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Abstract

Background: The purpose of this study was to determine the potential of escalated dose radiation (EDR) robust
intensity-modulated proton radiotherapy (ro-IMPT) in reducing GI toxicity risk in locally advanced unresectable
pancreatic cancer (LAUPC) of the head in term of normal tissue complication probability (NTCP) predictive model.

Methods: For 9 patients, intensity-modulated radiotherapy (IMRT) was compared with ro-IMPT. For all plans, the
prescription dose was 59.4GyE (Gray equivalent) in 33 fractions with an equivalent organ at risk (OAR) constraints.
Physical dose distribution was evaluated. GI toxicity risk for different endpoints was estimated using published NTCP
Lyman Kutcher Burman (LKB) models for stomach, duodenum, small bowel, and combine stomach and duodenum
(Stoduo). A Wilcoxon signed-rank test was used for dosimetry parameters and NTCP values comparison.
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Result: The dosimetric results have shown that, with similar target coverage, ro-IMPT achieves a significant dose-
volume reduction in the stomach, small bowel, and stoduo in low to high dose range in comparison to IMRT. NTCP
evaluation for the endpoint gastric bleeding of stomach (10.55% vs. 13.97%, P = 0.007), duodenum (1.87% vs. 5.02%,
P = 0.004), and stoduo (5.67% vs. 7.81%, P = 0.008) suggest reduced toxicity by ro-IMPT compared to IMRT. ΔNTCP
IMRT – ro-IMPT (using parameter from Pan et al. for gastric bleed) of ≥5 to < 10% was seen in 3 patients (33%) for
stomach and 2 patients (22%) for stoduo. An overall GI toxicity relative risk (NTCPro-IMPT/NTCPIMRT) reduction was
noted (0.16–0.81) for all GI-OARs except for duodenum (> 1) with endpoint grade ≥ 3 GI toxicity (using parameters
from Holyoake et al.).

Conclusion: With similar target coverage and better conformity, ro-IMPT has the potential to substantially reduce
the risk of GI toxicity compared to IMRT in EDR of LAUPC of the head. This result needs to be further evaluated in
future clinical studies.

Keywords: Pancreatic cancer, Intensity-modulated radiotherapy, Intensity-modulated proton therapy, Normal tissue
complication probability

Background
Pancreatic cancer is the fourth primary cause of cancer-
related death in Japan [1]. Locally advanced unresectable
pancreatic cancer (LAUPC) has a 5-year survival of < 5%
[2]. The main treatment option for LAUPC is chemo-
therapy, while definitive chemoradiotherapy (CRT) plays
a pivotal role in therapeutic management to enhance
survival and quality of life [3].
Despite the use of modern radiotherapy (RT) delivery

techniques, potentially gastrointestinal (GI), severe tox-
icity had been noted [4, 5]. Studies using escalated dose
radiation (EDR) intensity-modulated radiotherapy
(IMRT), PTV-based double scatter (DS), and pencil
beam scanning (PBS) proton beam therapy (PBT) have
reported improved local control and survival with the
main limiting GI toxicity [6–8]. A study by Kelly et al.
and Ben-Josef et al., in LAUPC using EDR-IMRT have
reported ≥ grade 2 GI toxicity in approximately 15 to
20% patients [6, 9]. The study by Takatori et al., using
hypo-fractionated concurrent gemcitabine PBT (GPT)
for LAUPC 67.5 Gray equivalent (GyE) in 25 fractions)
have reported 49.4% rate of gastric/duodenal ulcer [7].
The study by Terashima et al. treated 45 patients with
hypo-fractionated GPT have reported 10% of grade ≥ 3
late gastric ulcer and hemorrhage [8]. However, studies
using conventional fractionated 1.8 GyE/fraction concur-
rent PBT with a dosage of 59.4GyE for LAUPC have re-
sulted in a modest decrease in GI toxicity with no grade
3 toxicity during treatment, or during follow-up. These
studies had a limitation of small sample size and short
median follow up [10, 11].
The clinical target volume (CTV) to PTV set-up mar-

gin (SM) alone cannot guarantee the adequate dose
coverage of the CTV in PTV-based DS, PBS, and
intensity-modulated proton therapy (IMPT) plans [12,
13]. In PTV-based IMPT plans, under- or over dosage
inside the PTV can occur in the patient from deviation

in the position of high in-field dose gradients from spot
to spot due to set-up errors or range uncertainties.
Hence, the comparison of PTV-based proton and pho-
ton treatment is certainly not precise [14]. The robust
IMPT (ro-IMPT) plan can result in even dose gradients
per field across the target volume and can reduce the
risk of pencil beams ceasing directly in front of an ad-
joining normal tissue [13]. However, for pancreatic can-
cer, a dosimetric and radiobiological model-based
comparative treatment planning study between ro-IMPT
and IMRT has not yet been reported.
For the pancreatic head cancer surrounded circumfer-

entially by gastrointestinal OARs (GI-OARs), IMRT was
stated to be superior compared to DS proton therapy
[15]. The dosimetric study by Thompson et al., in pan-
creatic head cancer reported no dosimetric evidence that
DS and PBS proton therapy facilitates EDR more readily
in comparison to IMRT, as surrounding GI-OARs re-
ceive incrementally higher doses using DS and PBS pro-
ton therapy [16]. The ro-IMPT with a spot-scanning
technique would offer a more-fair comparison with
IMRT plans. In-silico study by Stefaowicz et al., using
EDR ro-IMPT in advanced pancreatic cancer, have re-
ported a better target homogenous dose distribution and
minimized dose to the OARs with a 3 beam design con-
figuration with at least one non-coplanar beam [14].
The dose-volume analysis study is usually restricted to

just certain specific DVH parameters that might not al-
ways correspond directly to a clinical outcome. The
radiobiological normal tissue complication probability
(NTCP) model using parameters emanate from reported
toxicity rates in clinical trials, and it assesses the treat-
ment plans by analyzing the information from the entire
DVH. However, each toxicity endpoint has a specific
NTCP parameter set, and besides, it depends on the co-
hort of the patient and treatment technique used. It is
essential to use a more accurate predictor while
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comparing treatment plans and taking a clinical decision
based on dosimetric benefit and absolute NTCP reduc-
tion (ΔNTCP) [17].
Hence, the research questions of the present in-silico

planning comparison study were: 1) In comparison with
IMRT, can the dose delivered to GI-OAR for LAUPC of
the head be lowered using ro-IMPT? 2) what is the an-
ticipated clinical advantage of this GI-OARs sparing? To
answer these questions, we performed an NTCP radio-
biological model-based comparison study between IMRT
and ro-IMPT for LAUPC of the head with EDR, and we
hypothesized that ro-IMPT could reduce GI-OAR
toxicity.

Methods
The clinicopathological data of patients were reviewed
from the hospital’s medical records. With the approval
from the Institute Research Ethics Committee (Refer-
ence number: 2017–440), for this study, we identified
nine locally-advanced pancreatic ductal adenocarcinoma
(LAUPC) of the head patients with T4 disease (encasing
superior mesenteric artery or celiac axis) as per the 7th
edition of the American Joint Committee on Cancer
(AJCC) staging manual from 2015 to 2018. The treat-
ment planning computed tomography (CT) in the su-
pine position was obtained for these 9 patients with a 3
mm slice thickness. Each patient was re-planned for
IMRT and ro-IMPT.

Target volume and OAR delineation
Target volume and OARs were contoured on IV con-
trast CT simulation scans. Gross disease and clinically
apparent nodes were included as gross tumor volume
(GTV); however, the elective nodal region was not in-
cluded in the target volume [18, 19]. For this study, the
GTV to clinical target volume (CTV) was given margin
of 0.5 cm, and the CTV was edited at the interface of the
GI-OARs, and as per the previously published phase I/II
dose-escalation studies, CTV to planning treatment vol-
ume (PTV) was given isotropic expansion margin of 0.5
cm as shown in Additional Figure 1 [6]. In this study for
reducing the motion to estimate maximum potential
benefit, it was supposed that all patients would be
treated using breath-hold technique [16, 20].
The OARs were contoured for all patients, and it in-

cludes the whole stomach, the duodenum was from pyl-
orus till ligament of Treitz, bilateral kidney, small bowel
loops, liver, and spinal cord. The small bowel loops were
contoured 2 cm superior-inferiorly to PTV [15]. The
whole liver was contoured, including the vessels and
intraductal biliary system. The organ contour “Stoduo”
was created, which combines stomach and duodenum
for comparison with previously published studies [21].

Dose prescription and OARs constraints
The prescription dose was 59.4GyE at 1.8GyE/ fraction
in 33 fractions [10, 11]. The proton beam output was
modulated with relative biological effectiveness (RBE) of
1.1 [22]. As all tissues are presumed to have nearly the
same RBE, the dose stated in GyE is directly in compari-
son with the photon doses. The planning goal for IMRT
and ro-IMPT was at least 100% of GTV receives ≥95%
of the dose, at least ≥98% of CTV receives ≥95% of the
dose, and 0% volume of CTV receives < 107% of the pre-
scribed dose. Besides, our goal during IMRT was also to
provide adequate PTV coverage of at least 95% of PTV
receiving 95% of the dose. One physicist designed all
IMRT plans, and all ro-IMPT plans were created by an-
other physicist and were checked by two physicians.

The OARs constraints were
For stomach wall, ≤16 cc receive 50GyE, ≤ 10%volume
receive 50GyE, ≤15% volume receive 45GyE, and 0.1 cc
receive ≤60GyE [21, 23]. For duodenum, ≤45% volume
receive 25GyE, 1 cc receive ≤55GyE, and 0.1 cc receive
≤60GyE [9, 24]. For small bowel loops, ≤ 10%volume re-
ceive 50GyE, ≤15% volume receive 45GyE, ≤5% volume
receive 54GyE, and 0.1 cc volume receive ≤60GyE [23].
For Kidneys, mean dose ≤18GyE and V23GyE < 30%.
The mean liver goal was ≤30GyE, V30GyE ≤ 50%,
V35GyE ≤ 33%, and 0.1 cc of spinal cord receive <45GyE.

IMRT and ro-IMPT planning, beam configuration, and
optimization
For each patient, two plans were generated (IMRT and
ro-IMPT). The non-coplanar 6 beam IMRT plan was
made using Raystation v6.2 (Raysearch Laboratories,
Stockholm, Sweden) treatment planning system (TPS).
Non-coplanar CTV-based robust multifield optimization

IMPT plan was made using Eclipse (v15.1) TPS (Varian
Medical System, Inc., Palo Alto, CA). All the ro-IMPT plan
was delivered using 3 beams, 2 co-planar beams (1350 and
2200), and one non-coplanar beam (gantry at 2700 with
couch at 50) as shown in Fig. 1. The two posterior oblique
fields were used so that the proton beam minimally inter-
sects with high uncertainty tissue, in particular, the dia-
phragm and bowel, and is deemed to be more robust
against intra-fractional motions. Also, to reduce the dosi-
metric impact of organ filling and motion uncertainty, a
right lateral field was added through the liver [10, 14, 25].
A more detailed description of IMRT and ro_IMPT plan-
ning, beam configuration, and optimization is presented in
Additional file 1.

Plan evaluation
For IMRT and ro-IMPT plan evaluation, the DVH of
targets (GTV and CTV) and OARs were generated on
nominal dose distributions. The IMRT and ro-IMPT
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plans were compared for target homogeneity and con-
formity. The target volume and OARs DVH physical
dose parameters were documented. Homogeneity is de-
fined by the dose distribution consistency of a plan
throughout the target volume. The RTOG formula
[(D2%-D98%/D50%)] was used to computed HI (Homo-
geneity index). Where D2%, D98%, and D50% are the
dose received by 2, 98, and 50% of the target volume.
The conformation number (CN) formula for CTV
[(CTV95) [2]/ (CTV*V95) was used to define conformity
around the CTV. Where CTV is a target volume,
CTV95 is target volume covered by 95% of reference iso-
dose, and V95 is a volume of 95% isodose. As CN value
approaches 1, the plan is deemed to be more conformal,
and plan with CN 0 indicates the total absence of con-
formity or a huge volume of irradiation compared to the
target volume.

Dose-volume data and Normal tissue complication
probability
Coverage of target volume and various dose-volume pa-
rameters were assessed. The Digital Imaging and Commu-
nications in Medicine (DICOM) standard RT doses from
IMRT and ro-IMPT plan were transferred to MIM (v6.86,
MIM Software Inc., Cleveland, United States). Before
NTCP calculation, the linear-quadratic (LQ) equation
with α/β=4 (for the stomach, duodenum, small bowel, and

stoduo) was used to convert the cumulative physical dose
into an equivalent dose of 2Gy (EQD2) per fraction.
The radiobiological Lyman-Kutcher-Butcher (LKB)

model was used to computed NTCP for GI toxicity end-
points using parameters from Pan et al., Burman et al.,
and Holyoake et al., as shown in Table 1 [26–29]. Com-
puted NTCP values were used in a relative sense for com-
parison between ro-IMPT and IMRT. The RADBIOMOD
Visual Basic for Application (VBA) software was used to
calculate NTCP values from EQD2 DVH’s ASCII files
[30]. The absolute NTCP reduction (ΔNTCPIMRT –

ro-IMPT) and quantitative relative risk (RR =NTCPro-IMPT/
NTCPIMRT) ratios for GI-OARs was also computed.

Statistical analysis
The mean and standard deviation (SD) was used to de-
scribe all continuous variables. The non-parametric Wil-
coxon sign rank exact test provides an estimate of
statistical significance between techniques. Two-sided P-
value < 0.05 was considered to be statistically significant.
R statistical software version 3.6.3 (R commander EZR
version 2-6.2) was used for all statistical analysis.

Result
Target dose parameters evaluation
The patient characteristics are shown in Table 2. The
median GTV, CTV, and PTV volumes were 37.6 cc

Fig. 1 Overview of the beam configuration (a and b) and axial, sagittal, and coronal CT slices showing dose distribution of IMRT (c) and ro-IMPT
(d) treatment plan. The range of beam direction and couch angle in all patients is given per beam direction. Non-coplanar beam direction is
marked in green, and co-planar beam direction in white
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(range, 22.9 to 54.3 cc), 76.1 cc (range, 49.3 to 99.8 cc),
and 135.5 cc (range, 93.9 to 178.0 cc) respectively. IMRT
and ro-IMPT dose distribution for one representative
patient is shown in Fig. 1. Target coverage for all plans
met the required goal for the GTV (D100% ≥ 95%) and
CTV (V95% ≥ 98%), and the result for target coverage is
shown in Fig. 2 (a and b). CTV CN for ro-IMPT plan
show significantly (P = 0.004) better conformation of the
dose; as a result, a lower percentage of the body outside
the CTV was irradiated to high doses with ro-IMPT
than with IMRT.

Dose delivered to OARs
Physical dosimetric OAR DVH parameters were signifi-
cantly lower in the ro-IMPT plan in comparison to
IMRT, in low to high dose range (V10GyE to V55GyE)
for the stomach, small bowel, and stoduo (Table 3 and
Fig. 2 c, e, and f). For stoduo, V50GyE was 7.91 ± 4.4 cc
with ro-IMPT vs. 12.9 ± 5.6 cc with IMRT (P = 0.007;
Table 3). For duodenum, ro-IMPT delivered a signifi-
cantly lesser dose in low dose area (≤10Gy) in compari-
son to IMRT (Table 3 and Fig. 2d).
For liver, V35GyE and V30GyE were significantly

lower in ro-IMPT in comparison to IMRT. In contrast,
the kidneys Dmean and V23GyE were significantly higher
with ro-IMPT (Table 3).

For the spinal cord, D0.1cc was 7.27 ± 4.3GyE with ro-
IMPT vs. 20.8 ± 1.9GyE with IMRT (P = 0.004; Table 3).
The change in dose to OARs with robustness on the

CTV at its worst iteration compared to nominal doses is
shown in Additional figures 3, 4, and 5. The dose con-
straint was met for all OARs with robustness on the
CTV in worst-case iteration except for the duodenal
constraints, V25GyE ≤ 45% for three patients, D0.1cc ≤
60Gy for one patient, and D1cc ≤ 55Gy for six patients as
shown in Additional figure 3.

NTCP analysis
As reported in Table 4 and Fig. 3, the probability of gas-
tric ulceration/perforation and gastric bleed was signifi-
cantly worse in the IMRT plans in comparison to ro-
IMPT plans according to the model of Pan et al. (stom-
ach, duodenum, and stoduo) and Burman et al. (stom-
ach) [26, 28]. The NTCP value for small bowel was not
significantly different in two irradiation techniques
(Table 4).
The ΔNTCPIMRT – ro-IMPT of ≥5 to < 10% was seen for

endpoint gastric bleeding of the stomach (3 patients)
and stoduo (2 patients) as shown in Table 4 and Fig. 4.
The NTCP mode application to GI OARs has demon-
strated an overall GI toxicity relative risk reduction
(RR < 1) except for endpoint grade ≥ 3 toxicity for

Table 2 Patient characteristics

Cases Age (years) Sex TNM staging† GTV
volume (cc)

CTV
volume (cc)

PTV
volume (cc)

1 56 Male T4N1 38.9 82.7 148.5

2 81 Male T4N0 37.6 76.1 135.5

3 55 Male T4N0 51.5 99.8 178.0

4 64 Male T4N0 22.9 49.3 93.9

5 77 Male T4N0 42.6 88.6 154.1

6 70 Male T4N0 31.1 65.5 126.6

7 78 Female T4N0 26.8 51.2 97.8

8 59 Female T4N0 32.7 63.0 112.9

9 72 Female T4N1 54.3 98.9 168.3

Abbreviation: GTV Gross tumor volume, CTV Clinical target volume, PTV Planning target volume
† Staging was done using American Joint Committee of Cancer guideline (7th edition manual, 2010)

Table 1 Normal tissue complication probability (NTCP) LKB model parameters used in biological evaluation of IMRT and ro-IMPT plans

Gastrointestinal OAR
(Reference)

TD50 (Gy) (range) m (range) n (range) Endpoint

Stomach wall (Pan et al.) [26] 62 0.30 0.07 Gastric bleed

Stomach wall (Burman et al.) [27] 65 0.14 0.15 Ulceration/Perforation

Duodenum (Pan et al.) [26] 180 0.49 0.12 Gastric bleed

Duodenum (Holyoake et al.) [28] 299.1 0.51 0.193 Grade≥ 3 GI toxicity

Small bowel loops (Burman et al.) [27] 55 0.16 0.15 Obstruction/Perforation

StoDuo (Pan et al.) [26] 52.5 0.35 0.21 Gastric bleed

Abbreviations: OAR organ at risk, TD50 (Gy) dose at which there is 50% chance of complication, m slope of dose-response curve, n dose-volume relationship
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duodenum (RR > 1) for all ro-IMPT plans in comparison
to IMRT plans (Table 4). According to the considered
toxicity endpoint for the stomach, small bowel, and sto-
duo, the RR values ranged from 0.16 to 0.81 (Table 4).

Discussion
Our study demonstrates a significant GI-OARs sparing
benefit using ro-IMPT over IMRT plans in EDR for
LAUPC of the head with better target conformation.
Clinically acceptable plan with target coverage goal and
OAR dose constraint were made for all patient with both
the techniques. To our knowledge, this is the first
radiobiological model-based comparative study in
LAUPC of the head with EDR to assess the potential
radiobiological-based clinical implication of ro-IMPT in
reducing GI-OARs toxicity.
Dose to stomach (V50GyE ≤ 16 cc), stoduo (V50GyE ≤

33 cc), and duodenum (V25GyE ≤ 45%, D1cc, and D0.1cc)
were below the threshold predicting the low risk of
grade ≥ 2 acute GI toxicity and upper GI bleeding in
both the radiation delivery technique [9, 21, 24]. Also, in
contrast to the study by Thompson et al. and Bouchard
et al., the current study demonstrates that the ro-IMPT
plan significantly decreases volume receiving intermedi-
ate and higher dose for stomach and small bowel, in
addition to a decrease in doses < 30 Gy [15, 16]. Using
multi-field optimization ro-IMPT in our study compared

with single field optimization in Thompson et al., and
reducing the beam penumbra by using a small PBS spot
size, explains this dissimilarity in intermediate and high
doses region. This result corresponds with the study by
Jethwa et al., using ro-IMPT in pancreatic cancer, which
might facilitate EDR for cases in which OAR are closely
surrounding the GTV in almost all the directions [31].
The study published by Thompson et al., reported that

the proton therapy, in comparison to IMRT, substan-
tially reduces the dose in low-intermediate dose range
[16]. However, the clinical implication of their result is
uncertain. In contrast to their study, we performed an
absolute NTCP reduction and relative risk (RR) assess-
ment for GI-OARs. In our study, the ΔNTCPIMRT –

ro-IMPT of ≥5 to < 10% was seen for the gastric bleeding
endpoint of Pan et al., for GI-OARs stomach in 3 pa-
tients (33%) and stoduo in 2 patients (22%). The ro-
IMPT plans reduce the relative risk of toxicity for the
stomach (gastric bleeding, ulceration, and perforation),
small bowel (obstruction and perforation), duodenum
(gastric bleeding), and stoduo (gastric bleeding) for all
patients.
For small bowel, the significant lesser dose volume in

high, intermediate, and low dose range for ro-IMPT did
not translate into a decrease in NTCP. This shows that,
even though a reduction of dose to OAR been excellent,
a statistically significant dosimetric difference may not

Fig. 2 Comparisons of average cumulative DVH curve for target volume (GTV and CTV), stomach, duodenum, small bowel, and stoduo using
IMRT and ro-IMPT plans. Average DVH are shown for each cohort of plans (IMRT and ro-IMPT). Radiation dose is shown along the X-axis and
cumulative volume receiving at least dose is plotted on Y-axis

Raturi et al. Radiation Oncology          (2020) 15:157 Page 6 of 12



Table 3 Target volumes and OARs physical dosimetric parameters and comparative analysis between IMRT and ro-IMPT plans

Dosimetric Parameters IMRT ((Mean ± SD) ro-IMPT (Mean ± SD) P-value
IMRT vs. ro-IMPT

CTV coverage

CTV HI 0.04 ± 0.01 0.07 ± 0.01 0.004*

CTV CN 0.43 ± 0.03 0.58 ± 0.05 0.004*

Stomach

V55GyE 2.3 ± 1.0% 1.0 ± 0.9% 0.01*

V50GyE in cc 9.8 ± 4.9 cc 5.5 ± 4.6 cc 0.01*

V50GyE 4.0 ± 2.1% 2.3 ± 2.0% 0.01*

V45GyE 5.8 ± 3.2% 3.5 ± 3.1% 0.01*

V40GyE 7.8 ± 4.7% 5.9 ± 3.7% 0.01*

V30GyE 13.8 ± 9.2% 7.5 ± 5.6% 0.007*

V20GyE 28.7 ± 15.9% 11.1 ± 7.6% 0.004*

V10GyE 44.7 ± 18.0% 17.3 ± 12.0% 0.004*

D0.1cc 56.4 ± 8.9 GyE 56.1 ± 8.3 GyE 0.44

Duodenum

V55GyE 1.8 ± 2.0% 1.2 ± 0.7% 0.36

V50GyE 7.5 ± 6.7% 3.6 ± 2.4% 0.11

V40GyE 13.7 ± 11.8% 11.4 ± 6.5% 0.16

V30GyE 22.7 ± 12.4% 22.9 ± 11.0% 0.73

V25GyE 29.5 ± 13.6% 30.5 ± 13.3% 0.09

V20GyE 39.4 ± 15.5% 39.4 ± 16.8% 0.49

V10GyE 62.8 ± 21.3% 56.5 ± 22.3% 0.003*

D0.1cc 56.5 ± 5.6 GyE 55.3 ± 6.4 GyE 0.17

D1cc 49.9 ± 7.1 GyE 49.5 ± 8.1 GyE 0.42

Small Bowel

V54GyE 1.2 ± 1.4% 0.5 ± 0.8% 0.02*

V50GyE 2.2 ± 2.5% 1.2 ± 2.0% 0.02*

V45GyE 3.5 ± 4.2% 2.1 ± 3.5% 0.02*

V40GyE 5.7 ± 6.2% 2.9 ± 4.7% 0.01*

V30GyE 19.3 ± 17.0% 5.1 ± 6.9% 0.004*

V20GyE 40.5 ± 19.6% 9.1 ± 9.3% 0.003*

V10GyE 57.9 ± 15.1% 17.9 ± 12.5% 0.004*

D0.1cc 54.8 ± 7.9GyE 51.0 ± 10.9GyE 0.057

StoDuo

V55GyE 2.3 ± 1.2% 0.9 ± 0.8% 0.004*

V50GyE in cc 12.9 ± 5.6 cc 7.91 ± 4.4 cc 0.007*

V50GyE 4.5 ± 2.4% 2.5 ± 1.9% 0.01*

V40GyE 8.7 ± 4.6% 5.9 ± 3.7% 0.02*

V30GyE 15.2 ± 8.3% 10.1 ± 5.6% 0.03*

V20GyE 30.6 ± 13.5% 15.9 ± 7.8% 0.01*

V10GyE 48.0 ± 15.0% 23.9 ± 12.7% 0.004*

Kidneys

Mean dose (GyE) 6.01 ± 1.16 GyE 9.82 ± 2.80 GyE 0.004*

V23GyE 0.04 ± 0.07% 6.6 ± 6.7% 0.02*
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interpret into clinically considerable differences. The use
of a radiobiological NTCP model and NTCP-based
quantitative relative risk assessment simplifies the task
for different planning technique comparisons. It is more
robust than DVH parameters for investigation of GI-
OARs related toxicity in spite of the uncertainties in
NTCP model parameters.
Our present study has several limitations, and the po-

tential limitation is the use of photon-derived tissue
NTCP models. To authenticate the results of this study,
a large and reliable clinical outcome data are needed. Be-
cause such data are lacking, possibly a significant change
in model-based toxicity and uncertainties are seen when
these radiobiological parameters are used to define the
advantage between radiation technique. This can impact
the absolute NTCP values, and thus the ΔNTCP. Al-
though clinical validation of these NTCP models was

out of the scope of this study, the relative NTCP com-
parison must be meaningful. The NTCP model selected
in our study was generated based on similar patient co-
horts and treatment for upper gastrointestinal tumors.
Cautious interpretation of these results is essential be-
cause it may be affected by model uncertainties.
In LAUPC of the head, while designing a proton beam

with the posterior field, the GI-OARs may be positioned
inside the distal Bragg peak. Caution should be taken
when delivering a dose for LAUPC of the head given its
proximity to the duodenum, and the end range uncer-
tainty that must be taken into account is particularly
crucial for dose escalation strategy. An increase in effect-
ive biological dose in these organs may result in a higher
risk of adverse events. In most cases, this increase in
dose can be accounted for with small alteration to the
physical dose or treating at a lower total physical dose.

Table 3 Target volumes and OARs physical dosimetric parameters and comparative analysis between IMRT and ro-IMPT plans
(Continued)

Dosimetric Parameters IMRT ((Mean ± SD) ro-IMPT (Mean ± SD) P-value
IMRT vs. ro-IMPT

Liver

Mean dose (GyE) 6.53 ± 3.2 GyE 5.64 ± 2.5 GyE 0.09

V35GyE 3.0 ± 2.2% 1.8 ± 1.2% 0.02*

V30GyE 4.2 ± 3.0% 2.6 ± 1.6% 0.03*

Spinal Cord

D0.1cc 20.8 ± 1.9 GyE 7.27 ± 4.3 GyE 0.004*

Abbreviation: IMRT Intensity-modulated radiotherapy, ro-IMPT Robust Intensity-modulated proton therapy, CTV Clinical target volume, CN Conformation number, HI
Homogeneity index, GyE Gray equivalent, cc cubic centimeter, V(X)% percentage volume of OAR at or above “X” GyE, D(X)cc GyE dose of OAR to “X” cc volume, SD
Standard deviation
*Significant (P < 0.05)

Table 4 Normal tissue complication probability (NTCP), Relative risk (RR) ratio, number of patients with ΔNTCPIMRT – ro-IMPT in specific
range for gastro-intestinal OARs toxicity

Gastro-intestional OAR NTCP (%) P-value
IMRT vs.
ro-IMPT

Relative risk
(RR) ratio
(Mean ± S.D)

ΔNTCPIMRT – ro-IMPT

(n/N)

IMRT
(Mean ± S.D)

ro-IMPT
(Mean ± S.D)

≤5% > 5 to ≤10% > 10%

Stomach wall

U/P (Burman et al.) 0.02 ± 0.01% 0.01 ± 0.01% 0.03* 0.16 ± 0.24 9/9 0/9 0/9

GB (Pan et al.) 13.97 ± 5.33% 10.55 ± 4.10% 0.007* 0.81 ± 0.19 6/9 3/9 0/9

Duodenum

GB (Pan et al.) 5.02 ± 0.57% 1.87 ± 0.31% 0.004* 0.37 ± 0.28 9/9 0/9 0/9

Grade≥ 3 GI toxicity
(Holyoake et al.)

3.60 ± 0.54% 3.74 ± 0.24% 0.55 1.1 ± 0.22 9/9 0/9 0/9

Small bowel loops

O/P (Burman et al.) 0.26 ± 0.47% 0.10 ± 0.23% 0.07 0.24 ± 0.22 9/9 0/9 0/9

StoDuo

GB (Pan et al.) 7.81 ± 2.53% 5.67 ± 2.15% 0.008* 0.76 ± 0.22 7/9 2/9 0/9

Abbreviations: IMRT Intensity-modulated radiotherapy, ro-IMPT Robust Intensity-modulated proton therapy, GB Gastric bleed, U/P ulceration/perforation, O/P
obstruction/perforation, OAR organ at risk; Relative risk (RR) ratio NTCPro-IMPT/NTCPIMRT; ΔNTCPIMRT – ro-IMPT, n/N number of patients with specific ΔNTCP range/total
number of patient (where N = 9), SD Standard deviation; NTCP derived using parameter from Pan et al., Burman et al., and Holyoake et al.
*Significant (P < 0.05)

Raturi et al. Radiation Oncology          (2020) 15:157 Page 8 of 12



Fig. 3 Box and whisker plot of NTCP (%) comparison for gastrointestinal OARs (Stomach, duodenum, small bowel, and stoduo) using Pan et al.,
Burman et al., Holyoake et al., LKB model parameters between IMRT and ro-IMPT treatment plans

Fig. 4 Bar graph of NTCP reduction (ΔNTCPIMRT – ro-IMPT) for GI-OARs (Stomach, duodenum, small bowel, and stoduo) of each patient using Pan
et al., Burman et al., Holyoake et al., LKB model parameters between IMRT and ro-IMPT treatment plans
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In certain cases, it is advantageous to add a field to de-
crease the overall biological effective dose [32]. Our
study had not taken into consideration the effectiveness
of variable RBE for protons assuming interpatient vari-
ability of α/β [33]. A significant uncertainty with the
NTCP values and ΔNTCP can occur, as a result of con-
siderable uncertainty with the RBE variation. This uncer-
tainty may cause a substantial increase in dose to the
OARs if the OARs are close to the target volume [34].
The target overlap with GI-OARs could restrict EDR

for pancreatic cancers. The ITV is generated to account
for pancreatic tumor motion with respiration, which
could hinder safe EDR, and respiratory gating could
benefit such cases. In advanced pancreatic cancer, re-
gional recurrence remains uncommon in comparison to
the local and distant recurrence [19]. Hence, in our
study, we opted for EDR to a limited CTV without elect-
ive nodal irradiation (ENI) to reduce the risk of an ad-
verse event. Inclusion of ENI in our study would have
resulted in an increase in the irradiated volume of the
stomach, duodenum, small bowel, kidney, liver, and
spinal cord using IMRT in comparison to ro-IMPT as
demonstrated by Jethwa KR et al., comparing ro-IMPT
with VMAT [31].
A comparison of ro-IMPT plans was carried out for

nominal dose distributions supposing an idealized pa-
tient setup model based on a single CT scan, wherein
the anatomical and geometric changes were not taken
into consideration. The GI-OARs are an expansible and
movable organ, and as a result, determining the accurate
dose-volume constraints is quite challenging [35]. There-
fore, well-defined image guidance protocol and adaptive
treatment strategy are essential during the clinical imple-
mentation of ro-IMPT. Despite that, with this approach,
further uncertainties on dose distributions are being in-
troduced through deformable image registration [36].
The ro-IMPT plan optimized and evaluated considering
the setup and range uncertainties is generally robust for
non-rigid anatomical changes visualized on a repeat CT
scans [37]. Nevertheless, according to our understand-
ing, the biases of organ motion, positioning, and respir-
ation tend to occur among patients who are treated
using both RT techniques, and hence, should not under-
mine the comparison of the GI-OARs DVHs.
In future studies, for a better comparison of proton

and photon plans, proton plans should be calculated,
taking variable RBE into accounts [38]. Investigating the
use of image registration and fusion algorithm for dose
mapping may be necessary to precisely compute the
dose delivered to GI-OARs to confirm the eminence of
ro-IMPT plan during radiation.
In conclusion, given the smaller sample size and de-

sign of our study, ro-IMPT can potentially provide a
substantial decrease in GI-toxicity risk for LAUPC of the

head in EDR in comparison to IMRT. The quantitative
risk evaluation also supports the potential clinical benefit
of EDR IMPT for LAUPC of head due to the lower risk
of GI morbidity. The result of our study using EDR ro-
IMPT should be considered as hypothesis-generating for
future clinical trials and research to verify the expected
risk reduction in GI toxicity.
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