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Abstract

Background: Automated brain tumor segmentation methods are computational algorithms that yield tumor
delineation from, in this case, multimodal magnetic resonance imaging (MRI). We present an automated
segmentation method and its results for resection cavity (RC) in glioblastoma multiforme (GBM) patients using deep
learning (DL) technologies.

Methods: Post-operative, T1w with and without contrast, T2w and fluid attenuated inversion recovery MRI studies
of 30 GBM patients were included. Three radiation oncologists manually delineated the RC to obtain a reference
segmentation. We developed a DL cavity segmentation method, which utilizes all four MRI sequences and the
reference segmentation to learn to perform RC delineations. We evaluated the segmentation method in terms of
Dice coefficient (DC) and estimated volume measurements.

Results: Median DC of the three radiation oncologist were 0.85 (interquartile range [IQR]: 0.08), 0.84 (IQR: 0.07), and
0.86 (IQR: 0.07). The results of the automatic segmentation compared to the three different raters were 0.83 (IQR:
0.14), 0.81 (IQR: 0.12), and 0.81 (IQR: 0.13) which was significantly lower compared to the DC among raters (chi-
square = 11.63, p =0.04). We did not detect a statistically significant difference of the measured RC volumes for the
different raters and the automated method (Kruskal-Wallis test: chi-square = 1.46, p = 0.69). The main sources of
error were due to signal inhomogeneity and similar intensity patterns between cavity and brain tissues.

Conclusions: The proposed DL approach yields promising results for automated RC segmentation in this proof of
concept study. Compared to human experts, the DC are still subpar.
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Background

Glioblastoma multiforme (GBM) is the most common pri-
mary malignant brain tumor. The invasive nature of the
disease makes the treatment very challenging which is
expressed in the poor prognosis with a 5 year survival rate
of 5% [1]. Since the 1980s, it is established that post-
operative radiation therapy (RT) improves survival in pa-
tients with GBM [2] and RT is part of the multidisciplin-
ary treatment ever since. With an incidence ranging from
2.50 to 5.02 cases per 100.000 person years GBM is one of
the major indications for radiation therapy [3-5].

One of the most tedious and time-consuming tasks in
radiotherapy planning is target and organ at risk (OAR) con-
touring. This is still done manually in a slice by slice fashion,
using multiple magnetic resonance imaging (MRI) se-
quences [2]. Besides, manual contouring is associated with a
wide variability and low uniformity among different users,
here called raters. According to Bondiau et al. [6], the mean
time for the analysis and manual delineation of brain struc-
tures on a typical MRI study is 86 min. Due to human error
and observer bias there are substantial intra- and inter-rater
variabilities for both target and OAR definition [2, 7]. For
GBM in particular, post-op target definition shows substan-
tial inter-rater variability even amongst advanced experts [8].
In this regard, automated contouring methods would be
very useful for RT target volume definition. Fully automatic
segmentation, where no interaction of the user is required,
has the potential to substantially limit the time for target
volume and OAR definition. Additionally, it can introduce a
more consistent and reproducible standard for volume def-
inition leading to a better agreement among institutes and
possibilities for global implementation.

Auto-segmentation of medical imaging has been a hot
topic over the last years [9]. The increased interest is
driven by the rise of radiomics, where quantitative as-
sessment on medical imaging requires segmented struc-
tures of interest. To objectify the comparison among
different auto-segmentation methods, the Brain Tumor
Image Segmentation Benchmark (BRATS) challenge was
introduced in 2012 [9], which enables researchers to test
their auto-segmentation methods on a multi-
institutional MRI database of glioma tumors. Since the
introduction of BRATS, machine learning (ML) based
methods have shown very promising results [10]. A re-
cent trend of deep learning (DL) using convolutional
neural networks (CNN) led to the current state of the
art auto-segmentation methods able to segment glioma
volumes with a Dice Coefficient (DC) reaching 0.9 with
respect to “ground truth” [11-13]. Despite the impres-
sive results, multi modality DL-based segmentation
methods have not been implemented for automated vol-
ume definition in RT.

For a proper implementation of auto-segmentation in
RT, besides adequate target definition, OARs also need
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to be defined. Currently available atlas based segmenta-
tions are precarious and especially small structures like
the chiasm and optic nerves are challenging to segment
[7, 14]. In addition, surgical procedures or the presence
of space-occupying lesions cause anatomical deviation,
and can affect the quality of automated OAR segmenta-
tions [7, 15]. However, several other groups as well as
our own, presented that in relation to atlas-based ap-
proaches, ML and DL based methods showed improved
results of auto-segmentation of anatomical brain struc-
tures or subcortical brain structures [15-18].

As for the target definition in GBM, there are currently
two important guidelines; one from the European
Organization for Research and Treatment of Cancer
(EORTC) and the other from the Radiation Therapy On-
cology Group (RTOG) [19-22]. Both the EORTC and the
RTOG define the gross tumor volume (GTV) as the resec-
tion cavity (RC) in addition to the residual enhancing
tumor. In the RTOG guideline, surrounding edema should
also be included. The current auto-segmentation results
for glioma segmentation are mainly based on pre-
operative imaging. Since the majority of patients receives
surgery prior to RT, the GTV is defined on post-operative
imaging and therefore segmentation is more challenging.
This applies to auto-segmentation as well as manual seg-
mentation. Not many attempts have been made on auto-
segmentation of post-operative MR images. Zeng et al.
evaluated the segmentation in pre- and post-operative MR
images [23]. Their result showed a median dice coefficient
of 0.75 with respect to the reference segmentation. In our
previous work published by Meier et al., no significant dif-
ference between the postoperative automated segmenta-
tion of the residual tumor volume and the reference
segmentation was found [24]. Unfortunately, both studies
lacked the segmentation of the RC, which is critical in
GBM patients as well as in patients with other brain tu-
mors who receive adjuvant RT after resection.

Efficacy in auto-contouring has been shown for OARs
and most post-operative target structures [11-18, 23, 24].
The current missing link that enables the physician to de-
fine the target is the RC. The aim of the present proof of
concept study is to evaluate whether our DL automated
segmentation method for RCs in GBM patients is compar-
able to manual segmentation by experts in the process of
RT target volume definition. We assessed the agreement
between automated and expert-generated RC segmenta-
tions using standard overlap and volumetric metrics. To
do so, we developed a DL based auto-segmentation tool
for brain tumor RT planning.

Methods

Patients

Patients with newly diagnosed and histologically con-
firmed GBM, who were pre-operatively admitted to our
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institution between 2012 and 2015, were eligible for this
study. Furthermore, patients should have undergone pri-
mary tumor resection without previous brain surgery and
a complete post-operative MR data set should be available
according to our GBM MRI protocol. This includes T1
weighted images with and without contrast, T2 weighted
images with contrast and a fluid attenuated inversion re-
covery (FLAIR) sequence. Furthermore the resection cav-
ity should be clearly present on visual inspection. A total
of 30 patients were retrospectively included in the study,
which is in line with recommendations for the evaluation
of segmentation accuracy from Gibson et al. [25]. All pa-
tients received adjuvant concomitant chemo-radiotherapy
with Temozolomide.

MR protocol

MR images were acquired on two different 1.5T MR
scanners (Siemens Avanto and Siemens Area, Siemens,
Erlangen/Germany). For all patients the same, standard-
ized MR protocol was applied, including four standard
MR sequences that constitute the neuro-oncological MR
protocol according to the response assessment in neuro-
oncology criteria [26]:

e T1- weighted without contrast (T1w), resolution
256 x 256, 1 mm slice thickness, repetition time
(TR) = 1580 and echo time (TE) = 2.67.

e T1-weighted gadolinium enhanced (T1w
gadolinium), resolution 256 x 256, 1 mm slice
thickness, TR = 2070 and TE = 4.57.

e T2 — weighted (T2w), resolution 256 x 256, 1 mm
slice thickness, TR = 3200 and TE = 3.81.

e Fluid-attenuated inversion recovery (FLAIR) images,
resolution 192 x 256, 3 mm slice thickness, TR =
8000 and TE = 88.

These sequences were used for the manual and the
automatic segmentation process (Fig. 1).
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Manual contouring of the resection cavity

In order to obtain a reference volume to train and evalu-
ate the DL method, the RCs were manually contoured.
Manual contouring was performed slice-wise in Eclipse™
version 13.6 (Varian Medical Systems, Inc. Palo Alto,
CA, USA) by three independent radiation oncology ex-
perts (EH, EE, MB) with with respectively, 9, 3 and 1
years of experience in brain tumor imaging analysis, and
familiar with all four MR sequences (T1w, T1w gadolin-
ium, T2w and FLAIR). To improve inter-rater
consistency the raters have been instructed by an experi-
enced neuro-radiologist. The RC was defined as the re-
gion of liquor isointense signal on T2w MR sequences at
the region of the resection, including air pockets deter-
mined on Tlw and T2w MR sequences as well as the
remaining blood collections visible on the Tlw MR
sequence.

Data preprocessing

The data set containing the contours was exported as
DICOM-RT format. The structure set and the four MRI
sequences were then imported into 3D Slicer Version
4.8 (www.slicer.org) with the SlicerRT plugin. Once
imported, the polygon structures were translated to label
maps, where each voxel was labeled as RC or
background.

To prepare the MRI data for DL, multimodal rigid
registration was performed. The T1lw, T2w and FLAIR
MR sequences were rigidly registered to the space of the
Tlw gadolinium enhanced image [24]. Skull-stripping
[27] was performed to eliminate superfluous data, and
image intensities were normalized to a standard normal
distribution (1 =0, oc=1).

To train the DL model, the three expert delineations
are fused and referred to as the reference segmentation.
The fusion was performed by majority voting, a standard
approach where a voxel is considered RC, when 2 or
more (out of 3) experts defined the voxel as RC (Fig. 1).

Postoperative brain tumor cases (n=30)
«each with T1w, T1w gadolinium, T2w, and FLAIR images
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Fig. 1 Schematic visualization of the workflow of this study
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The majority voting aims at minimizing confounder ef-
fects stemming from any potential expert-specific bias.

DL architecture

We used a fully-convolutional densely connected archi-
tecture which builds on the idea of DenseNet [28] but is
adapted for this particular segmentation task. The archi-
tecture consists of a contraction-expansion (encoding-
decoding) structure with so-called skip-connections
introducing shortcuts to additional contraction levels.
The contraction-expansion structure aims at capturing
the high-level contextual information while the skip-
connections enable capturing the local, fine-grained in-
formation. The architecture consists of four contraction-
expansion levels, each built of one dense block, which it-
self consists of four densely connected units. Each of
these units comprises of batch normalization [29], ReLU
activation [30], convolution, and dropout [31]. The tran-
sition between contraction or expansion levels is per-
formed by transition-down and transition-up blocks,
respectively. Transition-down blocks consist of a dense
unit followed by max-pooling. Transition up blocks con-
sist of a bilinear interpolation followed by a convolution
and a dense block layer. All convolutions employ 3 x 3
kernels, except the last convolution which has a 1x1
kernel. The dropout rate is set to p =0.2. Table 1 lists
the channel numbers and spatial resolution after each
building block.

The DL architecture processes the 3D brain volumes
as three separate sets of two-dimensional plane-wise ori-
entations, ie., axial, coronal, sagittal. This results in
three 3D predictions of the RC volume based on the
axial, coronal and sagittal slices, respectively. The final
3D volume is an average of the three predictions.

Table 1 Description of the DL architecture

Building Block Channels Spatial Resolution
Input 4 200 % 200
Convolution + Dropout 48 200 % 200
Dense block + Transition down 96 200 % 200
Dense block + Transition down 144 100 100
Dense block + Transition down 192 50% 50
Dense block + Transition down 240 25% 25
Dense block 288 12x12
Transition up + Dense block 336 25% 25
Transition up + Dense block 288 5050
Transition up + Dense block 240 100 x 200
Transition up + Dense block 192 200 % 200
1% 1 Convolution 2 200 x 200
Softmax 2 200 x 200
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Representation of the deep learning architecture in
terms of building blocks, channel number, and spatial
resolution. The input represents one slice of all four MR
images and the output consists of the foreground and
background probabilities that define the final
segmentation.

DL training protocol

The proposed DL approach requires a training phase,
where the images of the four MR sequences and the
manually created reference segmentations are used. Al-
though the cavity is defined in the T1w and T2w images,
we use all four sequences to leverage additional informa-
tion that can be beneficial for training of the DL model.
During training, for each MRI sequence we feed batches
of 16 slices of random orientation (i.e. axial, coronal, or
sagittal). We optimized the cross-entropy loss by the
Adam optimizer [32] and used a learning rate of 10™*,
The DL training takes approximately 24 h on a NVIDIA
Titan Xp graphics processing unit (GPU) with 12 GB
memory. The code was implemented in Python 3.6.8
with PyTorch 1.0.1 (pytorch.org).

Quantitative evaluation and statistics

To evaluate the accuracy of the DL model we adopted a
cross-validation scheme, commonly used by supervised
learning systems [33]. We performed a six -fold cross
validation where the 30 included cases are shuffled ran-
domly and 25 samples are used for training and the
remaining five are used for testing, until all 30 cases
have an auto-segmented result. We remark that in order
to avoid optimizing the model to each cross-evaluation
split, we optimized the hyper-parameters on one out of
the six splits only.

We compared the automatic segmentations with each
of three manual segmentations, as well as the fused ref-
erence segmentations (Fig. 1). As a reference of human-
level performance, we assessed inter-rater variability. We
assessed three different metrics to compare the auto-
segmented RC volumes:

1. The absolute volume in cm?,

Table 2 Comparison of contours

Pairing DC (IQR) Rel. vol. err. (IQR)
Automatic-EE 0.83 (0.14) —0.06 (0.33)
Automatic-EH 1(0.12) —0.17 (0.29)
Automatic-MB 1(0.13) —0.09 (0.30)

EE-EH 0.85 (0.08) —-0.11 (0.18)

EE-MB 0.84 (0.07) —-0.08 (0.17)
EH-MB 0.86 (0.07) 0.04 (0.22)
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Fig. 2 Comparison of the automatic approach and the three experts (EE, EH, MB) in terms of Dice coefficient (a), relative volume error (b), and
absolute volume (c) on the cross-evaluated cohort. The light gray boxes on the left represent results of automatic method and the dark gray
boxes on the right show the experts. P-values indicate the result of the Wilcoxon rank-sum test (a = 0.05) between automatic-rater (Automatic-EE,
Automatic-EH, Automatic-MB) and rater-rater (EE-EH, EE-MB, EH-MB) results
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2. The Dice coefficient defined as the volumetric
overlap ranging between 0 and 1, where DC =1
corresponds to perfect agreement.

3. The relative volume error defined as the difference
in volume between the auto-segmented RC and the
RCs defined by the raters.

For all metrics, we performed a non-parametric
Kruskal-Wallis test (a =0.05) to assess similarity among
the non-normal distributions (verified with Shapiro-
Wilk test). In case this test showed a significant differ-
ence at the group level, the Wilcoxon rank sum tests
(unpaired, a = 0.05) was performed for detailed analysis.

Results

All three raters produced a complete set of contours for
all 30 patients. The reference segmentation generated by
fusion, were all accepted by the three raters upon review.
The average time to contour the RC was 20.7 (+ 10.1)
minutes. The trained DL models produced automatic
segmented RCs for all cases. The DL-based segmenta-
tion of one case takes approximately 10s, and a total of
90 s when including the pre-processing steps on a stand-
ard desktop computer.

The DC and the relative volume error of the different
pairings of expert raters and the automatic segmentation
are listed in Table 2. The median overall DC among the
raters was 0.85 (interquartile range [IQR]:0.07). The me-
dian DC between the automatic segmented RCs and the
fused reference segmentation was 0.84 (IQR: 0.10), and
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slightly lower than the agreement among raters. In terms
of relative volume error, we found a median error of -
13.17%, (IQR: 24.17%) between automatic and reference
segmentations, which indicates the DL method underes-
timated the RC with respect to the raters. The median of
the absolute volume was 24.7cm?® (IQR: 19.1cm®) for EE,
26.6cm® (IQR: 26.7cm?) for EH, 26.1cm® (IQR: 23.3cm?)
for MB and 21.7cm® (IQR: 19.6cm®) for the automatic
segmentation. Figure 2 shows boxplots of DC values,
relative volume errors and the absolute volumes for the
automatic approach in relation to the experts. According
to the Kruskal Wallis test we did not detect a statistically
significant difference regarding the distribution of the
measured volumes for the different raters and the auto-
matic method (chi-square = 1.46, p = 0.69). In contrast, a
statistically significant difference in DC (chi-square =
11.63, p =0.04) and relative volume error (chi-square =
2245, p =0.00043) was found. The result of the subse-
quent Wilcoxon rank-sum test between rater-to-rater
(EE-EH, EE-MB, EH-MB) and automatic-to-rater (Auto-
matic-EE, Automatic-EH, Automatic-MB) pools are
shown in Figs. 2 and 3. The automatic segmentation vol-
umes tend to be smaller than the expert volumes, which
corresponds with the underestimation found in the rela-
tive volume error measurement. The main sources of
error by the automatic method were localized to signal
inhomogeneity (especially in T2w and FLAIR sequences)
and other intensity patterns (edema, subarachnoid space,
or ventricles). Figure 4 shows cases representing good
and bad performances.
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Fig. 3 Comparison of the automatic approach and the three experts (EE, EH, MB) in terms of measured resection cavity volume for each case in
the dataset. Note the logarithmic scale of the y-axis
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Fig. 4 Representative axial slices of the produced segmentations in
comparison to the expert consensus. The rows correspond to
different cases and are listed according to the segmentation
performance in terms of Dice coefficient (DC). The columns show
the T1-weighted (T1w) image, the T2-weighted (T2w) image, the
expert consensus (reference) and the automatic segmentation (as
overlay on the T2w)

Median and interquartile range of the Dice coefficient
(DC) and relative volume errors (Rel. vol. err.) for the
three experts (EE, EH, MB) and the automatic approach.

Discussion

High quality auto-segmentation of the targets and OARs
is a very welcome development in RT. Considering the
status of innovation of DL methods for auto-
segmentation in the brain, post-operative target defin-
ition is the key to an implementation of the method for
RT purposes. Up to now, some work has been reported
for DL-based auto-segmentation of post-operative tumor
components of GBM patient [9, 23, 24]. Still missing,
was the segmentation of the RC.
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With our in-house developed dedicated DL based seg-
mentation method, we have attempted to reproduce the
resection cavity as defined by manual contouring of RT
experts. The auto-segmented volumes showed a similar-
ity to the reference segmentation with a DC of 0.84. This
was only slightly lower than the observed inter-rater
variability. The DL method however had a lower robust-
ness and resilience to imaging artefacts such as blood
products and air pockets in the resection cavity.

Effective time saving is one of the intended endpoints
in the implementation of fully-automated segmentation
methods to the RT field. The implementation of such a
system for the number of brain tumor patients treated
each year and the extension to multiple other treatment
sites (e.g. head and neck, lung, prostate, etc.) would re-
sult in significant time savings. In total, our proposed
method produces an RC segmentation for one case in
approximately 90s, compared to 20.7 (+10.1) minutes
for manual contouring. It has to be noted that there will
be time required for validation and possible adjustment.
Depending on the quality of the segmentations and pos-
sible QA system, this time can vary widely. The reduced
time could be invested in improving patient care, redu-
cing the treatment costs and increasing the accessibility
for patients to high quality radiation therapy. Besides,
accurate and efficient auto-segmentation is an important
requirement for the innovation of daily adaptive treat-
ments [34].

Automatic segmentation tools that are, or have been
incorporated in different treatment planning systems,
were mainly atlas based and could not achieve the re-
quired level of accuracy. Accordingly, radiation oncolo-
gists may spend more time correcting automatic
segmentations, than generating manual contours from
scratch. This has affected the trust of RT specialist in
auto-segmentation and has impeded a more widespread
use of auto-segmentation for RT purposes.

The GTV in post-OP glioblastoma patients consists of
multiple morphological structures of which the RC is
one. In our method, to obtain a target definition these
structures are all segmented separately by the DL
method. This enables the physician to create and adapt
the GTV according to their own preferences and institu-
tional guidelines. In our opinion this would be a more
useful and acceptable and yet time saving approach for
clinical practice, than to directly have the complete GTV
defined by auto-segmentation.

A few other groups have investigated automatic target
structure delineation from imaging. Cheng et al. evalu-
ated a level set-based approach for identifying GTV and
clinical target volume (CTV) in five glioma patients
using post-operative T2w MRI and CT [35]. The re-
ported mean DC was between 0.66 and 0.83, and their
results showed a tendency to underestimate the CTV. In
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our opinion, automated generation of the CTV cannot
be compared to auto-segmenting a GTV. The GTV is
per definition constructed on medical image morph-
ology, the CTV however, is a medical decision, based on
guidelines considering clinical experience and on tumor
properties that are not quantifiable on imaging. With
the current DL methods based on MRI, CTV definition
is not yet feasible. Mazzara et al. assessed fully auto-
mated brain MR segmentation methods for RT planning
[2]. Both pre- and post-operative images were applied
for the target delineation. They reported a larger vari-
ation for post-operative cases compared to pre-
operatively. They indicated that the margins of residual
tumor were unclear on post-operative images, making
the identification of the GTV a difficult task for both
physicians and auto-segmentation methods. The diffi-
culty in identifying the residual tumor components by
physicians is an important issue. Besides Mazzara et al.,
also Zeng et al. reported on the poor definition of tumor
segments in post-operative imaging. From the 88 post-
operative scans available in the BRATS database they ex-
cluded 56 because of incorrect segmented volumes in
the “ground truth” [23]. Recently, Visser et al. reported
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on the difficulty, even for highly experienced experts, to
manually segment GBM on postoperative imaging [8].
This brings up the question of how much of the “ground
truth” is actually valid, and therefore in this manuscript
we referred to it as the “reference volume”.

Although the results are promising, the auto-
segmentation is characterized by some typical errors.
The observed lower overall volume of the automated ap-
proach with respect to the volume of the reference seg-
mentation seems to be mostly caused by specific outlier
cases 7, 22 and 23 (Figs. 3 and 4). The divergent results
in the outliers are due to a deficiency of the model to
identify blood products, air pockets and other deviating
MRI intensities, which result in image areas not being
included in the RC. Figure 5 illustrates clearly how the
automatic segmentation excludes air and blood from the
RC. Within the cohort of 30 cases, the occurrence of air
pockets and or blood products in the RC were to scarce
for proper DL training. A larger cohort and better char-
acterizing these confounding effects, can enable an ef-
fective stratification of blood products and air pockets,
and lead to improved capability of handling these cases.
The small retrospective dataset used for this proof of

Fig. 5 Segmentation errors introduced by air pockets and blood products. The rows indicate erroneous cases and the columns show T2-
weighted images, zoomed T2-weighted images, expert consensus segmentation (reference) overlays and automatic segmentation overlays

~
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Reference
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concept study is also a limitation because it can result in
bias in the selected cases. It is a monocentric study and
the images are obtained from only two MRI scanners.
To obtain a more general validation, a larger prospective
multi-institutional dataset is required to confirm the
current preliminary results.

Although the CNN architecture might influence the
segmentation performance, we expect only subtle differ-
ences with other common segmentation architectures,
e.g., the U-Net [36]. The employed architecture builds,
as most common segmentation architectures, on a base
structure consisting of a contraction-expansion path with
skip-connections. We used densely connected units within
this base structure because it empirically showed faster
convergence compared to the U-Net.The evaluation met-
rics used in our study correspond to the common stand-
ard used to evaluate segmentation approaches. However,
since the aim is an RT application, it would be valuable to
assess the automatic segmentation approach on a more
clinically relevant dosimetric level, as has been performed
by auto-segmentation studies for the head and neck area
[37, 38]. In these studies, they investigated the dosimetric
impact on auto-segmented structures versus manual con-
toured structures in the head and neck area. The differ-
ence in the target volume could lead to significant
dosimetric differences after RT planning. Conson et al
also reported on the dose-volume effects when using auto-
mated segmentations of critical brain structures [39].
Despite there was a volumetric differences between auto-
matically constructed and reference volumes, dosimetric
parameters obtained using automated segmentations were
comparable with the dosimetry based on the reference
contours. In our planned ensuing work, the effect of auto-
segmented target and OAR definition on dosimetry will
be included as well as incorporating CT imaging.

Many commercial as well as free open source Al based
applications are being developed and used in research
and proposed for clinical practice. We believe the proof
of concept presented in this article, an Al based multi-
modal MRI solution for tumor cavity segmentation, will
contribute to this movement as a unique piece of work.
Furthermore, when we move towards an increased usage
of said technologies in clinical practice we believe it is
important to focus research efforts in the evaluation on
the quality of the technology. This includes in particular,
novel quality control metrics that are focused towards
clinical relevant outcome measures.

This study complements our previous research in
pre-, and post-operative brain tumor segmentation
[24, 27, 40, 41]. Besides the feasibility of proper auto-
segmentation of the OARs and postoperative tumor
segments of GBM, we are now able to segment the
RC as well, in order to obtain a complete target def-
inition. In this regard, our future work includes
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developing and integrating a fully automatic segmen-
tation tool for clinical radiotherapy, based on a dedi-
cated DL method.

Conclusions

We presented a DL approach for automated postopera-
tive RC segmentation. Although the automatic results
are subpar to manual contours by RT experts, the results
are promising. With the possibility of auto-segmentation
of the RC, the radiation target as defined by the inter-
national guidelines can now be determined by DL-based
auto-segmentation. This last step will pave the way to
developing and implementing a fully automated segmen-
tation application for brain RT.
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