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Abstract

Purpose: In this study, we employed a gated recurrent unit (GRU)-based recurrent neural network (RNN) using
dosimetric information induced by individual beam to predict the dose-volume histogram (DVH) and investigated
the feasibility and usefulness of this method in biologically related models for nasopharyngeal carcinomas (NPC)
treatment planning.

Methods and materials: One hundred patients with NPC undergoing volumetric modulated arc therapy (VMAT)
between 2018 and 2019 were randomly selected for this study. All the VMAT plans were created using the Monaco
treatment planning system (Elekta, Sweden) and clinically approved: > 98% of PGTVnx received the prescribed
doses of 70 Gy, > 98% of PGTVnd received the prescribed doses of 66 Gy and > 98% of PCTV received 60 Gy. Of
these, the data from 80 patients were used to train the GRU-RNN, and the data from the other 20 patients were
used for testing. For each NPC patient, the DVHs of different organs at risk were predicted by a trained GRU-based
RNN using the information given by individual conformal beams. Based on the predicted DVHs, the equivalent
uniform doses (EUD) were calculated and applied as dose constraints during treatment planning optimization. The
regenerated VMAT experimental plans (EPs) were evaluated by comparing them with the clinical plans (CPs).

Results: For the 20 test patients, the regenerated EPs guided by the GRU-RNN predictive model achieved good
consistency relative to the CPs. The EPs showed better consistency in PTV dose distribution and better dose sparing
for many organs at risk, and significant differences were found in the maximum/mean doses to the brainstem,
brainstem PRV, spinal cord, lenses, temporal lobes, parotid glands and larynx with P-values < 0.05. On average,
compared with the CPs, the maximum/mean doses to these OARs were altered by − 3.44 Gy, − 1.94 Gy, − 1.88 Gy,
0.44 Gy, 1.98 Gy, − 1.82 Gy and 2.27 Gy, respectively. In addition, significant differences were also found in brainstem
and spinal cord for the dose received by 1 cc volume with 4.11 and 1.67 Gy dose reduction in EPs on average.
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Conclusion: The GRU-RNN-based DVH prediction method was capable of accurate DVH prediction. The
regenerated plans guided by the predicted EUDs were not inferior to the manual plans, had better consistency in
PTVs and better dose sparing in critical OARs, indicating the usefulness and effectiveness of biologically related
model in knowledge-based planning.
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Introduction
Research background and purpose
Intensity-modulated radiation therapy (IMRT) and volu-
metric modulated arc therapy (VMAT) allow increased
conformity of high-radiation-dose regions to the plan-
ning target volume (PTV) while sparing each organ at
risk (OAR) [1]. In recent years, a number of efforts to
aid in treatment planning using knowledge-based plan-
ning (KBP) techniques have improved the consistency of
plan quality and reduced the required optimization time.
Most of these efforts were developed based on establish-
ing a correlation between the OAR-PTV anatomy and
the OAR cumulative dose-volume histogram (DVH).
The most popular tools for quantifying the OAR-PTV
anatomy, namely, the overlap volume histogram (OVH)
[2, 3] and the distance-to-target histogram (DTH) [4, 5],
were equivalent when the Euclidean distance function
was used in the DTH. However, one concern regarding
the DTH and OVH is that their simplicity may lead to
inaccurate presentation of the interpatient variations in
anatomical features, which may have an impact on the
organ dose deposition [5, 6], especially for complex
tumour volumes in close proximity to critical structures
such as those observed in nasopharyngeal carcinomas
(NPCs). The dose deposited in an OAR voxel depends
not only on its distance from the PTV surface but also
on the treatment beam orientation [5, 7, 8].
Recent studies indicated that using dosimetric features

might be a new avenue for research and development
[8–10]. Ming Ma [8, 9] used PTV-only patient treatment
plans to estimate their potentially achievable quality
using dosimetric parameters as model input. Their re-
sults demonstrate the potential of DVH and 3D dose
distribution prediction based on dosimetric information.
In our previous work [10], we employed dosimetric in-
formation resulting from individual conformal beams in
different directions to predict the DVHs. The results
showed that this method was of great accuracy in pre-
diction and great effectiveness in treatment planning.
Defining the dose constraints in reverse optimization

is highly important in DVH prediction-based planning.
Usually, the planner defines physical dose constraints for
each structure of the treatment plan, either in the form
of minimum and maximum doses or as dose-volume
constraints. Many studies have also reported

optimization methods based on biological effects, such
as the EUD (equivalent uniform dose) [11–14]. In this
study, we follow the method proposed in our previous
work [10] and predict the DVH achieved with VMAT.
Based on the predicted DVHs, the EUD was calculated
and directly applied as OAR dose constraints in biologic-
ally related models.

Methods and materials
In this work, a gated recurrent unit-based recurrent
neural network (GRU-RNN) based primarily on our pre-
vious work [10] was employed for DVH prediction. The
DVHs for a certain OAR induced by 9 different individ-
ual conformal beams with equal angle intervals were
used as GRU-RNN inputs. The corresponding DVH of
the treated plan of this given OAR was used as the de-
sired output. Based on the trained model, the DVHs
were predicted for other cases, and the regenerated plans
driven by the EUDs calculated from the predicted DVHs
were compared with the treated plan. A flowchart of the
individual beam information-driven DVH prediction and
the predictive EUD-based planning processes is shown
in Fig. 1.

Data acquisition
One hundred patients with NPC undergoing volumetric
modulated arc therapy (VMAT) between 2018 and 2019
were randomly selected for this study. Following ICRU-
83 report [15], radiation oncologists delineated the gross
tumour volume of the nasopharynx (GTVnx), the gross
tumour volume of the metastatic lymph node (GTVnd),
the clinical target volume (CTV), and the OARs in the
planning CT. A margin of 3 mm was applied around the
GTVnx, GTVnd and CTV to create the planning GTV,
PGTVnx and PGTVnd, and planning target volume
(PTV), respectively. All the VMAT plans were created
using the Monaco treatment planning system (Elekta,
Sweden, V1.0, 2013) and clinically approved: > 98% of
PGTVnx received the prescribed doses of 70 Gy, > 98%
of PGTVnd received 60 Gy, and > 98% of PTV received
60 Gy. In addition to the approved plans, a nine-field
PTV-conforming radiotherapy plan was generated,
resulting in just 98% of PGTVnx receiving the pre-
scribed doses of 70 Gy. The DVHs of a patient’s brain-
stem induced by 9 different individual conformal beams
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Fig. 1 Flowchart showing the individual beams information driven DVH prediction and the predictive EUD based planning process

Fig. 2 An example of the DVHs for a patient’s brainstem, the gantry angles of which denotes as FI = 1,2,3, ...,9, were 160, 120, 80, 40, 0, 320, 280,
240, and 200 degrees, respectively. Dose (Gy) and Volume (%) represent the delivered dose and percent OAR volume, respectively
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and the DVH of the given patient’s brainstem from the
VMAT plan are shown in Fig. 2. Different from our pre-
vious work [10], the DVHs were resampled by volume
bin by percentage (0.1% in practice) rather than by abso-
lute volume or dose values, making the DVHs of equal
length, as shown in Fig. 2. The OARs considered during
training included the brainstem, spinal cord, optic chi-
asm, optic nerves, lens, parotid glands (excluding the
overlap with PTVs), larynx (excluding the overlap with
PTVs), temporal lobes (excluding the overlap with
PTVs) and the planning organ-at-risk volumes (PRVs).

DVH prediction
The GRU-based RNN prediction model in this study
was established using the PyTorch (Facebook, US)
framework, as shown in Fig. 3. Dv in Fig. 3 shows that
a ≤D Gy dose was delivered to v of the OAR volume.
The GRU-RNN was trained by the Adam optimizer with
the goal of minimizing the MSE, defined as follows:

MSE ¼
X80

P¼1

XOARs
DVH

0
P;OAR −DVHP;OAR

���
���
2

ð1Þ
where P refers to a patient whose plan participated in
the training process, DVH′ is the predicted DVH and
DVH is the actual DVH. Because the EUD constraints
were directly applied as dose constraints in the OAR op-
timizations, the δOAR and σOAR of the EUD were used to
evaluate the prediction accuracy and precision of a given
OAR with the trained GRU-RNN. In this study, δOAR
and σOAR were defined as follows:

EUDOAR ¼
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where, k is the power law exponent. In practice, k was
set to 10.0 for the spinal cord, 9.8 for the brainstem,
optic nerves, and optic chiasm, 6.8 for the larynx, 2.0 for
the lens and 3.9 for the parotid glands. EUD′ denotes
the EUD calculated based on the predicted DVH, while
EUD was calculated based on the actual DVH. An OAR
and its corresponding PRV share the same k value. Fol-
lowing the Monaco planning protocol, we choose k =
0.15 ×D50 for different OARs. The D50 [16] value is the
dose that causes a complication in 50% of all patients.

Experimental plan based on predicted DVH
For 20 test patients, the EUD values calculated based on
the predicted DVHs were applied as dose constraints for
VMAT optimization. In this work, a corrected EUD con-
straint, cEUD′OAR, was applied during optimization. A 0
cm shrink margin was applied to the parotids, larynx
and temporal lobes to exclude overlaps with the PTVs.
For a certain OAR:

cEUD0
OAR ¼ α∙cOAR∙EUD0

OAR ð6Þ

cOAR ¼ 1
80

X80

P¼1

EUDP;OAR

EUD0
P;OAR

� 	
ð7Þ

where cOAR was used to correct the prediction values for
different OARs based on the training dataset. α was set
slightly smaller than 1 to achieve stricter constraints,
0.97 in practice. A corrected maximum dose constraint
calculated with a similar process was also considered for
the spinal cord and lens. To investigate the feasibility
and usefulness of this method without the need for man-
ual touch-up during VMAT optimization, the
optimization procedure was executed only once.

Fig. 3 Flow chart of the GRU-RNN. RNN-GRU consists of 3 GRUs with the sizes of hidden states were 18, 9 and 1, respectively. Dv mean the

volume proportion with deposition not greater than D was v and D
0
v was the predictive value. In the practical, Δv was set to 0.1%
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Results
EUD prediction results
Figure 4 shows the prediction accuracy and precision of
the EUD for the different OARs of the 20 testing pa-
tients. The results show that the GRU-RNN achieved
good prediction accuracy for all OARs and its perfor-
mances on training and test patients were quite close.
For the predicted EUDs of the testing patients, the par-
otid glands had the smallest δ of − 0.04 Gy, with a σ of
3.19 Gy; except for the lens with a σ of 0.56 Gy, the
spinal cord and its PRV had the smallest σ values of 2.28

and 2.27 Gy, with δ values of − 0.17 and − 0.18 Gy, re-
spectively, and the larynx had the largest δ (1.25 Gy) and
the largest σ (4.58 Gy).

Experimental plans VS clinical plans
To conduct the comparisons, we used Wilcoxon signed
rank tests to compare the dosimetric results among the
20 testing patients between the clinical plans (CPs) and
the experimental plan (EPs), which were regenerated
based on the predicted EUDs. Differences were consid-
ered statistically significant at P < 0.05. Table 1 provides
a summary of the dosimetric results comparisons for the
test patients between the CPs and EPs. No significant
differences were found for the PTVs with the mean dif-
ference of D98 was less than 0.1 Gy. For the OARs, sig-
nificant differences were found in the maximum/mean
doses to the brainstem, brainstem PRV, spinal cord,
lenses, temporal lobes, parotid glands and larynx with P-
values < 0.05. On average, compared with the CPs, the
maximum/mean doses to these OARs were altered by −
3.44 Gy, − 1.94 Gy, − 1.88 Gy, 0.44 Gy, 1.98 Gy, − 1.82 Gy
and 2.27 Gy, respectively. In addition, significant differ-
ences were also found in brainstem and spinal cord for
the dose received by 1 cc volume with 4.11 and 1.67 Gy
dose reduction on average.
Figure 5 displays the distribution of D98 in the PTVs

from the CPs and EPs. The D98 of EPs had notably dif-
ferent distributions from those of the CPs; nearly 60% of
the cases of PGTVnx and PGTVnd were located in the
range 70.5–71 Gy. The PTV distributions of the CPs and
EPs was very close. The distribution of D98 for the PTVs
was consistent with the standard deviation results in
Table 1.

Fig. 4 The δ and σ presented the maximum dose prediction accuracy and precision of different OARs, including the brainstem (BS), spinal cord
(SC), optic nerves (Op N), optic chiasm (Op C), lens, parotid glands (Parotids), larynx, and temporal lobes (Lobes)

Table 1 Summary of the average±standard deviation
dosimetric results

Structure Criterion CPs EPs p-value

PTV70 D98 70.71 ± 0.83 70.77 ± 0.28 0.794

PTV66 D98 66.42 ± 0.89 66.52 ± 0.66 0.612

PTV60 D98 62.25 ± 1.60 62.17 ± 1.30 0.911

Brain Stem Dmax, Gy 58.20 ± 5.21 54.76 ± 4.85 < 0.01

D1cc,Gy 50.07 ± 4.37 45.96 ± 4.72 < 0.01

Brain Stem PRV Dmax, Gy 62.46 ± 5.65 60.52 ± 5.24 0.048

Spinal Cord Dmax, Gy 41.33 ± 2.38 39.45 ± 1.15 < 0.01

D1cc,Gy 38.06 ± 2.25 36.39 ± 1.07 0.01

Spinal Cord PRV Dmax, Gy 46.75 ± 1.98 46.41 ± 3.17 0.601

Optic Chiasm Dmax, Gy 39.60 ± 19.65 38.47 ± 18.76 0.379

Lens* Dmax, Gy 6.93 ± 2.03 7.37 ± 2.01 0.044

Optic Nerves* Dmax, Gy 47.77 ± 15.90 47.17 ± 15.89 0.657

TP Lobes* Dmax, Gy 68.30 ± 6.65 70.28 ± 5.04 0.034

Parotids* Dmean, Gy 37.81 ± 6.60 35.99 ± 6.86 < 0.01

Larynx Dmean, Gy 44.08 ± 2.55 46.35 ± 2.78 0.087

* denotes the bilateral organs
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Figure 6 displays the difference between pairs of EP
and CP results for all 20 patients in relation to the mean
of this pair of results. The differences for almost all the
OARs were located within the limits of agreement at

frequencies above 95%, except for lenses, which had a
frequency of 90% (38/40). Notable biases in the differ-
ences between EPs and CPs were found in the brain-
stem, spinal cord, lenses, temporal lobes, parotids and
larynx. For the brainstem, spinal cord and parotids, pa-
tients with lower maximum/mean doses of EPs
accounted for 80, 70 and 72.5%, respectively, and the
maximum differences were 11.80, 5.40 and 10.04 Gy
lower, respectively. For lenses, temporal lobes and lar-
ynx, patients with lower maximum/mean dose in EPs
accounted for 32.5, 32.5 and 20.0%, and the maximum
differences were 3.50, 15.30 and 10.81 Gy.

Discussion
GRU-RNN for DVH prediction
To process sequential data (DVH, etc.), a regular neural
network (such as a fully connected network, convolu-
tional neural network, etc.) could also be suitable but
would be limited by the fixed input vector size. RNN
and similar models, such as the GRU-RNN used in this
study, are particularly suitable for predicting the entire
DVH rather than only fixed amount of interesting
points. Figure 7 shows the different DVH forms adopted
in this work and the previous work [10]. We found that
the contributions of MSE in Eq. (1) majorly came from
the effective region (red line in Fig. 7) in DVH. Percent-
age dose bin (0.1% in practice), rather than by absolute
volume or dose values, helped focusing the neural net-
work training attention on the effective region, which
was shown to be helpful in improving the prediction ac-
curacy through practical experiments. Besides, making
the effective part of equal length could also help bal-
anced the weights of different OARs in training process.
The relationships between the DVHs induced by individ-
ual beams and the DVH of the treated VMAT plan may
be related to the potential for the TPS to optimize the
beamlet intensity or ray flux to meet the clinical dose-
volume constraints. The EUD prediction result further
confirms the feasibility and applicability of using individ-
ual beam dosimetric information for DVH prediction. In
addition, the OAR-specific corrected parameter, cOAR in
Eq. (7), was also helpful in improving the prediction ac-
curacy of the OAR-independent GRU-RNN.

Biologically related models for treatment planning
EUD constraints, rather than physical dose constraints,
were employed for the inverse radiotherapy planning in
this study. Compared to the CPs, better consistency was
achieved for the PTVs in the EPs; most were just above
the prescription requirements, especially for PGTVnx. In
addition, better dose sparing was also achieved for most
of the OARs in the EPs, especially for critical OARs such
as the brainstem and spinal cord. The dosimetric results
were further improved compared to our previous work

Fig. 5 The distribution of D98 to the PTVs
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Fig. 6 Difference between CPs and EPs. Horizontal lines were drawn at the line of equality (black dashed line), the mean difference (red line), and
the limits of agreement (green lines). The limits of agreement were defined as the mean difference ± 1.96 SD of the differences
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[10], which may be mainly owe to the EUD-based objec-
tives allowing exploration of a much larger universe of
solutions, making it easier for the optimization system
to balance competing requirements in search of a better
solution [13]. Besides, α in Eq. (6) also had certain affect,
which was found in the trial and error process. The re-
sults not only indicated the usefulness and effectiveness
of the proposed method in treatment planning but also
demonstrates the advantage of using biologically related
models in treatment planning. In addition, biologically
related models offer an easier way to convert clinical in-
tent to DVH-based objectives, such as the EUD, which is
of significant benefits in knowledge-based planning. As
shown in Table 1, not all the OARs achieved better dose
sparing, such as the temporal lobes and larynx. This
might be caused by the setting of the power law expo-
nent, k. In treatment planning, we noticed that in some
of the clinical plans, larger k values were used for these
OARs, which would lead to assigning greater weights to
the maximum dose constraint. Finding a more flexible
and individualized k value might be worth further re-
search in biologically related models for treatment
planning.
In our preliminary experiment, when all the OARs of

the parotid glands, larynx and temporal lobes were used
in training and practical application, the dose constraints
did not achieve the desired results. Combined with our
clinical experience, partial OARs, excluding the overlap
with PTVs rather than the complete OARs, were consid-
ered in training. For practical application, a 0 cm shrink
margin was applied to the dose constraints during
optimization. The results show that this method achieves
the desired effect and indicates the advantages of separ-
ating the OAR tissue inside and outside the PTV region
during treatment planning.

Conclusion
The GRU-RNN-based DVH prediction method was cap-
able of accurate DVH prediction. The regenerated plans
guided by the predicted EUDs were not inferior to the
manual plans, had better consistency in PTVs and better
dose sparing in critical OARs, indicating the usefulness
and effectiveness of biologically related model in
knowledge-based planning.
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