig. 5.

The first set of measured profiles (Case 1) consisted of 
five profiles: two depth profiles and three lateral profiles, 
one of which was measured at the depth of Dmax = 1.4 cm, 

as listed in Table 1. The depth profiles were measured to 
a depth of 35 cm while the ranges of measurement of lat-
eral profiles were adjusted to the field size. The ranges of 
training data for this set of profiles were adjusted to the 
ranges of real measurements prior to being applied to 
train the PCA + SVR or DL models. The measured and 
reconstructed profiles for this case are shown in Fig. 5a.

The second set of measurement profiles (Case 2) con-
sisted of one depth profile and three lateral profiles, one 
of which was measured at depth Dmax, listed in column 2 
of Table 1. The depth profile was measured to a depth of 
30 cm while the ranges of measurement of lateral profiles 
were adjusted to the field size. The measured and recon-
structed profiles for this case are shown in Fig. 5b.

Finally, the third set of measurement profiles (Case 3) 
consisted of six profiles: a depth profile and two lateral 
profiles, both at Dmax depth. The depth profile was meas-
ured to a depth of 30  cm while the ranges of measure-
ment of lateral profiles were adjusted to the field size. 
The measured and reconstructed profiles for this case are 
shown in Fig. 5c.

Commenting generally on the results obtained, one 
should note the remarkably consistent estimates of 
beam parameters obtained using either the PCA + SVR 
or the deep learning models, and the excellent agree-
ment between the reconstructed and measured profiles, 
especially using the set of measured profiles and fields in 
the Case 3 study. However, even in the Case 1 study, the 

Fig. 6  Measured and simulated dose profiles. Measured (real) depth and lateral profiles and respective simulated profiles. The simulation was run 
for 109 histories for experimental settings and virtual primary electron beam profile corresponding to Case 3
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somewhat higher discrepancies observed at the borders 
of the lateral fields are to be expected. Over such regions 
of high dose gradients, higher uncertainties may be due 
to measurement uncertainties, to averaging of input data 
by the phantom software or to averaging of data in the 
training profiles, all affecting the quality of reconstructed 
profiles over such regions. The excellent agreement 
between the reconstructed and real profiles is confirmed 
by the low values of mean absolute errors displayed in 
column 7 of Table 1 in most cases ranging around 0.5% 
and exceeding 1% only once, and by high gamma passing 
rates.

While there is a very good agreement between meas-
ured and profiles reconstructed from regression results, 
based on PCA models, a final check of the proposed 
framework and must be comparison of measured and 
simulated profiles. To this end, the dose delivery was sim-
ulated for 109 histories, using the virtual primary electron 
settings determined for Case 3 measurement experiment. 
Real profiles and simulated profiles for this case are com-
pared in Fig. 6.

Discussion
Development of a method to relate specific features of 
the in-phantom measured dose distributions with val-
ues of the parameters of the model of the electron beam 
in a medical accelerator was the prime motivation in 
this work. Ideally, for the solution of such a task to be of 
practical utility, it should be delivered as a model which 
accepts at its input a well-defined assembly of measured 
profiles, returning estimated values of the parameters 
characterizing the primary electron beam of a given 
accelerator, together with dose profiles reconstructed 
based on these estimated parameters. Availability of an 
elsewhere-developed complete MC model of the acceler-
ator, i.e., of the PRIMO Monte Carlo software, and devel-
opment and successful application of statistical learning 
technology made it possible to accomplish this task.

The solution presented in this study is flexible and read-
ily usable. Based on Monte Carlo simulation data, a set of 
models was developed which extract features from a user-
defined collection of dose profiles to estimate primary 
electron beam model parameters from such features and 
returns reconstructed profiles for comparison with those 
measured and used as input. In contrast to all the work 
published so far, the characteristics of the dose profile 
shapes and the regression functions are both machine-
learned and collected in a data-dependent manner. Nei-
ther hand-crafted shape features nor ad-hoc regression 
functions need to be applied, these being replaced by a 
well-established background of statistical learning. The 
two models developed in this work—one based on PCA 
feature extraction and SVR regression and another, based 

on end-to-end deep-learning which simultaneously 
learns to represent the shapes of the dose profiles and 
to apply the most suitable regression functions—are the 
proposed solution. Such a solution will support several 
different experimental arrangements, offering optimum 
regression models for any such arrangement. By studying 
a few experimental cases, the effect of the selection of the 
experimental setup on the accuracy of parameter estima-
tion has been demonstrated and discussed.

Estimation of the primary electron beam model param-
eters involves two steps, the first of which is an initial 
guess made by a regression model. In principle, this 
initial guess could be made without any such model—
merely by a brute force search over all collected profiles 
for a set of profiles that best fit the analysed profiles. The 
second stage of estimation, which is based on recon-
struction-based minimization, requires that techniques 
be developed to effectively represent the shape of the 
measured profiles—as introduced in the present work. 
It should also be noted that a brute force search delivers 
no explanatory power, in contrast to regression models 
introduced in the present study. In particular, regres-
sion models deliver an association between explanatory 
and explaining variables—for example, given a regres-
sion model it can be inferred in what manner will any 
specific changes of primary electron beam model param-
eters influence the shapes of the resulting dose profiles. 
This is the general advantage of regression models over 
any brute force search strategies, which is why regression 
models are widely used in statistical data analysis.

The developed framework was tested using both sim-
ulated and real data. The tests based on simulated data 
demonstrated that the coefficient of determination of 
true primary beam parameters from dose profiles varies 
from around 92% for angular beam divergence to 97% 
for mean energy of the simulated electron beam. It was 
not possible to train the developed model to predict the 
FWHM of energy spectrum of primary electrons, imply-
ing that this particular beam parameter does not seri-
ously affect the shapes of dose profiles, at least for the 
cases studied in this work.

The presented framework has been made freely avail-
able together with the simulation data used for training 
the models. Model training and testing stages do not 
require extensive computation resources. Using any up-
to-date PC with no graphic card support, the PCA + SVR 
models can be trained within a few seconds and predic-
tion takes no longer than a second. The training of deep 
learning models usually requires about ten hours of an 
average CPU. However, testing the deep models takes no 
longer than testing the PCA + SVR model.

The presented framework can be readily adapted 
to individual requirements, perhaps guided by the 
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availability of profile sets prepared for QA purposes, or 
by ease of measurement. Dose data could also be sup-
plied by dose distributions measured by detectors other 
than ionization chambers, e.g., dye films, especially over 
regions of high dose gradient. Indeed, for any selection 
of profiles which the user intends to apply in determin-
ing values of parameters of the primary electron beam 
models, only a few lines of the configuration code need 
to be changed to indicate such user-specified selection. 
Then, the regression models must be retrained, which 
takes only a few seconds with no user intervention, 
except for running the code. Following this training run, 
the estimation of electron beam model parameters and 
reconstruction of profiles from estimation results can be 
executed—this requiring a few more seconds, provided 
that the measured doses are read by a script. Three exam-
ples of such procedures for reading measured doses from 
text files have also been provided in the freely available 
repository at https://​github.​com/​tabor​zbisl​aw/​DeepB​
eam.

Conclusion
The purpose of the present study was to develop a flexible 
framework with suitable regression models for estimat-
ing parameters of the model of primary electron beam in 
simulators of medical linear accelerators, based on real 
reference dose profiles measured in a water phantom. 
The proposed framework is a readily applicable and cus-
tomizable tool which may be applied in tuning parame-
ters of primary electron beams of Monte Carlo simulators 
of linear accelerators. The codes, training and test data, 
together with readout procedures, are freely available at 
the site: https://​github.​com/​tabor​zbisl​aw/​DeepB​eam.
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