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Abstract

The integration of magnetic resonance imaging (MRI) for guidance in external beam radiotherapy has faced
significant research and development efforts in recent years. The current availability of linear accelerators with an
embedded MRI unit, providing volumetric imaging at excellent soft tissue contrast, is expected to provide novel
possibilities in the implementation of image-guided adaptive radiotherapy (IGART) protocols. This study reviews
open medical physics issues in MR-guided radiotherapy (MRgRT) implementation, with a focus on current
approaches and on the potential for innovation in IGART.
Daily imaging in MRgRT provides the ability to visualize the static anatomy, to capture internal tumor motion and
to extract quantitative image features for treatment verification and monitoring. Those capabilities enable the use
of treatment adaptation, with potential benefits in terms of personalized medicine. The use of online MRI requires
dedicated efforts to perform accurate dose measurements and calculations, due to the presence of magnetic fields.
Likewise, MRgRT requires dedicated quality assurance (QA) protocols for safe clinical implementation.
Reaction to anatomical changes in MRgRT, as visualized on daily images, demands for treatment adaptation
concepts, with stringent requirements in terms of fast and accurate validation before the treatment fraction can be
delivered. This entails specific challenges in terms of treatment workflow optimization, QA, and verification of the
expected delivered dose while the patient is in treatment position. Those challenges require specialized medical
physics developments towards the aim of fully exploiting MRI capabilities. Conversely, the use of MRgRT allows for
higher confidence in tumor targeting and organs-at-risk (OAR) sparing.
The systematic use of MRgRT brings the possibility of leveraging IGART methods for the optimization of tumor
targeting and quantitative treatment verification. Although several challenges exist, the intrinsic benefits of MRgRT
will provide a deeper understanding of dose delivery effects on an individual basis, with the potential for further
treatment personalization.
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Background
The evolution of delivery techniques in external beam
radiotherapy has paralleled the need for online image
guidance, aiming at enhanced conformal treatments [1].
The use of technologies such as IMRT (intensity modu-
lated radiotherapy) [2] and VMAT (volumetric modu-
lated arc therapy) [3] has increased the necessity of
volumetric imaging as a way to measure and handle
uncertainties. In recent years, cone beam CT (CBCT)
has progressively become the standard approach to im-
plement IGRT (image-guided radiotherapy) [4, 5]. None-
theless, CBCT exhibits intrinsic limitations, due to
suboptimal image quality, poor soft tissue contrast and
the additional imaging dose. Furthermore, the use of
CBCT to manage specific uncertainties, such as tumor
motion, is not established and may be questioned when
considering the inherent shortcomings [6, 7].
For the above-mentioned reasons, magnetic reson-

ance imaging (MRI) has been extensively explored as
an alternative to implement IGRT, with significant re-
search and commercial efforts to integrate MRI in
treatment delivery devices [8]. MRI has been used for
a long time in radiotherapy, with the first application
in intracranial radiosurgery published in the mid-
1980s, showing the ability to visualize post irradiation
changes [9]. Since those pioneering days, MRI has
steadily been utilized for more and more cancer sites.
The use of MRI for treatment planning simulation in
radiation therapy is reported since the early days [10],
with first attempts to plan directly on MR images in
the 1990s [11]. The increased need for radiotherapy-
specific products drove the market for dedicated MRI
simulators with flat couch tops, dedicated coils and
MRI-compatible immobilization systems.
The increased presence of MRI in radiotherapy, in par-

allel with the rapid adoption of X-ray and other image
guidance methods, spurred the integration of MRI with
radiation therapy systems, as a way to implement MRI-
based IGRT. An overview of MR-guided radiotherapy
(MRgRT) approaches utilizing a linac is shown in
Table 1: each of them features different characteristics in

terms of magnetic field strength, beam type and energy,
and the orientation of the radiation beam and the mag-
netic field (perpendicular or inline). Among these, the
only two commercial systems currently available are the
ViewRay MRIdian and the Elekta Unity.
MRgRT offers a new paradigm to address delivery

uncertainties [12, 17]. While in conventional external
beam radiotherapy the patient is positioned to suit a
static plan, MRgRT enables adaptation of the plan to
optimize dose coverage for the actual patient’s anat-
omy of the day. Key in this new paradigm is the su-
perb soft tissue contrast of MRI which allows direct
visualization of the tumor and the organs-at-risk
(OAR) [18]. As an additional benefit, there is no radi-
ation dose burden with MR imaging, which allows for
frequent verification. Current advances provide the
technological framework to implement IGRT proto-
cols at optimal soft tissue contrast and absence of im-
aging dose, relying on dedicated procedures for
immobilization and imaging. Such imaging capabilities
offer the potential for treatment adaptation and quan-
titative measurement for treatment monitoring and
tailoring. Despite such advantages, potential weak-
nesses exist [19], which require specific medical phys-
ics developments to make the most of technological
advances in MRI guidance. The intrinsic lack of elec-
tron density information, along with the presence of a
static magnetic field during treatment delivery, require
sophisticated dose calculation methods and dedicated
quality assurance (QA) procedures. In addition, MR
imaging is prone to spatial distortions and sequence-
dependent effects, especially in presence of motion,
thus requiring extensive measurements and modeling
for accurate MRgRT implementation.
This review will cover the key aspects underlying the

necessary physics developments, as a way to summarize
the potential and pitfalls of MRgRT. More specifically,
this review will address the topics of MR imaging, dose
measurement and calculation in the presence of a mag-
netic field, MR-guided treatment adaptation, as well as
QA aspects.

Table 1 An overview of linac-based MRgRT approaches. The third column includes information on the field strength and
orientation of the magnetic field relative to the radiation beam (perpendicular/inline)

Company/institution Commercial? MRI and beam specification Reference

ViewRay Yes 0.35 T split bore magnet, 6 MV beam (originally 60Co), perpendicular [12]

Elekta Yes 1.5 T closed bore magnet, 7 MV beam, perpendicular [13]

University of Alberta Under development 0.5 T biplanar magnet, 4 and 6 MV beams, inline/perpendicular [14]

Australian MR-linac program No 1.0 T split bore magnet, 4 and 6 MV beams, inline/perpendicular [15]

Siemens No 0.5 T closed bore magnet, 6 MV linac inside bore, perpendicular Patent no.
US 8,958,864 B2

Princess Margaret Hospital No Separated 1.5 T closed bore magnet on rails and a conventional multi-energy
linear accelerator (offline MRgRT)

[16]
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MR imaging
MR-linacs and in-room MRI scanners allow dose-free
extended imaging directly before or during treatment
(online) with the patient in treatment position. An
MRgRT fraction starts with a so called pre-beam phase,
where a first in-room MR image with a relatively large
field-of-view (FOV) is acquired to visualize all relevant
structures, including OAR and target contours.

Imaging of the static anatomy
Pre-beam imaging is usually performed using 3D im-
aging protocols, relying on either stacked 2D slices or
native 3D MR acquisition sequences. The former ap-
proach has been reported for low-field MR-linacs using
a bSSFP (balanced Steady State Free Precession) se-
quence [20], whereas the latter has been applied for 1.5
T MR-linacs relying on 3D spoiled gradient echo se-
quences, such as [17, 21], or 3D T2-weighted Turbo
Spin Echo (TSE) scans. Native 3D MR acquisition has
certain distinct advantages, as it can potentially
minimize slice distortions that occur in 2D imaging due
to B0 inhomogeneity. Furthermore, the 3D isotropic
resolution facilitates the verification of the organ con-
tours in all three planes, which might also increase the
accuracy of the patient alignment process. Potential
optimization in 3D imaging is feasible by the use of 3D
T2-weighted TSE imaging, which is characterized by a
relatively long echo train with refocusing control, where
the flip angle is constantly modulated to find an optimal
balance between contrast and sufficient signal during the
acquisition of the central k-space lines [22]. Examples of
images acquired with low-field and high-field MR-linacs
are depicted in Fig. 1.

Imaging for motion monitoring
In the case of sites affected by respiratory motion, pre-
beam imaging in today’s clinical routine is typically per-
formed in breath-hold, utilizing standard 3D sequences.
Pre-treatment 4D-MRI might allow for an improved

assessment of inter-fractional motion changes [24, 25],
but is currently not offered on clinical systems [19], des-
pite the high interest in the development of respiratory-
correlated 4D-MRI (rc-4D-MRI) for MRgRT [26]. In rc-
4D-MRI, images are created by retrospective sorting or
prospective acquisition in image- or k-space domain ac-
quired over several breathing cycles to reconstruct, typ-
ically, one average breathing cycle. Fast imaging
sequences such as bSSFP, T2-weighted TSE and spoiled
gradient echo are most often used for this purpose [26].
The in-plane resolution of the reconstructed 4D-MRI is
typically between 1-2 mm with slice thicknesses of
around 5 mm for 2D read-out sequences [26] and voxel
sizes down to 1.2 × 1.2 × 1.6 mm3 [27] for 3D read-out
sequences acquired with a diagnostic 1.5 T scanner. The
spatial resolution and number of reconstructed breath-
ing phases determines the acquisition time which is in
the order of several minutes [26]. Adaptive treatment
planning based on rc-4D-MRI could reduce uncertain-
ties compared to today’s clinical standard workflow
based on four-dimensional CT [7, 28]. The high-quality
images provided by rc-4D-MRI could reduce delineation
uncertainties and allow for improved internal target vol-
ume [28], mid-position [29] and gating window [26] def-
initions. As described in the next section, rc-4D-MRI
can provide training data for global motion models [30]
that could be applied during or after irradiation. Chal-
lenges associated with rc-4D-MRI include geometric dis-
tortions, long acquisition times [31] and 4D image
validation without ground truth data [24, 26]. Further-
more, most rc-4D-MRI methods cannot accurately as-
sess cycle-to-cycle variations and baseline shifts, as
typically only one breathing cycle is reconstructed [25].
During irradiation, the beam-on imaging capabilities

of today’s clinical MR-linac systems allow real-time
intra-fractional monitoring of tumor and OAR motion
[12, 32, 33]. Fast 2D cine MRI sequences like bSSFP [34]
or spoiled gradient echo [35] achieve acquisition times
down to 150 ms [36]. The imaging data is nowadays

Fig. 1 Sample pre-beam images acquired on a 1.5 T MR-linac (3D SPGR sequence, left panel) and on a 0.35 T device (bSSFP sequence, right
panel). Adapted and reprinted with permission from [20, 23]
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routinely used for gated treatments of tumors in thoracic
and abdominal organs, and first clinical studies have
been published [37–40]. These studies used the vendor’s
2D cine bSSFP MRI sequence, acquiring a single sagittal
slice with an in-plane resolution of 3.5 × 3.5 mm2 and
slice thicknesses between 5 and 10 mm at a frame rate
of 4 Hz [12, 32, 41].
Research on cine MRI for MRgRT has been focused

on the optimization of several sequence parameters.
The impact of the spatial resolution on the target track-
ing accuracy has been investigated by several groups
[35, 42, 43]. Robustness of target tracking algorithms
and registrations against different geometrical sequence
parameters led to the conclusion that only moderate
accuracy gains are to be expected from increased im-
aging resolution with respect to today’s clinical se-
quences [42, 43]. Better image resolution could still be
desirable to improve visibility for smaller lesions, al-
though neighbor structures can be exploited to track
reliably. At the same time, different strategies to accel-
erate image acquisition and reconstruction are investi-
gated in the literature. These include partial Fourier
acquisition, different k-space read-out strategies and
the use of deep learning to shorten reconstruction
times [24, 26]. Parallel imaging capabilities of today’s
clinical MR-linacs are also still constrained by the avail-
able hardware [25, 41, 44]. The development of faster
sequences could enable motion monitoring of the heart,
which could be either used to achieve heart dose reduc-
tion [45] or to guide cardiac ablation interventions with
MR-linacs in the future [46, 47].
The development of new sequences with different im-

aging contrasts might facilitate image registration and
motion tracking and needs to be further investigated
[43]. In clinical practice as well as in research studies,
the sagittal slice orientation has been most often used
for cine MRI [24, 32], but as MR imaging allows for ar-
bitrary slice orientations, the impact of different orienta-
tions on the tumor tracking accuracy has been evaluated
[25, 43]. No consensus has been found yet [44], but the
ideal slice orientation and position might be entity- and
patient-specific [43] and depend on the beam angle [48].
As out-of-plane motion can occur when a single 2D

slice is used, the acquisition of several parallel slices [12,
49] or the interleaved [50–53] or simultaneous [54, 55]
acquisition of orthogonal slices has been investigated.
Acquiring imaging data from different orientations could
indeed enable the real-time reconstruction of the anat-
omy in 3D [53]. Based on single or multiple cine MRI
slices, the temporally resolved 3D motion of the whole
anatomy of the patient can be estimated by global mo-
tion models [30, 56, 57]. These models use temporally
resolved 1D or 2D surrogate signals as inputs in combin-
ation with rc-4D-MRI data that could be acquired in the

pre-treatment imaging phase [24]. Up to date, these mo-
tion models have not been clinically used for MRgRT
and validation with ground truth data remains challen-
ging [30, 58]. Beyond the use of cine MRI for gating, the
availability of time-resolved volumetric imaging acquired
during treatment will give opportunity to guide multi-
leaf collimator (MLC)-tracking [59] and to perform
post-beam dose accumulation [26]. This information
could be used for real-time image-guided adaptive radio-
therapy (IGART) [60] and improved dose-response
modelling.
The development of real-time 4D-MRI (rt-4D-MRI)

[26, 61–63] with sufficient spatio-temporal resolution
would be desirable both for pre-treatment inter-
fractional motion characterization as well as for real-
time beam-on guidance [24]. Considering the recent ad-
vances in imaging and reconstruction acceleration [26]
and the observation that coarse spatial resolution could
yield acceptable localization errors for real-time MRgRT
[42], rt-4D-MRI is expected to play an increasingly im-
portant role in MRgRT in the future [26]. As for rc-4D-
MRI, geometric distortions and image artifacts of 2D
cine MRI and rt-4D-MRI sequences need to be
accounted for [64, 65], imaging latencies have to be kept
as low as possible [66] and dedicated QA for gating and
tracking are needed.

Quantitative imaging
In radiotherapy-related applications, quantitative MR
imaging (qMRI) has been considered to support treat-
ment planning and to implement MRI-only treatment
workflows [67, 68]. Specifically, qMRI refers to the ob-
jective measurement of a biophysical property of the ex-
amined tissue that can be expressed in physical units
[69, 70]. Recent efforts in improving qMRI robustness
[69, 71] are mainly driven by the clinical need for reli-
able imaging of biomarkers in oncology [72]. This is not
necessarily related to MRgRT, whose clinical implemen-
tation is still at an early stage, although qMRI principles
could further leverage the importance of MR guidance
in the field. Along with opportunities, qMRI also brings
new challenges [73] to established clinical practices
which may need to be updated; considering for example
imaging protocols harmonization, quality control and as-
surance procedures, staff expertise, data handling and
software verification [70, 74–76].
Among qMRI techniques, functional imaging can play

a relevant role in MR-guided workflows [77] and its use
complemented with that of anatomical acquisition is be-
ing explored to provide multi-parametric analyses [78,
79]. Specifically for functional qMRI protocols, dynamic
contrast enhanced and diffusion weighted MRI have
been widely explored [80–82] due to their sensitivity to
vasculature architecture [83] and tissue structure [76,

Kurz et al. Radiation Oncology           (2020) 15:93 Page 4 of 16



84], respectively. These sequences could improve any
stage of the radiotherapy workflow [75, 85, 86]: from
diagnosis and patient stratification [87, 88], through
contouring and dose optimization [89, 90], to treat-
ment monitoring and response assessment [83, 91,
92]. Initial clinical experience for diffusion weighted
MRI has been reported for the low field MR-linac
[93]. In addition, T1 and T2 mapping protocols, ob-
tained through relaxometry [94], can provide quanti-
tative tissue mapping at high spatial resolution.
Together with proton density MR, they have been
used to improve automatic contouring in radiotherapy
[95], to detect early radiation-induced effects [79] or
to differentiate recurrent tumors from benign tissue,
when coupled to functional qMRI [78].
Nevertheless, in order to be reliably employed in

the clinical routine, qMRI must undergo both tech-
nical and biological/clinical validation [96]. Technical
validation in qMRI entails testing for accuracy, re-
peatability and reproducibility of the underlying phys-
ical measurement, both over time and across sites
[72, 97]. Technical tolerances related to hardware
components should be first identified and then quan-
tified through physical phantoms, by following the
available standardized procedures or guidelines and
recommendations [71, 98–101]. These latter are being
developed and updated by several bodies [69], al-
though a global procedure is yet to be found [67]. At
the same time, the analysis of the MR signal itself
should be carried out through robust software. Com-
putational methods employed to derive clinically use-
ful quantitative parameters from MRI (i.e., imaging
biomarkers [102]) should be validated and their qual-
ity assessed by making use of phantoms and reliable
open-source tools [71, 99, 103, 104]. On the other
hand, the quantification pertaining the biological/clin-
ical validation relies on the evaluation of the relation-
ship between imaging and the underlying biophysical
parameter of interest. This relationship must be
proven to be quantitative, i.e., accurate, repeatable
and reproducible, as well as relevant, specific and
consistent [96]. The whole process of validation for
qMRI biomarkers is shown in Fig. 2. Overall, quanti-
fying technical and biological tolerances associated to
any qMRI protocol is fundamental for computing the
minimum detectable variation in the specific qMRI
parameter that could, once clinically validated, distin-
guish underlying pathophysiological changes from
measurement uncertainties [71].
The above-mentioned aspects will surely require more

resources and optimization efforts, but only by tackling
all the variabilities and error sources in the quantitative
framework, qMRI can represent a reliable input for MR-
guided adaptive radiotherapy.

Dose measurements and calculations in the
presence of magnetic fields
Dose measurements
Reference dosimetry at MRgRT systems requires modi-
fying the TG51 guidelines [105] from the American As-
sociation of Physicists in Medicine (AAPM), or national
equivalent (TRS 398 or other), to account for the effects
of the magnetic field on i) the depth dose distribution,
ii) the ion chamber response, and iii) the impact of the
machine design on the definition of reference conditions,
such as the source-to-surface distance (SSD). Both i) and
ii) are directly related to curved electron paths [106,
107]. In the case of i), these cause an effective reduction
of secondary electron range projected along the beam
direction, which leads to an upstream shift of both the
maximum dose (dmax) and the depth dose curve (see
Fig. 1 in [108]), thus reducing the dose at the point of
measurement by 0.5%/0.3% at 1.5 T/1 T [109, 110]. This
means that when asserting the impact on chamber re-
sponse, care must be taken to account for i), if measur-
ing with and without a magnetic field, and when
estimating beam quality specifiers. The change in cham-
ber response ii) is described in the first order by varia-
tions in electron trajectories through the sensitive
volume; this entails that chamber geometry, orientation
and magnetic field strength have a large impact on re-
sponse [107–113]. However, to fully explain response
variations, for example by Monte Carlo modelling, it is
necessary to additionally account for the gas volume
where charge is collected by the guard electrode [110,
113]. Finite element modelling of electric field lines
coupled to Monte Carlo simulation has been shown by
[114] to reproduce well chamber response to different
field strengths. In practice, chamber response is much
less affected when the cylindrical chamber’s axis is paral-
lel to the magnetic field and the latter is perpendicular
to the beam. Beam quality specifiers should also be care-
fully considered in MRgRT systems. %dd (10)x may be
problematic due to non-reference SSDs and the above-
mentioned shift in dmax; thus most publications recom-
mend the use of TPR20

10 , which is not very dependent on
SSD [109].
A few modifications to TG51 have been published

which allow reference dosimetry at MRgRT systems.
O’Brien et al. [109] pioneered the use of a correction
to ND,w in the presence of magnetic fields determined
by Monte Carlo simulation of ion chambers. Malkov
and Rogers [115] compared the introduction of a cor-
rection to ND,w accounting for both changes in beam
quality and presence of the magnetic field, versus an
additional correction related only to magnetic field ef-
fects. They also use Monte Carlo simulation of ion
chambers. Van Asselen et al. [108] proposed to re-
duce the burden on chamber modelling, which may
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be desirable given the subtleties of dead volume com-
putation, by proposing a with/without magnetic field
measurement-based approach where Monte Carlo
simulation is used to determine the change of dose
from i) instead. It may however not be feasible for
every institution to have the possibility of performing
measurements with and without magnetic field, hence
the need for consensus values on chamber correction
factors for standard ion chamber models in the litera-
ture. While the challenges listed above require careful
attention, most authors agree that they are not insur-
mountable and that reference dosimetry is feasible.
Particularly with the parallel orientation described
above, corrections for chamber response are under-
stood to be well within 1% of unity. Official guide-
lines for absolute dosimetry are however not currently
established, placing a burden on early adopters.
Primary standards labs and research groups have also
recently worked towards MR-compatible water
calorimeters [116–118] and graphite [118, 119]

calorimeters. This allows the direct measurement of
ion chamber correction factors [120], which should
soon lead to additional literature.
For relative dosimetry, care must be taken to account

for a shift of the effective point of measurement
(EPOM). O’Brien et al. [121] showed, using measure-
ments with and without magnetic field, that at 1.5 T a
Farmer chamber exhibits a different EPOM than at 0 T,
and recommend using 0.3 × Rcav. In addition to the
depth displacement of the EPOM, lateral displacements
are also present, and are detector-dependent. It is ex-
pected that at 0.35 T the EPOM displacement is re-
duced, however, thus far this has not been reported in
the literature. Looe et al. [122] used Monte Carlo simu-
lations to show that such shifts are inversely propor-
tional to the detector density.
Commercial cylindrical diode arrays have also been

tested at 1.5 T, highlighting a 1.5% maximum dose devi-
ation compared to a standard delivery device [123]. Pre-
liminary studies on the use of thermoluminescent

Fig. 2 Flowchart for validated use of qMRI biomarkers, with representative images at each step. Adapted and reproduced with permission from
[69, 78, 80, 89]
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dosimeters have been published [124, 125]. For a 1.5 T
field, Matthis et al. reported no difference within a 5%
criterion, while Wen et al. reported directional variations
of up to 2.3%. Steinmann et al. performed a study of
both 0.35 T and 1.5 T systems in anthropomorphic
phantoms and have reported deviations of -0.3% and
1.6%, respectively [126].
Due to growing interest in 3D dosimetric detectors,

gel and plastic-based solutions have been tested in mag-
netic fields [127–129]. Polymeric gels have been shown
to be comparable to Gafchromic films for checking the
isocenter accuracy [128]. Overall, 3D dosimeters for dose
response in a magnetic field exhibited a maximum dif-
ference of 1.6% in a comparison study [129]. The deg-
radation of plastic 3D dosimeters over time was also
quantified, reporting changes in optical density of
around 5% per day, which did not impact on IMRT veri-
fication relying on AAPM TG 119 [130, 131]. Also,
Cherenkov imaging has been tested to acquire high-
resolution real-time dosimetric data, though limited to a
2D projection of the 3D dose cube [132].

Dose calculations
Dose calculation engines designed for treatment plan-
ning at MRgRT systems should account for the impact
of the magnetic field on the dose from electrons, and be
sufficiently fast not to hinder online plan adaptation pro-
cedures. The magnetic field will reduce the build-up
length, cause a shifted and asymmetric penumbra as well
as the electron return effect and may increase skin dose
away from the field by deflecting contaminating elec-
trons [106, 133–137]. While Monte Carlo codes such as
Geant4, PENELOPE, MCNP and EGSnrc are well
benchmarked for conventional radiotherapy, and offer
magnetic field capabilities, their emphasis on accuracy
renders them unsuitable for treatment planning due to
long calculation times. Algorithms making approxima-
tions or using variance reduction techniques have thus
been developed as an alternative, and been used in con-
ventional treatment planning systems [138–144]. For the
1.5 T Elekta MR-linac, GPUMCD, a GPU-based Monte
Carlo engine, has been included in the Monaco TPS and
shown to allow fast optimization [143]. GPUMCD uses
four tissue classes (air, lung, soft tissue and bone) and a
CT number to electron density conversion. For the 0.35
T ViewRay system, the KMC engine has been developed
as an improvement to VMC [145–147] to achieve fast
calculation speeds. Studies have also been published
where research dose calculation engines have been de-
veloped and used to compare to the clinical implementa-
tions provided by the vendors [148, 149]. Wang et al.
developed a GPU-based Monte Carlo simulation plat-
form for the ViewRay MRIdian using 60Co [148]. The
platform was based on a translation of penelope from

Fortran to C++, and was called gpenelope. They reported
calculations times improved by a factor of 152 compared
to Penelope, and pass rates for KMC vs gpenelope of
99.1%±0.6% (2%/2 mm). Good agreement with measure-
ments was obtained. Ahmad et al. compared GPUMCD
to Geant4 in the presence and absence of a 1.5 T mag-
netic field [149]. They however did not model the source
explicitly and used a point source with a 7 MV spectrum
instead. For various combinations of heterogeneities
good agreement was observed between Geant4 and
GPUMCD.

MR-guided treatment adaptation
In MRgRT, the baseline treatment plan, optimized based
on planning CT and MRI data, can be adapted to the
daily anatomical-pathological situation in treatment pos-
ition as seen on the acquired in-room MRI. The main
aim of treatment plan adaptation is to minimize the im-
pact of inter-fractional changes. This enables tighter
conformation of the applied dose to the target volume,
i.e., practically the use of reduced PTV margins, with
optimal sparing of close-by OAR. During irradiation,
further measures can be taken to also address intra-
fractional changes. The most important steps are out-
lined in the following.

Adaptation for inter-fractional changes
On-table re-optimization of the treatment plan generally
requires an up-to-date 3D relative electron density
image of the patient in treatment position, the corre-
sponding delineation of targets and nearby OAR, fast
dose calculation, plan optimization and finally a means
to perform fast QA tests on the updated plan. An exem-
plary workflow is illustrated in Fig. 3.
The typical online adaptive MRgRT workflow starts

with patient immobilization and 3D in-room imaging,
followed by accurate patient alignment using image fu-
sion. When the patient is positioned correctly, the initial
treatment plan is re-calculated on the daily anatomy to
infer the dose of the day, which is then used for deciding
whether the treatment has to be adapted.
For dose calculation, a 3D electron density map is ob-

tained from pseudo-CT generation methods, typically
employing similar methods as developed for PET-MR at-
tenuation correction. While there is a variety of methods
for pseudo-CT generation discussed in the literature
[150], currently clinically implemented methods rely ei-
ther directly on deformable image registration (DIR) of a
pre-treatment CT [151] or on a combination of DIR and
bulk assignment [21]. The reliance on DIR may lead to
challenges when the planning CT and in-room MRI ex-
hibit markedly different anatomy. Thus deep learning-
based techniques play an increasingly important role for
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pseudo-CT generation, but are not in clinical use yet
[152–155].
Regarding the dose calculation itself, a fast dose en-

gine capable of incorporating magnetic fields is cru-
cial, since plan evaluation and potential re-
optimization have to be performed with the patient
already in treatment position. Thus, as described
above, fast Monte Carlo-based methods are employed
for dose calculation [144, 148]
For clinically evaluating the obtained daily dose distri-

bution (and also for potential treatment re-optimization
later in the workflow) up-to-date delineation of the tar-
get volume and OAR is required. A clear advantage of
MRgRT over conventional (CBCT-based) approaches for
this task is the superior soft tissue contrast. In clinical
online adaptive MRgRT workflows, contour suggestions
are obtained from the same DIR used for pseudo-CT
generation, followed by manual adaptation by an expert.
Since this is still a time-consuming task, typically only a
region encompassing the target volume by 2 cm [21] or
3 cm [151] is considered for manual correction due to
time constraints. A potential solution overcoming limita-
tions related to DIR, is the use of deep convolutional
neural networks that have raised considerable attention
for medical image segmentation and recently been ap-
plied to in-room MRI data [156–158]. However, clinical

certification of such algorithms will be an important
hurdle to be cleared in the future.
Considering the daily dose distribution and the up-

dated delineations, a decision whether the treatment
plan has to be adapted can be made by the clinical staff,
e.g., by inferring deviations in the clinical goals defined
at the planning stage. For treatment adaptation, several
options exist in the current workflow: for the certified
low field MR-linac, adaptation of the table position (3D
translation) or full re-optimization are feasible, whereas
for the certified high field MR-linac, no table correction
is feasible, but the plan has to be adapted instead. Be-
sides full re-optimization of the plan, which might be
time-consuming, segment alignment to account for sim-
ple target displacement or re-optimization of the seg-
ment weights only (since displacing segments in
flattening filter free beams may alter the dose rate) are
potential alternatives [159]. The re-optimization of the
daily treatment plan will take place in an online fashion,
why speed, not only in dose calculation, but also in plan
optimization is of utmost importance. For this, also
auto-planning, promising high and consistent plan
quality, might play an increasingly important role in the
future [17].
Before applying the adapted plan to the patient, QA of

the novel plan has to be performed. For this,

Fig. 3 Illustration of an online adaptive MRgRT workflow. The in-room MRI and a pre-treatment CT are used for delineation and pseudo-CT
generation. Based on these data, a new treatment plan is optimized (in this case fully automatic). An independent dose calculation is used for
online plan QA. In parallel, a final position verification (PV) MRI scan is acquired and eventually the treatment is applied. Reprinted with
permission from [17]
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independent dose calculations are being performed prior
to delivery of the adapted plan and the calculated dose is
compared to the prediction of the planning system.
More details can be found in the following QA section.

Adaptation for intra-fractional changes
In current clinical practice, intra-fractional organ motion
related to breathing is considered by performing gated
beam delivery, potentially in combination with breath-
hold techniques to enhance beam-on time [32, 39]. A
main advantage in MRgRT is that for gating, the tumor
can be directly visualized and tracked using 2D+t cine
MRI, as described above. Whenever the delineated
tumor moves out of a user-defined gating area, the beam
is stopped. While this minimizes the impact of tumor
motion on the delivered dose distribution, it can consid-
erably prolong the treatment. Thus, researchers are
looking into options for performing real-time treatment
adaptation during irradiation to compensate for intra-
fractional motion. For this, the tumor could either be
continuously trailed during beam delivery [160], or the
dose applied up to a certain time point during irradi-
ation could be accumulated (assuming continuous 3D
motion monitoring) and used for optimizing the
remaining dose to be applied in that treatment fraction
[29, 60].

Quality assurance
In the early clinical adoption phase of MRgRT, QA plays
an integral role, but dedicated guidelines and protocols
are still missing, often leading to the development of di-
verse in-house solutions. Thus, early adopters of MRgRT
report that sharing experience in QA is desirable to
shorten the time needed to reach significant clinical use
[161]. In general, a risk assessment based on Failure
Mode and Effects Analysis is suggested for setting up re-
quired QA procedures. Specific challenges relate to the
fact that QA protocols have to be MR-compatible and
that proper QA has to carefully address all aspects of
MRgRT. These encompass treatment delivery and MRI
QA, end-to-end tests, patient-specific QA and QA of the
online adaptive workflow.

Treatment delivery and MRI QA
As early clinical experience in MRgRT is from the 60Co
system with an integrated 0.35 T MRI [12], the defin-
ition of QA procedures relies mostly on that know-how,
where online adaptive MRgRT is first documented [162].
Initial procedures for commissioning intensity modu-
lated plan delivery in MRgRT are reported in [131, 163],
where the IMRT delivery performance is benchmarked
following the recommendations of the AAPM Task
Group 119 for IMRT commissioning. In general,
characterization and QA of the machine specific beam

parameters (percentage depth dose, lateral profiles, flat-
ness, symmetry, output factor, isocenter accuracy and
others) closely follow the standard protocol for conven-
tional step-and-shoot IMRT. The same holds true for
the obligatory quality checks of the MLC performance
(e.g., picket fence test). However, the specific MRgRT
setting and presence of the magnetic field have to be
considered [164, 165]: typically, conventional water
phantoms do not fit in the bore of clinical MRI-linacs
and stepping motors are not MR-compatible. Moreover,
the orientation of ionization chambers and the corre-
sponding correction factors have to be carefully
considered.
On the imaging side, standard quality checks for,

among others, B-field homogeneity or signal-to-noise
ratio, using conventional MRI QA phantoms (ACR
phantom) are crucial. In addition, a critical issue in
MRgRT QA is the quantification of spatial distortions
induced by MRI [65]. These can be divided into system-
dependent and patient-dependent factors [166]. System-
dependent distortions are mainly due to static field
inhomogeneities and non-linearity effects of the applied
magnetic field gradients, where the latter is the domin-
ant effect [166]. Patient-dependent causes include varia-
tions in magnetic susceptibility of different tissues [167]
and chemical shift, which accounts for intra-tissue devia-
tions due to the surrounding chemical environment
[168]. System-related factors, representing the larger
uncertainty, are typically handled relying on vendor-
specific distortion corrections algorithms, whose
performance is dependent on the applied MR imaging
sequence and requires verification with geometrical
phantoms [169]. Susceptibility induced distortions are
more difficult to tackle, as they are strictly dependent on
the patient being imaged [166]. It has been shown that
major effects are found at the air-tissue interface, with a
clear dependency on the magnetic field and gradient
strength [166]. Susceptibility effects can be measured
using specialized MRI sequences [170] or simulated
from an anatomical image, which requires the prior de-
termination of volume susceptibilities of different tissues
[171]. Conversely, chemical shift artifacts, mostly visible
at the interface of fat regions, can be conveniently re-
duced by using a wider receiver bandwidth, a smaller
FOV, or applying fat saturation techniques in the MR
imaging sequence [166].
Finally, yet importantly, dedicated tests ensuring flaw-

less parallel usage of imaging and treatment units have
to be performed. Similar to conventional radiotherapy,
these tests include verification of accurately aligned
imaging and treatment isocenters using dedicated MR-
compatible phantoms [172], but also potential system
interferences between linac and MRI. To address these
issues, Tijssen et al. suggest several dedicated QA tests
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inferring, among others, image quality at different gantry
positions and image quality during beam delivery and
MLC movement, which is particularly important when
performing imaging during irradiation [65]. Dedicated
phantom set-ups and QA procedures for gated beam de-
livery are also subject of current research [32, 173].

End-to-end tests
For proper end-to-end QA testing, dedicated phantoms
are required. In MRgRT it is crucial that the phantom
materials feature not only CT but also MRI visibility
[174, 175] for checking all aspects of the treatment
workflow, including image fusion and registration as well
as potentially plan adaptation and irradiation. Moreover,
dosimeters capable of accurate absolute dose measure-
ment in 2D or even 3D in the presence of magnetic
fields, e.g., film, dosimetric gel or 3D diode arrays, are
required [176–178]. The use of various static and dy-
namic, geometrical and anthropomorphic phantoms for
end-to-end tests is reported, including also dedicated
end-to-end tests for stereotactic radiosurgery [179] and
for motion management relying on MR guidance [173].
More recently, developments towards specific deform-
able QA phantoms are reported [175, 180]. Deformable
phantoms are of particular interest in MRgRT, since
they also enable end-to-end testing of online adaptive
workflows, by altering the geometry between planning
and irradiation. In addition, efforts on fast, daily end-to-
end tests are discussed [181]. Most of these solutions are
still dedicated in-house developments and not commer-
cially available.

Patient-specific QA
Similar to conventional radiotherapy, patient-specific
QA protocols dosimetrically verifying the correct irradi-
ation of the optimized treatment plan have been intro-
duced in the MRgRT workflow. Due to the possibility of
daily treatment adaptation, not only a single (baseline)
treatment plan per patient, but several adapted plans for
each patient might have to be verified. Moreover, there
is the online aspect, detailed in the following subsection,
related to patient-specific QA of the adapted plan prior
to irradiation, while the patient is in treatment position.
In general, patient-specific baseline plan QA in MRgRT
can rely on phantom dose delivery and conventional
dose measurement methods (multipoint IC measure-
ment, 2D film dosimetry, quasi 3D diode arrays), similar
to conventional radiotherapy [123, 182]. Of course, MR
compatibility of dosimeters as well as of the phantoms
to be used for dose measurements is crucial. In addition,
protocols based solely on machine log files and either
2D fluence verification or 3D Monte Carlo-based dose
reconstruction have been reported in the literature
[183]. In the case of online plan adaptation there is

typically a fast online component and a slower offline
component for the plan QA that is performed after com-
pletion of the irradiation. Werensteijn-Honingh et al.
[21] reported retrospective QA of the adapted plan by
means of film dosimetry, while Bertelsen et al. [184] re-
lied on verification by means of a cylindrical diode array
in the early clinical adoption phase. Acharya et al. in-
stead performed an offline log-file analysis for adapted
plans and only relied on measurements for the baseline
plan QA [162]. Also the feasibility of dose reconstruc-
tion from EPID measurements during treatment delivery
has been shown and might be a future option for
patient-specific offline QA of the adapted plans [185].

Online adaptive workflow QA
In addition to the described offline QA procedures,
MRgRT requires specifically designed QA protocols for
verifying the online adaptive radiotherapy workflow
[186]. The latter implies additional risks with respect to
a conventional radiotherapy workflow, as procedures
such as image fusion, re-contouring, plan adaptation and
plan quality checks need to be performed on the fly.
This translates in significant constraints for QA proce-
dures due to limited time availability and the need to
check adapted plans with the patient in treatment pos-
ition [186].
An example of a QA workflow for online adaptive

MRgRT, including both manual and automatic checks, is
depicted in Fig. 4. QA starts with checking in-room
image acquisition and image fusion. The generated up-
dated contours are verified by dedicated checklists and
secondary inspection. Before plan adaptation, the correct
settings for treatment plan optimization are ensured and
the obtained plan is inspected, e.g., in terms of monitor
units, number and shape of segments, but also under
consideration of the given clinical goals [41]. Eventually,
patient-specific online QA of the adapted plan has to be
performed. In today’s clinical practice this is done by
means of a secondary independent dose calculation and
comparison to the treatment planning system’s dose. For
the secondary dose engine, usage of a fast MC-base algo-
rithm [40, 151, 162], but also of a collapsed-cone algo-
rithm (not accounting for the magnetic field) has been
reported [17, 21]. As outlined above, the adapted plans
are often additionally verified retrospectively by dosimet-
ric measurements or log-file-based dose reconstruction.

Discussion
MRgRT provides unprecedented capabilities to image
the patient before and online during treatment, allowing
soft tissue targeting to account for inter- and intra-
fractional anatomical variations. In practical clinical use,
limitations exist in terms of the optimal trade-off be-
tween spatial and temporal resolution for imaging in
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MRgRT. There are therefore clear constraints in terms
of the anatomical detail and/or the time-varying dynam-
ics that the MR image can capture: this typically restricts
pre-treatment imaging to static 3D sequences and time-
resolved online imaging to single 2D planes in clinical
settings. An important medical physics challenge in the
near future is the development of fast time-resolved 3D-
MRI sequences to improve motion monitoring and com-
pensation in MRgRT. Research is also ongoing in the ap-
plication of quantitative imaging principles to MRgRT,
which would leverage even more the clinical interest in
this novel IGART platform. The clinical application of
MRgRT is, however, at its initial stages, and the imple-
mentation of quantitative imaging protocols will require
a more consolidated use to determine the specific areas
of interest. Extensive validation is required to fully ex-
plore the clinical impact of quantitative information
from daily imaging in MRgRT.
Besides imaging, a key challenge in MRgRT applica-

tion is the realization of dose measurements and dose
calculations in the presence of a magnetic field. Con-
ventional measurements techniques require adaption
and specific calibration procedures, with a clear
impact on QA protocols and medical physics involve-
ment. For neither are dedicated guidelines yet avail-
able, driving the early MRgRT adopters to the
development of dedicated in-house solutions. MRgRT
also emphasizes the need for accurate and independ-
ent dose calculation engines, which calls for fast
Monte Carlo implementation, as required not only for
treatment plan optimization, but also for online plan
verification and independent QA. The widespread use
of highly efficient hardware platforms and parallel
computing programming will definitely contribute to
match the requirements for Monte Carlo dose calcu-
lations applicable to MRgRT.

Safe clinical adoption of MRgRT also entails unique
challenges in terms of QA protocol implementation.
Specifically, machine QA and end-to-end tests should,
similar to dose measurements, account for the magnetic
field, thus increasing the overall complexity. Dedicated
tests ensuring the interference-free parallel operation of
MRI and linac have to be established. In addition, online
QA is required to fully exploit the imaging capabilities
for treatment adaptation, with the need to define specific
official protocols.
Despite these challenges, the enhanced imaging

capabilities offered by MRgRT already enable routine
pre-treatment plan adaption as a way to compensate
for measured anatomical deviations. This represents a
significant step towards more conformal treatments, as,
until today, adaptation has mostly been applied via
retrospective replanning imaging in reaction to mea-
sured deviations in conventional radiotherapy. While
pre-treatment adaption is already routinely applied clin-
ically in MRgRT to compensate for inter-fractional
changes, intra-fractional changes, e.g., related to breath-
ing motion, are still tackled using gating protocols due
to the mentioned limitations in time-resolved imaging.
The future development of fast rt-4DMRI protocols
would represent an important step towards more effi-
cient motion management by means of real-time 3D
tumor and anatomy tracking in combination with real-
time online plan adaptation.
Until today, target delineation, dose calculations, plan

optimization and QA of the adapted plan in MRgRT
contribute to considerably increase the workload with
respect to conventional RT. Thus, pre-treatment plan
adaptation is naturally better suited to treatments with
few fractions, which is why anatomical sites where hypo-
fractionation is indicated, such as prostate [187], pan-
creas [151], lung [25], liver and adrenal gland [188] as

Fig. 4 Bottom row – major steps of the online adaptive radiotherapy process for MRgRT. Top row – the associated QA tasks for each step. QA
tasks highlighted in orange and italic are the manual checks. QA tasks highlighted in green represent automated checks. The acronyms VRART
and VRADQ refer to specific in-house developed software packages. Reprinted with permission from [186]
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well as oligometastases [21], are preferred. More details
on the clinical indications for MRgRT have been re-
cently discussed by Corradini et al. [189]. Both the sub-
stantially increased workload, as well as the focus on
treatment sites allowing for hypofractionated treatment,
limit the routine clinical use of MRgRT. Future medical
physics developments streamlining the MRgRT work-
flow, e.g., in terms of more accurate and robust pseudo-
CT generation and improved automatic contour sugges-
tion by means of deep learning, might play an important
role to pave the way towards widespread clinical use of
MRgRT.

Conclusions
Recent developments in MRgRT provide effective im-
provements in soft tissue discrimination and tumor tar-
geting, enabling detection of anatomical changes and
treatment adaptation in IGART. The ability to capture
and react to inter- and intra-fractional variations is ex-
pected to improve our knowledge of dose deposition
during treatment. These factors will contribute signifi-
cantly to our understanding of both tumor as well as
normal tissue response. Such advantages come at the
price of further complexity in the implementation of ef-
fective treatment workflows, with substantial efforts for
treatment QA, online evaluation and validation of poten-
tial new approaches. Nevertheless, the systematic use of
MRI within an IGART workflow brings the potential of
better treatment customization and evaluation of the in-
dividual treatment response.
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