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Abstract

Background: Since intensity-modulated radiation therapy (IMRT) has become popular for the treatment of
gynecologic cancers, the contouring process has become more critical. This study evaluated the feasibility of atlas-
based auto-segmentation (ABAS) for contouring in patients with endometrial and cervical cancers.

Methods: A total of 75 sets of planning CT images from 75 patients were collected. Contours for the pelvic nodal
clinical target volume (CTV), femur, and bladder were carefully generated by two skilled radiation oncologists. Of 75
patients, 60 were randomly registered in three different atlas libraries for ABAS in groups of 20, 40, or 60. ABAS was
conducted in 15 patients, followed by manual correction (ABAS,). The time required to generate all contours was
recorded, and the accuracy of segmentation was assessed using Dice's coefficient (DC) and the Hausdorff distance
(HD) and compared to those of manually delineated contours.

Results: For ABAS-CTV, the best results were achieved with groups of 60 patients (DC, 0.79; HD, 19.7 mm) and the
worst results with groups of 20 patients (DC, 0.75; p = 0.012; HD, 21.3 mm; p = 0.002). ABAS.-CTV performed better
than ABAS-CTV in terms of both HD and DC (ABAS. [n=60]; DC, 0.84; HD, 15.6 mm; all p < 0.017). ABAS required an
average of 45.1 s, whereas ABAS, required 191.1 s; both methods required less time than the manual methods (p <
0.001). Both ABAS-Femur and simultaneous ABAS-Bilateral-femurs showed satisfactory performance, regardless of
the atlas library used (DC > 0.9 and HD <10.0 mm), with significant time reduction compared to that needed for
manual delineation (p < 0.001). However, ABAS-Bladder did not prove to be feasible, with inferior results regardless
of library size (DC < 0.6 and HD > 40 mm). Furthermore, ABAS.-Bladder required a longer processing time than
manual contouring to achieve the same accuracy.

Conclusions: ABAS could help physicians to delineate the CTV and organs-at-risk (e.g., femurs) in IMRT planning
considering its consistency, efficacy, and accuracy.
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Background

Intensity-modulated radiation therapy (IMRT) has dem-
onstrated significantly reduced gastrointestinal and urin-
ary toxicity [1, 2]; therefore, it has become popular in
postoperative radiotherapy (RT) for gynecologic cancers.
Because IMRT enables the delivery of high-precision
therapeutic doses to tumors while sparing organs-at-risk
(OAR), accurate segmentation of the target volume and
OAR is an essential and critical step for intricate RT
plans. Despite consensus guidelines for target volume
and OAR segmentation [3, 4], inter- and intra-observer
variations remain [5, 6]. In general, contours are delin-
eated manually by the radiation oncologist or dosime-
trist, and this step requires the majority of time in the
entire RT planning process. To overcome this issue,
auto-segmentation within the planning process has be-
come crucial.

Various algorithms for auto-segmentation predomin-
antly use deformable image registration for contour gen-
eration, which involves the transformation between two
images in which the voxels of the moving image sets are
skewed to match the voxels of the target image set and
during which a deformation vector field is created [7-9].
In atlas-based auto-segmentation (ABAS), segmented
structures from atlas libraries are propagated onto a sub-
ject image using deformable image registration algo-
rithm. Because multiple-ABAS uses a voting scheme for
determining whether a voxel is inside or outside the
structure, it is more susceptible to topological artifacts
compared with single-ABAS [10]. However, multiple-
ABAS could overcome the issues encountered with
single-ABAS, such as large discrepancies in volume and
location between the atlas library and subject data [11].

Although there are several reports of using ABAS in
pelvic RT, especially for prostate cancer [12—18], limited
information is available on the impact of library size and
change in accuracy after manual revision. Generation of
an individualized ABAS library instead of a built-in li-
brary is crucial for further clinical implementation in
each center. Herein, we aimed to evaluate the accuracy
and efficacy of an ABAS algorithm for target volumes
and OAR (e.g., bladder and femur) in patients with gyne-
cologic cancer and to evaluate whether ABAS perform-
ance could be improved with increasing numbers of
patients in each atlas library. In addition, we also evalu-
ated the clinical implementation of ABAS processes.

Methods

Patient selection

This study was approved by the Health Institutional Re-
view Boards of Yonsei University Hospital (No. 4-2019-
0937). The inclusion criteria were as follows: (1) patients
diagnosed with endometrial or cervical cancer after total
hysterectomy with negative surgical margins, (2) patients
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who underwent pelvic CT for postoperative RT, (3)
planning CT of 3 mm slice thickness with intravenous
contrast, and (4) patients who followed an institutional
2-h bladder filling protocol [19]. Patients who either had
remnant uterus or adnexae, had spine or femur deform-
ities (history of surgery), underwent planning CT in a
prone position, or underwent partial or total cystectomy
were excluded. Overall, 75 patients were randomly se-
lected. Of these 75 patients, 60 were randomly registered
to 3 different atlas libraries in groups of 20, 40, or 60. As
we only included patients who completed treatment,
contours generated by ABAS were never used for treat-
ment planning.

Manual segmentation

Contours for the whole pelvic nodal clinical target vol-
ume (CTV) (RTOG guidelines) [4] and OAR (femur and
bladder) [3] were delineated by a single experienced clin-
ician (YB Kim). Due to the considerable variation in the
vaginal cuff volume in each patient [20, 21], we excluded
vaginal cuff CTV in this study and only evaluated the
pelvic nodal CTV. For OAR segmentation, we selected
the femurs and bladder to evaluate the feasibility of
ABAS for bone and soft tissue structures with different
Hounsfield units. Both femurs were delineated separately
to investigate the different types of ABAS (i.e., ABAS-
femur and simultaneous ABAS-Bilateral-femurs).

Atlas-based auto-segmentation (ABAS)

The process of ABAS was conducted using the commer-
cial “Atlas Segmentation” in MIM Maestro 6.7 (MIM
Software Inc., Cleveland, OH, US). Fifteen sets of CT
were used as a test set to evaluate the accuracy and effi-
cacy of ABAS for each library (n =20, 40, and 60). It
should be noted that as the n increased for each atlas li-
brary (e.g., from an atlas library of n =20 to n = 40), the
previous group’s atlas elements were retained and those
of an additional 20 patients were included to generate a
new atlas library (Additional file 1). Detailed information
on baseline characteristics of atlas library and test set are
summarized in Additional file 2.

As the first step in library construction, a template
subject was assigned; then, the remaining subjects were
registered to the template subject separately. For minim-
izing the bias and maintaining the consistency of regis-
tration alignment, an additional intervention during
registration was prohibited. The ABAS algorithm auto-
matically matched the atlas subject in accordance with
the input test set. Based on the intensity and a freeform
cubic spline interpolation [22], contours of CTV and
OARs were deformed, registered, and transferred to the
test set.
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Running time

Both ABAS and manually corrected ABAS (ABAS,) were
performed on a single workstation (Intel® Core™ i7-4770
central processing unit of 3.4 GHz, 32 GB of random-
access memory, HP Inc., Spring, TX; Microsoft® Win-
dows® 7 Professional K, Microsoft, Redmond, WA, US).
The computation time for ABAS and the manual correc-
tion time were recorded.

Validation method

Contours generated by ABAS and ABAS. were com-
pared with conventional manual contours (M-CTV, M-
femur, and M-bladder). For accuracy analysis, both
Dice’s coefficient (DC) [23] and the Hausdorff distance
(HD) [24] were used. Results of DC were between 0 and
1, where 0 represented no intersection and 1 reflected a
perfect overlap of structures. The accepted limit for con-
tours > 30 ml was DC > 0.85 [25]. However, the value of
DC was limited owing to local discrepancies [26]. In
contrast, HD considered the degree of mismatch be-
tween two surfaces based on contour boundaries, elim-
inating the ambiguity of the volume-based DC metric.

Statistical analysis

Paired t-tests were used to compare the DC, HD, and
time values for ABAS and ABAS.. Due to the simultan-
eous nature of the comparisons, a Bonferroni correction
was adopted to address the multi-comparison issue.
Since there were three groups in the current study, an
alpha value of 0.05/3 was used: a p-value <0.017 was
regarded as a rejection to the null hypothesis and there-
fore considered statistically significant. Statistical ana-
lyses were performed using SPSS version 25.0.0 (IBM
Corp., Armonk, NY).

Results
Segmentation accuracy
The atlas library with 60 sets produced the best results
for ABAS-CTV, with a mean DC of 0.79 and a mean
HD of 19.7 mm. The results were consistent with those
obtained by ABAS,, with the mean DC ranging from
0.82-0.84 and HD ranging from 15.6—-17.4 mm (Fig. 1).
Mean DC and HD values for ABAS-CTV and ABAS,-
CTV are summarized in Table 1. The performance of
ABAS.-CTV was better than that of ABAS-CTV, regard-
less of the library size, based on DC and HD (all p <
0.017, Fig. 2a, b). For both ABAS-CTV and ABAS.-CTV,
there was a trend of a higher degree of agreement with
an increasing number of sets in each library (Fig. 2a-b).
ABAS-Femur (Fig. 3a) showed a high degree of agree-
ment, with a mean DC >0.90 and HD <10 mm in all
atlas libraries (Fig. 4a, b). Mean DC and HD for the
femur and bladder are summarized in Table 2. There
was no significant improvement in accuracy according
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Manual
ABAS
— ABAS,

Fig. 1 Auto-segmented contour results for clinical target volume.
Atlas-based auto-segmentation alone (ABAS) and manual correction
after ABAS (ABAS,)

Table 1 Mean Dice’s coefficient and Hausdorff distance values
for multiple atlas libraries of clinical target volumes

Size of atlas library

20 40 60
ABAS-CTV
DC (95% Cl) 0.75 (0.73-0.77) 0.75 (0.72-0.78) 0.79 (0.77-0.80)
p-value ref. 0.656 0.012 (0.002*%)
HD (95% Cl) 21.3(18.8-24.0) 23.8 (20.9-26.9) 19.7 (17.8-22.0)
p-value ref. 0.137 0.002 (0.012*%)
ABAS-CTV
DC (95% Cl) 0.82 (0.80-0.82) 0.83 (0.81-0.84) 0.84 (0.82-0.85)
p-value ref. 0.555 0010 (0.015")
p-value* 0.001 0.009 0.004
HD (95% Cl) 174 (15.1-20.1) 17.1 (15.0-19.1) 156 (14.2-17.1)
p-value ref. 0.046 0.200 (0.001*%)
p-value* 0.005 0.002 0.014

Abbreviations: ABAS atlas-based auto-segmentation alone, ABAS. manually
corrected ABAS, CTV clinical target volume, DC Dice’s coefficient, HD Hausdorff
distance, CI confidence interval

* Comparison between ABAS and ABAS.

** Comparison between atlas size 40 and 60



Kim et al. Radiation Oncology (2020) 15:106 Page 4 of 9
P
A B C
1.0 30 210
/
0.9 5% i ’
-~
R T 150 == et
0.8 —— = <
9] --- £ '——_’"\ g
2 £2 ————— 2
07 g S d g
= £ 9%
i 15 )
’ — ABAS
——— ABASC —_——
05 10 30
20 40 60 20 40 60 20 40 60
Atlas library Atlas library Atlas library

Fig. 2 Comparison of metrics among atlas libraries for clinical target volume. Atlas-based auto-segmentation alone (ABAS) is represented as a
bold line and manual correction after ABAS (ABAS,) is represented as a dashed line. a Mean Dice’s coefficient (DC) for target volume. b Mean
Hausdorff distance (HD) for target volume. ¢ Mean operation time for target volume

to the size of the atlas library. The results of simultan-
eous ABAS-Bilateral-femurs also demonstrated a good
agreement (mean DC ranging from 0.93 to 0.95 and HD
ranging from 5.7 to 9.7 mm) and did not have reduced
accuracy when compared to one-sided ABAS-Femur (all
p>0.017). The performance of ABAS-Bladder (Fig. 3b)
showed the lowest agreement, with a mean DC < 0.6 and
a mean HD > 40 mm, in all atlas libraries (Fig. 5a, b). For

the bladder, significant improvement after manual cor-
rection was found in both DC (mean ranging from 0.78
to 0.85) and HD (mean ranging from 11.3 to 13.2 mm).

Time

The shortest mean time was achieved by ABAS (n = 20)
with a mean of 41.6 (95% CI 40.4—42.6) seconds for
CTV (Fig. 2¢), 31.1 (95% CI 28.4—34.4) seconds for the

A

Manual
ABAS

the bladder

Fig. 3 Auto-segmented contour results in organs-at-risk. a Auto-segmented contour results in the femur. b Auto-segmented contour results in

~
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ABAS
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Fig. 4 Comparison of metrics among atlas libraries for the femur. Atlas-based auto-segmentation alone (ABAS) is represented as a bold line and
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Table 2 Mean Dice’s coefficient and Hausdorff distance values
for multiple atlas libraries of normal organs

Size of atlas library

20

40

60

Femur
DC (95% CI)
p-value
HD (95% Cl)
p-value
Femur-sm
DC (95% Cl)
p-value
p-value*
HD (95% Cl)
p-value
p-value*
ABAS-Bladder
DC (95% CI)
p-value
HD (95% Cl)
p-value
ABAS-Bladder
DC (95% Cl)
p-value
p-value**
HD (95% Cl)
p-value

p-value**

0.92 (0.90-0.95)
ref.
10.0 (7.8-15.4)

ref.

0.93 (0.91-0.94)
ref.

0341

9.7 (7.2-12.2)
ref.

0.162

0.57 (0.47-0.65)
ref.
446 (31.0-66.7)

ref.

0.78 (0.73-0.83)
ref.

0.051

132 (11.8-14.6)
ref.

0.196

0.94 (0.93-0.96)
0.289

84 (6.0-10.8)
0.285

0.94 (0.93-0.95)
0.298

0.798

85 (6.3-10.8)
0.466

0.869

0.53 (0.45-0.62)
0454
59.1 (39.1-82.1)
0.121

0.85 (0.81-0.88)
0.001

<0.001

113 (10.6-12.0)
0.031

0.020

0.95 (0.94-0.96)
0.335 (0.335™)
56 (4.0-74)

0.046 (0.024*)

0.95 (0.93-0.96)
0.304 (0.139")
0.782

57 (45-7.1)
0.023 (0013
0.794

0.54 (0.44-0.63)
0.803 (0.096™)
60.2 (40.2-84.0)
0.883 (0.024)

0.84 (0.82-0.87)
0.006 (0.398")
0.001
119 (11.1-129)
0.085 (0.282*")
0007

Abbreviations ABAS atlas-based auto-segmentation alone, ABAS. manually

corrected ABAS, sm simultaneous, DC Dice’s coefficient, HD Hausdorff distance,
Cl confidence interval
* Comparison between Femur and Femur-sm

** Comparison between ABAS and ABAS.

**Comparison between atlas sets sized 40 and 60

femur (Fig. 4c), and 42.8 (95% CI 41.1-44.6) seconds for
the bladder (Fig. 5c¢); these time values were significantly
lower compared to those of M-CTV (749.4, 95% CI
622.3-860.4's), M-Femur (128.1, 95% CI 122.3-135.1s),
and M-Bladder (142.0, 95% CI 115.2-1714s, all p<
0.001). The mean time values spent on each process for
CTV, femur, and bladder are summarized in Table 3. Al-
though the mean time needed for ABAS for all targets
increased as the number of sets in each library increased
(Fig. 2c), there was still a significant time reduction com-
pared with that in manual contouring (all p <0.001).
Conversely, ABAS.-CTV showed no statistical difference
in the time spent according to the number of sets in the
library. Although there was a significant difference in the
time spent between ABAS-CTV and ABAS.-CTV, the
time spent in ABAS, was still significantly shorter than
that spent in M-CTV. Although simultaneous ABAS-
Bilateral-femurs was associated with a significantly lon-
ger time than ABAS-Femur, significant time reduction
was achieved compared with that in M-Femur. Add-
itionally, the processing time for ABAS-Bilateral-femurs
was less than double the time required to process
ABAS-Femur. In contrast to ABAS.-CTV and simultan-
eous ABAS-Bilateral-femurs, ABAS_-Bladder had a sig-
nificantly prolonged process time compared with that of
M-Bladder (p < 0.001).

Discussion

In this study, we investigated the feasibility of atlas-
based auto-contouring in the delineation of target vol-
ume and OAR for adjuvant RT in gynecologic cancers.
We evaluated the performance of ABAS using DC and
HD. The mean DC and HD values of ABAS.-CTV were
improved compared with those of ABAS-CTV, but with
prolonged process time. Both ABAS-Femur and ABAS-
Bilateral-femurs exhibited accurate delineation (DC >
0.90, HD <10.0 mm) with reduced time compared with
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that achieved with M-Femur. However, ABAS-Bladder
performed poorly with a DC of 0.54, and ABAS_-Bladder

took more time than M-Bladder.

Delineation of target volume and OAR is the only pro-
cedure that still entirely depends on manual process in

RT planning and is a time-consuming step. Apart from
the time consumption issue, it has been reported that

manual contouring has its limitation due to inter- and

Table 3 Mean time values for multiple atlas libraries of clinical target volumes and normal organs

intra-observer variability [5, 6]. Although ABAS has been
introduced and investigated previously, earlier phases of

Size of atlas library

20

40

60

Manual
contouring

ABAS-CTV
Time (95% Cl)
p-value
ABAS-CTV
Time (95% Cl)
p-value
p-value*
Femur
Time (95% Cl)
p-value
Femur-sm
Time (95% Cl)
p-value
p-value**
ABAS-bladder
Time (95% Cl)
p-value
ABAS -bladder
Time (95% Cl)
p-value

p-value*

41.6 (404-42.6)

ref.

164.8 (139.3-195.2)
ref.

0.001

31.1 (284-34.4)

ref.

60.7 (55.9-654)
ref.
0.001

42.8 (41.1-44.6)

ref.

286.3 (256.3-315.6)
ref.

0.001

476 (46.0-49.2)
0.001

148.1 (131.9-164.0)
0.220
0.001

327 (31.3-34.1)
0316

64.8 (63.3-66.2)
0.125
0.001

446 (43.3-45.9)
0.052

350.7 (319.3-382.5)
0.001
0.001

45.1 (44.0-46.1)
0013 (0023

191.1 (162.8-221.1)
0.187 (0.038"")
0.001

375 (36.3-38.8)
0.005 (0.003"")

74.1 (724-75.9)
0.002 (0.0017%)
0.001

456 (43.9-47.2)
0.010 (0.108"")

375.7 (345.5-405.0)
0.001 (0.0017")
0.001

7494 (622.3-860.4)

7494 (622.3-860.4)

128.1 (122.3-135.1)

256.0 (244.5-262.1)

1420 (115.2-171.4)

1420 (115.2-171.4)

Abbreviations: ABAS atlas-based auto-segmentation alone, ABASc manually corrected ABAS, CTV clinical target volume, DC Dice’s coefficient, HD Hausdorff distance,

Cl confidence interval

* Comparison between ABAS and ABAS,
** Comparison between Femur and Femur-sm
++ Comparison between atlas size 40 and 60
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the technology did not have satisfactory accuracy [12].
However, recent studies have shown the feasibility of
ABAS in patients with head and neck cancers [7, 13,
27-32], prostate cancer [12-17], endometrial cancer
[18], rectal cancer [33, 34], and breast cancer [16, 33,
35]. Wong et al. [15] also reported that multiple-ABAS
had better accuracy than single-ABAS, and they demon-
strated that the single-atlas approach was sensitive to
the library size. Consistent with previous reports, we
showed that the segmentation accuracy of ABAS-CTV
improved with increasing library size in the multiple-
atlas approach. However, manual editing on the basis of
ABAS demonstrated better accuracy than ABAS alone
and reduced the time spent compared with that spent
on manual contouring. In other words, ABAS could as-
sist physicians in delineating the target and OAR accur-
ately and effectively rather than surpassing manual
contouring. Recently, the scope of auto-segmentation
has been expanded to artificial intelligence (Al)-based
contouring using deep learning algorithms. The aid of
Al tools beyond ABAS had a positive impact on con-
touring accuracy. Lin et al. [36] demonstrated that physi-
cians could reduce the time spent by nearly 40% (from
30.2min to 18.3min) and intra-observer variation by
nearly 36% with Al assistance. Lately, there was a grow-
ing evidence [37-39] that the convergence of deep learn-
ing algorithms and manual work by clinicians could
improve accuracy, productivity, and efficiency in the
practice of medicine [40].

The segmentation accuracy between the femur and
bladder differed significantly in ABAS. The suboptimal
results of ABAS-Bladder were consistent with those
shown in previous reports [34]. Because ABAS sup-
ported by MIM software includes template alignment
and best matching contour searching processes using
deformable image registration, organs isodense with
their surroundings are not suitable subjects for ABAS.
Due to its inferior segmentation accuracy at baseline,
ABAS_-Bladder required even more time to achieve re-
sults comparable to those of M-Bladder. To overcome
this limitation of ABAS-Bladder, detection of a contrast
agent in the bladder could contribute to a more robust
ABAS-Bladder due to strong gradients in gray levels
[17]. Additionally, further investigations using advanced
techniques for auto-contouring, like deep learning algo-
rithms, are needed for precise contouring of isodense
OARs, such as the bladder or bowels.

Along with the accuracy of ABAS-Femur, the results
of simultaneous ABAS-Bilateral-femurs were satisfactory
in terms of both accuracy and efficiency. Unlike ABAS-
CTV, the difference in the performance of both ABAS-
Femur and ABAS-Bilateral-femurs did not vary drastic-
ally with increasing library size and may not be im-
proved by even larger library sizes. In contrast with the
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bladder, the significant difference in the bone density
compared with that of the surrounding soft tissues could
make femurs suitable subjects for ABAS [16]. We sug-
gest that the size of the atlas library is not an independ-
ent factor in determining the quality of auto-
segmentation; the quality could also be attributed to the
density contrast. Furthermore, it does not seem neces-
sary to construct separate libraries according to the lat-
erality of some OARs with distinct contrast, such as the
femurs and mandible.

There are several limitations in the current study.
First, there was some selection bias in terms of the CT
samples, despite the random selection of the 75 samples.
Furthermore, statistical analysis with a small cohort has
its limitation in terms of overfitting of the data (type II
error). Therefore, further investigations including a large
number of independent CT sets are needed for evaluat-
ing the efficacy of the currently built ABAS library.
However, we demonstrated both the potential benefit of
ABAS combined with manual modification and the dis-
parity in the accuracy of ABAS according to the soft tis-
sue density. Herein, the results of 15 patients in the test
set could support the hypothesis that manual correction
is necessary even in the well-known ABAS algorithm,
and differences in soft-tissue density should be consid-
ered in the implementation of ABAS. Second, ABAS is
limited by its inflexibility, as segmentation is limited to
the specific shapes defined by the statistical model [10].
Although we evaluated accuracy based on DC, the DC
value could overestimate the accuracy; Tsuji et al. [29]
found that a sensitivity index, rather than DC, could be
an informative predictive factor. Voet et al. [41] demon-
strated that planning based on ABAS was suboptimal,
exhibiting suboptimal dose coverage of up to 11 Gy, des-
pite a high DC of 0.8. Conversely, ABAS could be valu-
able in clinical application if the DC of ABAS.-CTV is
less than 0.8. In addition, a further investigation using
data from different institutions is crucial to validate this
approach in real clinical practice. However, it has been
proposed that the accuracy of segmentation highly relies
on the training set, and amendment of data from other in-
stitutions can improve the performance of segmentation
[42]. Although recent advances in auto-segmentation have
entered the fourth generation with deep learning algo-
rithms [43], ABAS, which is the 3rd generation of auto-
segmentation, could be easily utilized even in an institu-
tion with limited resources.

Conclusions

Based on this evaluation of the ABAS algorithm with in-
dividual institutional data, we recommend ABAS com-
bined with manual corrections for CTV in clinical use
for postoperative RT for gynecologic cancers. ABAS of
the bilateral femurs could be considered for clinical use
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without manual correction. Highly variable, structures
that are isodense with the surrounding tissue, such as
the bladder, should be contoured manually rather than
with ABAS. The implementation of ABAS with manual
adjustment in daily clinical practice could change the
workflow of physicians even in institutions with limited
resources; however, further implementation of and in-
vestigations into Al with deep learning algorithms are
still needed to improve the accuracy and efficiency of
auto-contouring. In addition, further investigations on
the feasibility of RT plans based on ABAS-generated
contours for both CTV and OAR are still needed.
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