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Abstract 

Purpose:  To investigate the dosimetric impact of deep learning-based auto-segmentation of organs at risk (OARs) on 
nasopharyngeal and rectal cancer.

Methods and materials:  Twenty patients, including ten nasopharyngeal carcinoma (NPC) patients and ten rectal 
cancer patients, who received radiotherapy in our department were enrolled in this study. Two deep learning-based 
auto-segmentation systems, including an in-house developed system (FD) and a commercial product (UIH), were 
used to generate two auto-segmented OARs sets (OAR_FD and OAR_UIH). Treatment plans based on auto-seg-
mented OARs and following our clinical requirements were generated for each patient on each OARs sets (Plan_FD 
and Plan_UIH). Geometric metrics (Hausdorff distance (HD), mean distance to agreement (MDA), the Dice similarity 
coefficient (DICE) and the Jaccard index) were calculated for geometric evaluation. The dosimetric impact was evalu-
ated by comparing Plan_FD and Plan_UIH to original clinically approved plans (Plan_Manual) with dose-volume met-
rics and 3D gamma analysis. Spearman’s correlation analysis was performed to investigate the correlation between 
dosimetric difference and geometric metrics.

Results:  FD and UIH could provide similar geometric performance in parotids, temporal lobes, lens, and eyes (DICE, 
p > 0.05). OAR_FD had better geometric performance in the optic nerves, oral cavity, larynx, and femoral heads 
(DICE, p < 0.05). OAR_UIH had better geometric performance in the bladder (DICE, p < 0.05). In dosimetric analysis, 
both Plan_FD and Plan_UIH had nonsignificant dosimetric differences compared to Plan_Manual for most PTV and 
OARs dose-volume metrics. The only significant dosimetric difference was the max dose of the left temporal lobe for 
Plan_FD vs. Plan_Manual (p = 0.05). Only one significant correlation was found between the mean dose of the femoral 
head and its HD index (R = 0.4, p = 0.01), there is no OARs showed strong correlation between its dosimetric differ-
ence and all of four geometric metrics.

Conclusions:  Deep learning-based OARs auto-segmentation for NPC and rectal cancer has a nonsignificant impact 
on most PTV and OARs dose-volume metrics. Correlations between the auto-segmentation geometric metric and 
dosimetric difference were not observed for most OARs.
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Introduction
Organs at risk (OARs) delineation is a critical task in 
radiotherapy. It affects many aspects of treatment plan-
ning, which can further affect the probability of local 
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tumor control and normal tissue complications [1–4]. 
However, manual OARs delineation is time-consuming 
and tedious work. This fact is especially true for cancers 
with complex anatomy, such as nasopharyngeal carci-
noma (NPC).

Auto-segmentation can reduce the work intensity of 
oncologists and improve work efficiency [5–10]. Recently, 
deep learning-based auto-segmentation has become a 
mainstream assistance segmentation technique provided 
by many software vendors [7, 11–13]. The latest relevant 
studies have shown promising results for these systems, 
improving consistency among oncologists and shorten-
ing the delineation time [14–16].

As an emerging technique, sufficient clinical appli-
cation assessment is required. Although many studies 
have evaluated the performance of auto-segmentation in 
terms of geometric metrics [7, 14, 15, 17–19], few stud-
ies have focused on dosimetric impact [11, 20]. Because 
the OARs delineation directly affects the plan optimiza-
tion and local dose distribution, and then affects the plan 
evaluation and the normal tissue complication probabil-
ity. Therefore, dosimetry evaluation has important clini-
cal significance, only geometric metric evaluation is not 
sufficient for clinical application.

There are many approaches for dosimetry evaluation of 
OARs auto-segmentation. Van Dijk et al. [11] compared 
the dosimetric difference between auto-segmented and 
manually delineated OARs with a clinically approved 
treatment plan. The results proved that more accurate 
auto-segmentation translated into smaller dosimetric 
differences compared to the manual contours. Kaderka 
et  al. [20] used an atlas-based method for cardiac sub-
structure segmentation and proved that the quality of 
auto-segmented contours cannot be determined by geo-
metric metrics only, and geometrical measures did not 
predict the accuracy of dosimetric parameters. However, 
both two studies used clinically approved treatment plans 
based on manual delineation and assessed on auto-seg-
mented contours.

The future goal of OARs auto-segmentation is to be 
applied to clinical plan optimization and evaluation 
with little or no manual modification. The OARs deline-
ation will directly affect the plan optimization and local 
dose distribution. Re-optimizing the plan based on 
auto-segmented OARs is more in line with the actual 
clinical situation, so we think it may be the most reason-
able approach. However, the existing researches have not 
evaluated the feasibility of applying the auto-segmented 
OARs to plan optimization.

We believe that the feasibility evaluation of apply-
ing the auto-segmented OARs to plan optimization has 
important clinical significance, because it is the basis of 
the whole process automation of treatment planning 

(including automatic delineation, automatic planning, 
plan evaluation, etc.), and this paper has conducted a 
preliminary exploration on this. In this study, we reop-
timized the treatment plan based on auto-segmented 
contours and then used manual contours to evaluate the 
dosimetric differences between the reoptimized plans 
and the original clinical treatment plans.

To further assess the dosimetric impact of deep 
learning-based auto-segmentation, we have designed a 
dosimetric comparison study. Two sites, including the 
nasopharynx and rectum, and two deep learning-based 
auto-segmentation systems, including a commercial tool 
from United Imaging Healthcare (UIH, Shanghai, China) 
and an in-house auto-segmentation tool developed by 
our institution, were investigated. To evaluate the appli-
cation of deep learning-based auto-segmentation in clini-
cal situations, the whole planning process was following 
our clinical routine requirement. Meanwhile, the correla-
tion between geometric metric and dosimetric difference 
was investigated.

Methods
A schematic workflow of this study is presented in Fig. 1. 
After auto-segmentation, the assessment was divided 
into three parts. First, the accuracy of auto-segmenta-
tion was evaluated based on geometric metrics. Second, 
we reoptimized the plan based on the auto-segmented 
OARs and compared it with the original treatment plan 
to evaluate the dosimetric differences. Third, we explored 
the correlation between the geometric metrics and dosi-
metric differences.

Patients and treatment protocol
Two sites, including the nasopharynx and rectum, were 
investigated. Ten patients for each site who received radi-
otherapy at Fudan University Shanghai Cancer Center 
between 2017 and 2019 were randomly selected from 
our database and enrolled in this study. The details of 
the patient characteristics are shown in Additional file 1: 
Supplement A, Table S1. For NPC patients, the prescrip-
tion was 70.4 Gy in 32 fractions for T3-T4 stage patients 
and 66  Gy in 30 fractions for T1-T2 stage patients. For 
rectal cancer, all of the patients received 50  Gy in 25 
fractions.

OARs manual delineation
Manual delineation was performed on the Pinnacle 
(Pinnacle, v9.10, Philips Corp, Fitchburg, WI, USA) 
treatment planning system. The targets and OARs are 
presented in Table 1. These contours were delineated by 
radiation oncologists with more than 5  years of experi-
ence in radiation oncology and revised and approved by 
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senior radiation oncologists. All of the manually deline-
ated OARs were used for patient treatment.

Deep learning‑based auto‑segmentation
Two deep learning-based auto-segmentation systems 
were used in this study. FD is an in-house developed deep 

learning-based auto-segmentation system, the details 
of the network and model training have been presented 
in our recent  studies [21–24]. Briefly, we used approxi-
mately 200 NPC and 200 rectal cancer cases from our 
institution as the training dataset. The delineation of 
the training dataset came from clinical routine without 

Fig. 1  The workflow of this study

Table 1  The target and the OARs constraint functions and dosimetric evaluation metrics

Site Target/OARs Prescription Constraints or objectives Dosimetric evaluation

NPC PTV70.4 70.4 Gy/32 F D95 > Prescription, D2 < 110% Prescrip-
tion, uniform dose = Prescription

V100, D95, D2

PTV66 66 Gy/32 F

PTV60 60 Gy/32 F

PTV54 54 Gy/32 F

Eyes / Max Dose < 50 Gy Max Dose

Lens / Max Dose < 25 Gy Max Dose

Brainstem / Max Dose < 54 Gy Max Dose

Temporal lobes / Max Dose < 65 Gy, V60 < 1% Max Dose

Spinal cord / Max Dose < 45 Gy Max Dose

Optic nerves / Max Dose < 54 Gy Max Dose

Larynx / Mean Dose < 45 Gy Mean Dose

Parotid / Mean Dose < 26 Gy Mean Dose, V30

Oral cavity / Mean Dose < 40 Gy Mean Dose

Temporomandibular joints / Max Dose < 70 Gy Not evaluated

Chiasm / Max Dose < 54 Gy Not evaluated

Rectum PTV 50 Gy/25 F D95 > Prescription, D2 < 110% Prescrip-
tion, uniform dose = Prescription

V100, D95, D2

Femoral heads / V40 < 40%, Max Dose < 50 Gy Mean Dose

Bladder / V40 < 50% Mean Dose, V40
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modification for this task. The network was a modified 
2D U-Net. It was used in 2018 for OARs auto-segmenta-
tion clinical testing on NPC and rectal cancer. The OARs 
segmented by this system were marked as OAR_FD.

UIH is a commercial treatment planning system devel-
oped by UIH Corporation [25, 26]. It uses a two-phase 
3D U-Net for OARs location and segmentation. The 
training data did not come from our institution. We used 
UIH from 2019 for clinical testing. This system provided 
NPC and rectal cancer OARs auto-segmentation, which 
was used in this study. The OARs segmented by this sys-
tem were marked as OAR_UIH.

Treatment planning
Pinnacle (Pinnacle, v9.10, Philips Corp, Fitchburg, WI, 
USA) and Varian Trilogy Linac (Varian, Polo Alto, CA, 
USA) with 120 multileaf collimator were used for treat-
ment planning for all plans. All of the treatment plan-
ning processes were the same as our clinical routine for 
consistency.

The NPC clinical treatment plans used the 9-field static 
intensity modulated radiotherapy (sIMRT) technique, 
and the gantry angles were 0°, 45°, 85°, 120°, 160°, 200°, 
245°, 275°, and 315°. The field could be split based on 
field width. The maximum number of segmented sub-
fields was set to 55. The rectal cancer clinical treatment 
plans adopted 7 fields of the sIMRT technique. The beam 
angles were chosen based on clinical experience. Here, 
we mainly considered having the bladder and femoral 
heads receive less radiation exposure. The maximum 
number of segmented subfields was set to 35. For all of 
the plans, the minimum subfield area was set to 10 cm2, 
and the minimum subfield monitoring unit was set to 10 
MU. The dose calculation grid was set to 3 mm.

The prescription was normalized to the mean dose of 
PTV as in our clinical routine. For NPC, we prescribe 
220 cGy per fraction to 97% of the PTV70.4 mean dose 
for 32 fractions or 220  cGy per fraction to 97% of the 
PTV66 mean dose for 30 fractions. For rectal cancer, we 
prescribe 200 cGy per fraction to 96% of PTV mean dose 
for 25 fractions. In this setting, the D95 of PTV was close 
to the prescription dose. All of the treatment plans were 
completed by medical physicists with more than 3 years 
of experience.

Each patient had three plans: Plan_Manual, Plan_FD 
and Plan_UIH. Plan_Manual was a clinically approved 
plan that was used for patient treatment. Plan_FD and 
Plan_UIH were reoptimized based on manually deline-
ated PTVs and auto-segmented OARs. For OARs that 
were not generated by the auto-segmentation system 
(temporomandibular joints and chiasm), we used manu-
ally delineated OARs to replace them. The beam angles 
and initial optimization parameters for the reoptimized 

plans (Plan_FD and Plan_UIH) were consistent with 
Plan_Manual. The physicist could adjust the optimiza-
tion objective function based on his or her experience 
and judgment, the same as the routine clinical treatment 
planning process.

Geometric evaluation
Manual delineated contours were used as references. The 
performance of auto-segmentation was evaluated by the 
following four geometric metrics: Hausdorff distance 
(HD), mean distance to agreement (MDA), Dice simi-
larity coefficient (DICE), and Jaccard index [27–29]. HD 
and MDA were used to quantify the maximum and mean 
3D distances between contours A and B, respectively. 
DICE and the Jaccard index were measures of the overlap 
between contours A and B. The definitions are as follows:

where d (a, b) represents the 3D Hausdorff distance 
between point a from contour A and point b from con-
tour B.

For a perfect overlap, the values of HD and MDA are 0, 
and the values of DICE and Jaccard are 1. For an imper-
fect overlap, the values of HD and MDA are large, and 
the values of DICE and Jaccard are close to 0.

Dosimetric evaluation
Plan_Manual was clinically approved treatment plan, 
Plan_FD and Plan_UIH were reoptimized plans based on 
manually delineated PTVs and auto-segmented OARs. In 
the dosimetric evaluation, we used manually delineated 
OARs to compare dose-volume metrics between Plan_
FD, Plan_UIH and Plan_Manual. As Fig. 2 shows, the red 
solid line represents the method we used in this study, 
the blue dash line represents the traditional evaluation 
method. For serial organs, we mainly focused on Dmax. 
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For parallel organs, we mainly focused on Dmean, V30 
or V40 (Table 1). The dose-volume metrics of PTVs and 
manually delineated OARs were extracted from Plan_FD, 
Plan_UIH and Plan_Manual.

A 3D gamma analysis was performed with 3% and 
3  mm for whole-body and PTV dose distribution com-
parison. The homogeneity index (HI) and conformity 
index (CI) for PTV were further calculated using the fol-
lowing formulas:

where DP is the prescription dose, VP and Vdose are the 
volume of PTV and the prescription dose region, respec-
tively, and VR is the intersection volume of VP and Vdose.

Correlation between the geometric metric and dosimetric 
metric
The correlation between the geometric metric and the 
∆Dose was analyzed by Spearman’s correlation test. The 
∆Dose is the dose-volume metrics difference between 
reoptimized plans (including Plan_FD and Plan_UIH) 
and Plan_Manual. Please note that the volume-metrics 
difference is also denoted by ΔDose.

Statistical analysis
R software (v4.0) was used for statistical analysis. For a 
value comparison, the Shapiro–Wilk normality test was 
performed first. If a normal distribution was found, the 
paired-sample t test between groups was performed; 
otherwise, the Wilcoxon’s paired-sample nonparametric 
signed-rank test was performed. p < 0.05 indicates that 
the difference is statistically significant. The correlations 
between geometric metrics and dose-volume metrics dif-
ference were evaluated with Spearman’s correlation coef-
ficient R.

HI =
D2 − D98

Dp

CI =
VR*VR

VP*Vdose

Results
Geometric evaluation
Figure  3 shows the geometric evaluation results of 
auto-segmentation. Both deep learning systems can 
provide similar results in some OARs, including 
the parotids, temporal lobes, lens, and eyes (DICE, 
p > 0.05). Here, the p-Value indicates the DICE differ-
ence between OAR_FD and OAR_UIH. For the brain-
stem and spinal cord, although there was a significant 
difference (p < 0.05), the deviation was small (less than 
0.05 in DICE), while OAR_FD had better performance 
in the optic nerves, oral cavity, larynx, and femoral 
heads. OAR_UIH had better performance in the blad-
der. Representative rectal cancer and NPC examples of 
auto-segmentation are illustrated in Fig.  4 and Addi-
tional file  1: Supplement B, Fig. S1. More examples 
are presented in Additional file 1: Supplement D, Figs. 
S6-S12.

PTV dosimetry evaluation
Table  2 lists the PTV dosimetric parameters of Plan_
Manual, Plan_FD and Plan_UIH. No significant dosi-
metric differences were found by comparison Plan_FD, 
Plan_UIH with Plan_Manual.

OARs dosimetry evaluation
Table  3 lists the OARs dosimetry parameters. No sig-
nificant dosimetric differences were found except for 
left temporal lobe Dmax for Plan_FD vs. Plan_Manual 
(6376 ± 2126 cGy vs. 6444 ± 2156 cGy, p = 0.05). Figure 4 
and Additional file 1: Supplement B, Fig. S1 present the 
dose distributions of Plan_Manual, Plan_FD and Plan_
UIH for representative rectal cancer and NPC cases. 
Figure  5 shows an example of dose-volume histogram 
(DVH) of Plan_Manual, Plan_FD and Plan_UIH for rep-
resentative rectal cancer cases. If readers are interested in 
the dose-volume metrics data of Plan_Manual on OAR_
FD and OAR_UIH, please refer to Additional file 1: Sup-
plement B, Table S2.

The correlation between dosimetric differences 
and the geometric metrics
Table  4 shows the results of the correlation analysis 
between dosimetric differences and geometric metrics, 
there is no OARs shows strong correlation between its 
∆Dose and all of four geometric metrics. The only sig-
nificant correlation was found between the femoral head 
ΔDmean and its geometric metric HD (R = 0.40, p = 0.01 
for femoral head ΔDmean vs. HD). Although the brain-
stem ΔDmax and its DICE was significantly correlated, 
this might be a statistical random error since the trend 

Fig. 2  Different dosimetric evaluation methods between this study 
and others
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Fig. 3  Geometric evaluation results of auto-segmentation. a The DICE; b The mean distance to agreement (MDA); c The Jaccard; d The Hausdorff 
distance (HD)
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is contrary to our expectations. For detailed data, please 
refer to the Additional file 1: Supplement C, Figs. S2–S5).

Discussion
In this study, we assessed the dosimetric impacts of deep 
learning-based OARs auto-segmentation on nasopharyn-
geal and rectal cancers. Our results showed that deep 
learning-based OARs auto-segmentation had no signifi-
cant impact on the PTV dose distribution or most OARs 
dose-volume metrics, while the correlation between the 
geometric metrics and OARs dosimetric differences was 
weak.

Two deep learning auto-segmentation systems were 
investigated. Both systems are under clinical testing in 
our institution. The clinical test for FD started in Novem-
ber 2018. Radiation oncologists can use this system for 
NPC and rectal OARs auto-segmentation in our insti-
tution. These auto-segmented contours were usually 
reviewed and modified by radiation oncologists before 
clinical approval. This process has been applied on more 

than 500 patients. For UIH, we started testing it in March 
2019. Similar to the FD system, radiation oncologists are 
required to review auto-segmented contours before clini-
cal approval. The preliminary feedback of these two sys-
tems can reduce radiation oncologists’ workload. More 
detailed data are being collected.

For quantitative geometric evaluation, both systems 
can provide similar performance for five OARs (eyes, 
parotids, lens, oral cavity and temporal lobes, p > 0.05 
DICE). These results are similar to those reported in 
other researches [7, 11]. Although the differences for 
the spinal cord and brainstem were significant, the 
deviation value was small (approximately 0.04 in DICE 
and < 0.5 mm in MDA). Six OARs, including the bladder, 
femoral heads, spinal cord, brainstem, optic nerves and 
larynx, were significantly different between the two sys-
tems (p < 0.05, DICE). The reasons might be as follows.

FD can provide a better performance than UIH (p < 0.05 
DICE) for the femoral heads, optic nerves, spinal cord, 
and larynx, which might be caused by the different OARs 

Fig. 4  An example of rectal cancer patient. a Manual OARs; b FD OARs; c UIH OARs; d Contour comparison; e Plan_Manual dose distribution; f 
Plan_FD dose distribution; g Plan_UIH dose distribution; h PTV contour; i Plan_FD with manual OARs; j Plan_UIH with manual OARs; k 3D Gamma 
analysis of Plan_FD; red color represents gamma index > 1; l 3D Gamma analysis of Plan_UIH, red color represents gamma index > 1
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definitions between our clinical routine and UIH training 
data. For example, we did not include the femoral necks 
in femoral head segmentation. UIH included the femoral 
necks (Fig. 4c, red arrow). Additionally, OARs that do not 
have clear visible boundaries on CT images like tempo-
ral lobes can have large delineation variations (Additional 
file  1: Supplement D, Figs. S10). By retraining the auto-
segmentation model on our institution data, these devia-
tions might be eliminated.

The performance of the bladder for FD was worse than 
that for UIH (p < 0.05 DICE). This finding might have 

been caused by the algorithm difference between the two 
systems. Our system used a 2D U-Net network, which 
could have some outliers, as our previous study demon-
strated [21, 22]. UIH used a two-phase algorithm, which 
was more robust according to region location.

In dosimetric analysis, no difference was found for the 
PTV target (p > 0.05). The most significant dose differ-
ence was rectal PTV D2 (Manual: 5349 ± 177  cGy, FD: 
5384 ± 167  cGy, UIH: 5383 ± 160  cGy, p = 0.08). This 
study did not involve the auto-segmentation of target 
volume, all reoptimized plans used manually delineated 

Table 2  Summary of the PTV dosimetry parameters of the reoptimized treatment plans (Plan_FD and Plan_UIH) and the original 
clinical treatment plans (Plan_Manual). All of the values are reported as the mean ± standard deviation

Site/structure Dosimetric Indices Plan Value Comparison 
(paired t test)

Rectal/PTV V100 (%) Manual 97.41 ± 1.91 –

FD 96.37 ± 2.98 p = 0.35

UIH 96.49 ± 2.72 p = 0.33

D95 (cGy) Manual 5088 ± 77 –

FD 5028 ± 66 p = 0.09

UIH 5042 ± 70 p = 0.11

D2 (cGy) Manual 5349 ± 177 –

FD 5384 ± 167 p = 0.08

UIH 5383 ± 160 p = 0.08

Gamma Pass Rate (3 mm/3%) FD 97.16 ± 2.43 –

UIH 97.20 ± 2.34 –

Conformity Index (CI) Manual 0.78 ± 0.23 –

FD 0.78 ± 0.23 p = 0.52

UIH 0.78 ± 0.23 p = 0.48

Homogeneity Index (HI) Manual 0.10 ± 0.08 –

FD 0.10 ± 0.06 p = 0.64

UIH 0.10 ± 0.06 p = 0.63

NPC/PTV70.4 V100 (%) Manual 93.39 ± 0.94 –

FD 92.75 ± 2.03 p = 0.39

UIH 92.28 ± 2.00 p = 0.12

D95 (cGy) Manual 6984 ± 25 –

FD 6978 ± 31 p = 0.66

UIH 6962 ± 32 p = 0.16

D2 (cGy) Manual 7425 ± 270 –

FD 7445 ± 287 p = 0.17

UIH 7423 ± 276 p = 0.92

Gamma Pass Rate (3 mm/3%) FD 99.20 ± 1.07 –

UIH 96.35 ± 2.34 –

Conformity Index (CI) Manual 0.72 ± 0.05 –

FD 0.70 ± 0.04 p = 0.23

UIH 0.70 ± 0.06 p = 0.24

Homogeneity Index (HI) Manual 0.12 ± 0.05 –

FD 0.12 ± 0.05 p = 0.33

UIH 0.12 ± 0.04 p = 0.58
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Table 3  Summary of the OARs dosimetry parameters of the reoptimized treatment plans (Plan_FD and Plan_UIH) and the original 
clinical treatment plans (Plan_Manual). All of the values are reported as the mean ± standard deviation

Site Structure Dose-volume metrics Plan Value Comparison 
(paired t test)

Rectal Bladder V40 (%) Manual 43.45 ± 26.96 –

FD 43.73 ± 26.28 p = 0.93

UIH 41.76 ± 26.55 p = 0.14

Dmean (cGy) Manual 3476 ± 1281 –

FD 3464 ± 1264 p = 0.82

UIH 3427 ± 1262 p = 0.25

Femoral head_L Dmean (cGy) Manual 2199 ± 773 –

FD 2160 ± 718 p = 0.60

UIH 2185 ± 824 p = 0.90

Femoral head_R Dmean (cGy) Manual 2130 ± 755 –

FD 2085 ± 712 p = 0.41

UIH 2153 ± 819 p = 0.79

NPC Eye_L Dmax (cGy) Manual 2199 ± 1175 –

FD 2135 ± 1265 p = 0.56

UIH 2153 ± 1168 p = 0.71

Eye_R Dmax (cGy) Manual 2441 ± 1892 –

FD 2386 ± 1906 p = 0.61

UIH 2463 ± 1906 p = 0.88

Spinal cord Dmax (cGy) Manual 4261 ± 161 –

FD 4227 ± 191 p = 0.18

UIH 4251 ± 281 p = 0.86

Brainstem Dmax (cGy) Manual 5578 ± 803 –

FD 5528 ± 717 p = 0.43

UIH 5551 ± 706 p = 0.72

Parotid_L V30 (%) Manual 57.78 ± 25.86 –

FD 58.07 ± 26.73 p = 0.82

UIH 57.37 ± 26.36 p = 0.77

Dmean (cGy) Manual 4365 ± 926 –

FD 4381 ± 959 p = 0.65

UIH 4307 ± 951 p = 0.33

Parotid_R V30 (%) Manual 55.53 ± 23.68 –

FD 55.16 ± 23.82 p = 0.78

UIH 53.96 ± 24.88 p = 0.52

Dmean (cGy) Manual 4060 ± 508 –

FD 4057 ± 538 p = 0.95

UIH 3936 ± 608 p = 0.15

Len_L Dmax (cGy) Manual 592 ± 390 –

FD 591 ± 387 p = 0.84

UIH 588 ± 379 p = 0.68
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PTV. The small dosimetric difference of PTV might be 
mainly caused by the experience, skills and operating 
habits of different dosimetrists. For OARs dose-volume 
metrics, the most significant dose difference was in the 
left temporal lobe Dmax for Plan_FD vs. Plan_Manual 
(6376 ± 2126  cGy vs. 6444 ± 2156  cGy, p = 0.05). This 
finding might have been caused by the large variation in 
the delineation of the temporal lobes (Additional file  1: 
Supplement D, Fig. S10).

However, no significant dose-volume metrics differ-
ence was found for PTV and OARs. A plan dose distri-
bution review remains necessary to fully investigate the 
dosimetric impact of an auto-segmentation system. The 
delineation could have a different impact on the final 
dose distribution. As we demonstrated in Fig. 4c, g, the 
femoral neck delineated by the UIH system was spared 
from 10% dose coverage. The low-dose isodose lines 
(10  Gy and 25  Gy) of Plan_UIH have different shapes 

compared to Plan_Manual and Plan_FD. In contrast, the 
difference between oral cavity delineation for UIH and 
manual delineation did not cause a significant dose dis-
tribution difference (Additional file 1: Supplement B, Fig. 
S1. C and G, red arrow).

This study showed that there was no clear monotonic 
relationship between the geometric metrics and dosimet-
ric differences for most OARs. The only significant corre-
lation was shown for the femoral head mean dose. There 
could be several reasons for this result. First, the differ-
ence between manual and automatic delineation might 
be too small to cause a dosimetric difference beyond the 
random noise dose levels. In other words, the perfor-
mance of our two auto-segmentation systems was “good 
enough”. When the delineation difference is sufficiently 
large, such as with the femoral head definition, the cor-
relation between geometric metrics and dosimetric dif-
ference can still be observed. Second, the interoperator 

Table 3  (continued)

Site Structure Dose-volume metrics Plan Value Comparison 
(paired t test)

Len_R Dmax (cGy) Manual 568 ± 385 –

FD 529 ± 279 p = 0.34

UIH 529 ± 281 p = 0.36

Optic nerve_L Dmax (cGy) Manual 3551 ± 2224 –

FD 3493 ± 2276 p = 0.32

UIH 3525 ± 2206 p = 0.69

Optic nerve_R Dmax (cGy) Manual 3612 ± 2115 –

FD 3617 ± 2119 p = 0.94

UIH 3784 ± 2113 p = 0.21

Temporal lobe_L Dmax (cGy) Manual 6376 ± 2126 –

FD 6444 ± 2156 p = 0.05

UIH 6397 ± 2125 p = 0.62

Temporal lobe_R Dmax (cGy) Manual 6430 ± 2143 –

FD 6442 ± 2130 p = 0.76

UIH 6390 ± 2123 p = 0.27

Oral cavity Dmean (cGy) Manual 3933 ± 551 –

FD 3928 ± 566 p = 0.73

UIH 3895 ± 565 p = 0.12

Larynx Dmean (cGy) Manual 3829 ± 153 –

FD 3809 ± 169 p = 0.46

UIH 3798 ± 195 p = 0.28
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difference or intraoperator difference during treatment 
planning could cause a larger difference than auto-seg-
mentation. These interoperator differences were difficult 
to avoid by the manual planning process. By automatic 
planning, these subjective deviations can be decreased. 
To analyze the impact on routine clinical practice, we did 
not implement it.

In this study, we used manually delineated contours as 
references. This fact does not mean that manual deline-
ation is “better” or more “accurate” than deep learning-
based delineation. In our ongoing evaluation study, 
radiation oncologists preferred auto-segmented contours 
over manual delineation for the parotids, optic nerves, 
lens and eyes. This phenomenon was also observed in 
[11]. Manual delineation represents a clinically accept-
able and approved contour quality, which also implies 
some clinical experience or the habits of local institu-
tions. Therefore, using a commercial auto-segmentation 
system that is not trained on local data requires more 
investigation.

For segmentation evaluation, geometric evaluation 
is a straightforward method for auto-segmentation 
performance. Many studies using these indices have 
been published in recent years [17, 27–29]. Geometric 
metrics, such as DICE and MDA, are the critical indi-
ces for segmentation algorithm development. Using 
high-quality and consistent training or validation data, 

the algorithm performance can be quantified and com-
pared. However, the clinical assessment of auto-seg-
mentation can be much more complicated and should 
be based on clinical purposes. A small improvement in 
geometric metrics, for example, DICE increase of 0.05, 
could represent substantial progress in the algorithm. 
However, its clinical value is likely to improve only 
marginally. A more practical assessment procedure 
should mimic clinical practice as much as possible. This 
principle is also consistent with some task-based evalu-
ation procedures proposed by other studies [30, 31].

The main limitation of this study was that it did not 
investigate interoperator variations. Using the auto-
planning technique might reduce these variations, in 
turn increasing objectivity when plans are compared. 
These tasks were left for the future to complete.

Conclusion
Deep learning-based OARs auto-segmentation for NPC 
and rectal cancer might not have a significant impact 
on PTV and OARs doses. Correlations between the 
auto-segmentation geometric metric and dosimetric 
difference were not observed for most OARs. A dosi-
metric evaluation is recommended for applying auto-
segmentation systems in the clinic.

Fig. 5  The dose-volume histogram (DVH) of Plan_Manual, Plan_FD and Plan_UIH for an representative rectal cancer cases
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Table 4  The correlation between dosimetric differences and the geometric metrics

Site Structure Dosimetric differences Geometric metrics Correlation analysis

Rectal Bladder ΔV40 (%) DICE R = -0.01, p = 0.95

MDA R = 0.17, p = 0.46

Jaccard R = -0.01, p = 0.95

HD R = 0.13, p = 0.60

ΔDmean (cGy) DICE R = -0.14, p = 0.55

MDA R = 0.06, p = 0.81

Jaccard R = -0.14, p = 0.55

HD R = 0.13, p = 0.59

Femoral heads ΔDmean (cGy) DICE R = -0.16, p = 0.34

MDA R = 0.28, p = 0.08

Jaccard R = -0.16, p = 0.34

HD R = 0.40, p = 0.01

NPC Eyes ΔDmax (cGy) DICE R = 0.27, p = 0.09

MDA R = 0.16, p = 0.32

Jaccard R = 0.27, p = 0.09

HD R = 0.20, p = 0.22

Spinal cord ΔDmax (cGy) DICE R = 0.08, p = 0.74

MDA R = -0.21, p = 0.37

Jaccard R = 0.08, p = 0.74

HD R = -0.15, p = 0.51

Brainstem ΔDmax (cGy) DICE R = 0.68, p = 0.00

MDA R = -0.28, p = 0.24

Jaccard R = 0.68, p = 0.00

HD R = -0.12, p = 0.63

Parotids ΔV30 (%) DICE R = 0.02, p = 0.90

MDA R = 0.05, p = 0.76

Jaccard R = 0.02, p = 0.90

HD R = -0.15, p = 0.35

ΔDmean (cGy) DICE R = -0.16, p = 0.33

MDA R = 0.19, p = 0.23

Jaccard R = -0.16, p = 0.33

HD R = 0.06, p = 0.70

Lens ΔDmax (cGy) DICE R = 0.14, p = 0.39

MDA R = -0.14, p = 0.37

Jaccard R = 0.14, p = 0.39

HD R = -0.10, p = 0.56
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