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Abstract

malignancies

Radiotherapy and radiation oncology play a key role in the clinical management of patients suffering from
oncological diseases. In clinical routine, anatomic imaging such as contrast-enhanced CT and MRI are widely
available and are usually used to improve the target volume delineation for subsequent radiotherapy. Moreover,
these modalities are also used for treatment monitoring after radiotherapy. However, some diagnostic questions
cannot be sufficiently addressed by the mere use standard morphological imaging. Therefore, positron emission
tomography (PET) imaging gains increasing clinical significance in the management of oncological patients
undergoing radiotherapy, as PET allows the visualization and quantification of tumoral features on a molecular level
beyond the mere morphological extent shown by conventional imaging, such as tumor metabolism or receptor
expression. The tumor metabolism or receptor expression information derived from PET can be used as tool for
visualization of tumor extent, for assessing response during and after therapy, for prediction of patterns of failure
and for definition of the volume in need of dose-escalation. This review focuses on recent and current advances of
PET imaging within the field of clinical radiotherapy / radiation oncology in several oncological entities (neuro-
oncology, head & neck cancer, lung cancer, gastrointestinal tumors and prostate cancer) with particular emphasis
on radiotherapy planning, response assessment after radiotherapy and prognostication.
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Introduction

Radiotherapy plays a key role in the clinical management
of patients suffering from oncological diseases, as ap-
proximately half of cancer patients directly benefit from
individual radiotherapy during their disease course. In
this disease course, radiotherapy can be applied as sole
treatment or as a comprehensive treatment in combin-
ation with systemic treatments such as chemotherapy or
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local treatments such as surgery [1]. This high clinical
significance for the treatment of oncological diseases is
reached and maintained by the fast technological
innovation and improvements that were introduced and
subsequently established in clinical routine over the last
decades [2], e.g. intensity-modulated radiation therapy
(IMRT) has evolved as a widely used clinical treatment
modality in many countries [3].

Anatomic imaging such as contrast-enhanced CT and
MRI are widely available and are usually used to delin-
eate the target volume for the subsequent radiotherapy.
However, in the clinical routine in radiation oncology,
diagnostic issues arise that cannot be sufficiently ad-
dressed by standard morphologic imaging. In particular,
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the delineation of viable tumor tissue can be challenging,
especially in patients with local pretreatment such as
surgery. Moreover, treatment response assessment with
conventional morphological imaging is partly unable to
correctly differentiate early relapse from radiation in-
duced changes or inflammation, e.g. in neuro-oncology
[4]. Therefore, positron emission tomography (PET) im-
aging gains increasing clinical significance in the man-
agement of  oncological patients  undergoing
radiotherapy, as PET allows the visualization and quanti-
fication of tumoral features on a molecular level beyond
the mere morphological extent on conventional imaging,
such as tumor metabolism or receptor expression. ‘°F-
FDG, a glucose analogue, is the most commonly applied
ligand for oncological PET imaging [5] due to its proven
utility and its generally increasing availability. Beyond
the visualization of glucose metabolism, other tumor
characteristics can be targeted and visualized by PET im-
aging. In this regard, e.g. PET with prostate-specific
membrane antigen (PSMA) ligands are of high clinical
and scientific interest for advanced imaging of patients
suffering from prostate cancer [6]. The tumor metabol-
ism or receptor expression information has allowed for
use as a tool for (a) visualization of tumor extent, for (b)
assessing response during and (c) after therapy, for (d)
prediction of patterns of failure and for (e) definition of
the volume in need of dose-escalation. Where, (e) some-
times has been referred to as “dose-painting” [7], al-
though the idea is older [8] and the practice of
escalation of the PET-avid volumes has been in long use
for the treatment of e.g. head neck cancer.

This review describes the recent advances of PET im-
aging within the field of clinical radiotherapy / radiation
oncology in several oncological diseases (neuro-oncol-
ogy, head & neck cancer, lung cancer, gastrointestinal
tumors and prostate cancer) with particular emphasis on
radiotherapy planning, but also on treatment response
evaluation and prognostication. Moreover, recent ad-
vances in PET imaging itself are reviewed with special
emphasis on the potential applicability on clinical set-
tings in radiotherapy / radiation oncology.

Neuro-oncology
PET is widely applied in the field of neuro-oncology as
complementary imaging modality in addition to MRI
[9]. Its use may be derived from the answers to several
key questions: 1) How to optimally define the radio-
therapeutic target volume or delineate the extent of dis-
ease before surgical resection, 2) is it possible to derive
prognostic value from molecular imaging, and 3) how to
distinguish treatment effect from true progression.
When considering the wide field of primary CNS tu-
mors, the entity of glioma is reported on by the PET task
force of the Response Assessment in Neuro-Oncology
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(RANO) working group [10]. This task force clearly de-
rives evidence from published studies with validated
PET findings (either by histopathology or clinical course)
in the setting of diagnosis, biopsy, surgery, radiotherapy
and response assessment, and shows superiority of
amino acid PET such as ®F-FET or "'C-MET PET [11]
over '®F-FDG PET [10, 12]. Specifically, **F-FET has
been shown to predict prognosis [13, 14], to enable im-
proved target delineation [15-17] to assess treatment re-
sponse [10]. Recurrence pattern analyses have
substantiated the role of amino acid PET in identifying
aggressive parts and the potential of targeting these re-
gions [18-21]. In a recent study, the combination of F-
FET-PET and T1w MRI was shown to carry the most in-
formation for prediction of patterns of failure following
chemo-radiation therapy of glioblastoma patients [22].
In the US, ®*F-DOPA is a widely used tracer and it was
shown to provide additional clinical information [23],
which could also be validated histopathologically [24]. A
variety of data exists on other tracers as described in
Table 1 [28]. One potential target of interest for brain
tumor imaging is the 18kDa translocator protein
(TSPO), as known in neurodegenerative research, with
remarkable overexpression in glioblastoma patients,
whereas further studies have to further elucidate the
contribution of neuro-inflammatory component within
the signal obtained in TSPO PET [29-31]. In this regard,
the potential influence of this new modality on radio-
therapy approaches has to be validated. In sum, espe-
cially amino acid tracers are applied for radiotherapy
planning in clinical routine of glioma patients [9, 15, 20],
but also for the differentiation of viable tumor and re-
current / progressive disease after initial radiotherapy [4,
32, 33], as recently emphasized by the PET RANO group
[10].

In analogy to primary brain tumors, brain metastases
can also be visualized by PET [34]. Although its value
for imaging prior to radiotherapy remains unclear, PET
imaging, especially with radiolabeled amino acids, has
evolved as complementary imaging tool for the differen-
tiation of true progression from pseudoprogression, e.g.
after radiotherapy [16, 35-37], see Fig. 1. Therefore, the
use of PET in brain metastases was also recently recom-
mended by the PET RANO group [34].

Compared to glioma and brain metastases, meningi-
oma as extraaxial tumor is even more common. Beyond
MRI, PET ligands targeting the somatostatin receptor
(SSR) such as **Ga-DOTATOC and **Ga-DOTATATE
are used in clinical routine [38, 39] and have been estab-
lished for surgical guidance [40] or target volume defin-
ition [41, 42] due to the high expression of SSR in
meningioma tissue. Specifically, this imaging modality is
of help in meningiomas at the skull base, where extrafor-
aminal extension or osseous infiltration may be expected
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Table 1 Different tumors and tracers in neuro-oncology for different indications: target delineation (TD), prognostication (P),
distinguishing between progressive disease and pseudoprogression (TR)

Tumor entity  Tracers Indication  Comment

Valuable as longer halftime compared to ''C-MET, high diagnostic accuracy with histopathological
Studies on prognostic relevance and histopathological validation available, e.g. [24, 26], mainly used in the

Studies on prognostic relevance and histopathological validation available. Aiding in target delineation.

Aiding in target delineation or surgical approach, especially when located at the skull base

Glioma T8F-FET TD/P/TR
validation; ongoing trials to confirm clinical benefit, e. g. GLIAA [25]
"8-DOPA  TD/P/TR
us
C-MET TD/P
TSPO None Investigational, no histopathological validation studies (ongoing)
ligands
Meningioma ®®Ga- D
DOTATOC
BGa- iIb) SUV cutoff histologically validated, no relevant data available on response
DOTATATE
Brain 8EFET TR Differentiation pseudoprogression/radiation necrosis vs. tumor recurrence
metastasis
CNS 8EFDG None Tumor metabolism, response assessment [27]
lymphoma

[43] or in case of suspected residual or recurrent tissue
after initial therapy [40]. Some other reports on amino
acid PET are available as well, however, in the light of
SSR-ligands, these tracers are not widely used in clinical
routine for meningioma imaging [44]. Beyond in CNS
lymphoma [45], "*F-FDG PET is not recommended by
the PET RANO group for most primary brain tumors
[10, 34, 46], mainly due to high background activity of
the normal brain.

Head and neck cancer

Head and neck cancers (HNC) consist of a wide range of
tumor entities such as squamous cell cancer, salivary tu-
mors or nasopharyngeal carcinomas. Diagnosis and
treatment of the group of HNC is a complex and multi-
disciplinary approach. PET/CT provides insights into

tumor biology and tissue metabolism and has an unpre-
cedented accuracy in unmasking nodal metastases or
tumor extensions. At the current state, most of the avail-
able data for PET imaging in HNC is validated for head
and neck squamous cell cancer. PET/CT facilitates con-
touring for (chemo-) radiotherapy (CRT) and it signifi-
cantly influences dose painting in radiation planning. In
about 25% of patients with disease of unknown primary,
location is revealed by *F-FDG-PET/CT [47-52].

Since HNC represents a very heterogeneous disease,
there is great interest in finding prognostic markers for
risk stratification. For primary staging, the use of PET/
CT leads to a change of about 10% in every TNM cat-
egory and similarly, a major change in treatment strategy
in about 10% of patients [53]. This is crucial, knowing
that survival decreases by 40-50% in patients with

Fig. 1 A 54 years-old female patient with extensive edema on T2 MRI (@) and new contrast enhancing lesions at the temporal and occipital lobe
(b) after undergoing stereotactic radiosurgery for brain metastases from malignant melanoma at both sites. MRI findings were suggestive for
tumor recurrence, whereas only a faint uptake on "8E-FET PET (c) and fused PET/MRI (d) was seen in both lesions, a finding typical for radiation
necrosis. Radiation necrosis was subsequently confirmed by histopathology
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positive lymph nodes [48, 49]. Moreover, first data sug-
gests that the use of PET/CT for radiation planning
could significantly improve the local tumor control, re-
gional control and even survival [54]. The maximal stan-
dardized value (SUV ,,,) of the primary tumor and total
lesion glycolysis (TLG) of the largest node on '*F-FDG-
PET are PET derived parameters that can be used as
predictors of therapeutic failure and vice versa [55, 56].
Due to the progress of artificial intelligence and deep
learning, radiomics is increasingly becoming the focus of
research [57, 58]. Here, radiomic texture parameters
such as homogeneity and the sphericity described by
Fujima et al. showed high association with the individual
clinical course [57]. Moreover, e.g. low-intensity long-
run emphasis (LILRE) performed before therapy was
stated as a significant predictor of local control after
CRT [59]. For a patient example please see Fig. 2.
Signatures similar to radiomics build derived from '®F-
FDG-PET and contrast-enhanced CT could even predict
hypoxic areas of HNC [60], which is an important find-
ing, as tumoral hypoxia is highly associated with an ag-
gressive tumor phenotype that alters gene expression to
promote survival in a hostile environment, which unfor-
tunately causes a certain degree of therapeutic resistance
[61]. Therefore, the identification of radiation-resistant
tumor subvolumes may allow for intensified or hypoxia-
modified treatment as well as stratification of patients
[62]. Since the first application of hypoxia imaging with
PET-ligands in 1981, various tracers like '*E-FETNIM,
'8F_-HX4 and '®F-FMISO have been evaluated in cancer
patients for detecting hypoxic hot spots [61]. Radiation
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dose escalation up to 77Gy to hypoxic areas detected by
hypoxia-specific PET led to better local control without
added toxicity, even, when hypoxia imaging used as im-
aging modality for response assessment during therapy,
persistent tumoral hypoxia predicts poorer outcome [61,
63—67]. On the other hand, when comparing different
tracers intra-individually, it could be shown that the
detected hypoxic areas are often already covered by
"8 F_-FDG-avid areas or are in close proximity. Hence,
hypoxic areas are mostly included, if radiotherapy is
escalated to ®F-FDG-avid (sub-) volumes. However,
this might lead to larger irradiated volumes and, as a
consequence, potentially might result in a higher rate
of side effects [68-70]. In sum, hypoxia imaging al-
lows additional insights in molecular states of several
tumor entities; however, the real clinical impact of
this imaging modality remains to be elucidated fur-
ther. Therefore, additional randomized controlled tri-
als have to evaluate the effects of hypoxia imaging on
the patient outcome.

Beyond imaging glucose consumption and hypoxia,
PET ligands targeting the somatostatin receptor (SSR)
such as ®®Ga-DOTATATE can be used for imaging of
undifferentiated nasopharyngeal cancer (NPC). Usually,
SSR-ligands are used for imaging neuroendocrine tu-
mors and meningioma [38, 71]. In NPC patients, SSR
PET provides a high target-to-background contrast,
which might be of particular help when infiltration at
the skull base might be present [72—74]. In clinical rou-
tine of HNC patients, however, *F-FDG-PET/CT plays
the key role among these ligands.

Fig. 2 Patient with HPV-positive squamous cell carcinoma of the right tonsil (T1 cN3 M0), who underwent "8F-FDG-PET/CT for staging prior to
radiotherapy and subsequent inclusion of PET-positive tumor masses and lymph nodes in radiotherapy planning
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Comprehensive response assessment after initial
therapy is important as salvage surgery or neck dis-
section might still be a curative option in these pa-
tients. Most problems occur while distinguishing
between an incomplete response or inflammatory
changes after CRT on conventional imaging. This
could be improved by integrating the treatment plan
into PET/CT imaging improving and the diagnostic
accuracy for response assessment [75]. Moreover, sev-
eral studies have evaluated the potential use of early
treatment response assessment with PET/CT 4 weeks
after CRT initiation [76]. In this setting, TLG of the
primary tumor is described as prognostic factor for
clinical outcome. The intra-therapy reduction of SUV-
max Of the primary tumor was also associated with the
locoregional control (LRC) and OS confirming this
approach for early response assessment [77, 78]. Of
note, PET/CT scans 1week after CRT show no prog-
nostic value, whereas, by contrast, SUV ., of the pri-
mary tumor 12weeks after finalizing therapy [79].
Unnecessary salvage neck dissections can be avoided
by response assessment with PET/CT after 12 weeks
for node assessment. This was partly validated with
correlation to histological specimens [48, 80—82]. De-
tection of relapse is crucial in the post-treatment
care. High false-negative values on conventional im-
aging can lead to delay the treatment of residual dis-
ease and therefore cause worsening in clinical
outcome. Hence, '®F-FDG PET/CT with its high diag-
nostic accuracy is indispensable during follow-up [83].
The sensitivity and specificity for the detection of re-
currences seems to be the highest between 4 and 6
months after therapy [84—86]. Altogether with the dif-
ferent tracers, high sensitivity and specificity, PET/CT
is increasingly finding its way into clinical routine of
staging, treatment planning and follow-up of head
and neck cancer.
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Lung cancer

Lung cancer remains the leading cause of cancer inci-
dence and death worldwide, with 2.1 million new lung
cancer cases and 1.8 million deaths predicted in 2018,
corresponding to a fifth of cancer deaths. Non-small cell
lung cancer (NSCLC) represents 80-90% of lung can-
cers, while small cell lung cancer (SCLC) shows a de-
creasing incidence in many countries over the past two
decades [87, 88].

PET with '8F-FDG is widely used for staging patients
with NSCLC [89, 90]. In the PLUS trial, a large multi-
center study, patients received either PET/CT staging or
only conventional diagnostic CT. Here, the additional
use of PET imaging to complete the staging prevented
unnecessary surgery in a fifth of patients [91]. Beyond
unnecessary surgery, superior mediastinal staging on
PET vs. CT was confirmed in a large meta-analysis [92].
Overall, the combined information of hybrid imaging
with PET/CT has been shown to have greater staging ac-
curacy than both imaging modalities alone [93-97]. Re-
cently, a number of studies have characterized the
diagnostic value of PET/MRI demonstrating an equiva-
lently high diagnostic performance in T and N staging of
NSCLC [98-100]. For an example, see Fig. 3.

With regard to radiation treatment planning, '*F-FDG
PET/CT has proven utility in accurate target volume de-
lineation (TVD) [5]. On '*F-FDG PET-CT, delineation
of the metabolic tumor volume (MTV) with exclusion of
abnormalities e.g. tumor-associated atelectasis or infil-
trates improves inter- and intra-reader reproducibility
[101, 102]. Thus, combined PET/CT acquisition is the
standard method of acquiring '*F-FDG PET images for
the purposes of baseline staging and for radiation treat-
ment planning [103]. A large systematic review and
meta-analysis confirmed that **F-FDG PET/CT for radi-
ation treatment planning in lung cancer has a significant
influence on the target definition. Approximately 40% of

Fig. 3 A patient with newly diagnosed NSCLC (cT2b N3 M1b) and '®F-FDG PET/CT for staging (a) and inclusion in radiotherapy planning (b)
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patients had a significant change in target definition and
20% of patients were no longer eligible for curative in-
tent (chemo)radiotherapy [104].

In 2015, the International Atomic Energy Agency
(IAEA) provided a consensus report on PET/CT imaging
for TVD in curative intent radiotherapy for NSCLC —
herein, extensive recommendations are provided for
PET and CT image visualization and interpretation,
tumor delineation and using planning CT with and with-
out breathing motion compensation [105].

Furthermore, regarding assessment of treatment re-
sponse, a secondary analysis of patients with pretreat-
ment and post-induction PET/CT enrolled to the
ESPATUE study - a phase 3 study of surgery vs. defini-
tive concurrent CRT boost in patients with resectable
stage IIIA[N2] and selected IIIB NSCLC after induction
chemotherapy consisting of 3 cycles of cisplatin/pacli-
taxel and concurrent CRT (1.5 Gy twice-daily plus con-
current cisplatin/vinorelbine) was performed. The
percentage of maximum standardized uptake value
(%SUV pax) remaining in the primary tumor after induc-
tion chemotherapy (%SUV emaining) Was predictive of
survival and freedom from extracranial progression
[106]. This parameter can be used for treatment stratifi-
cation after induction chemotherapy or for evaluation of
adjuvant novel systemic treatment options e.g. immuno-
oncology (IO) therapies for high-risk patients. In the
practice changing PACIFIC trial, which randomized
stage III NSCLC patients to consolidation durvalumab
vs. placebo every two weeks for up to 12 months follow-
ing platinum-based concurrent CRT, data on inclusion
of "®F-FDG PET/CT in up-front staging and delivery of
radiation therapy (pre- vs. post-treatment) is not avail-
able and would be of high interest [107, 108]. Currently
a number of phase 2 studies are assessing the potential
of PD-L1-directed PET imaging e.g. **Zr-durvalumab or
897r-pembrolizumab to determine SUV of radiolabeled
IO uptake in tumor lesions, correlate between tumor up-
take and PD-L1 expression as determined by immuno-
histochemistry and potentially predict response rate
(NCT03829007), (NCT03853187), (NCT02760225).

However, the role of PET/CT in SCLC remains uncer-
tain, although international guidelines recommend its
use [109]. Evidence has largely been based on small
retrospective and non-randomized prospective studies,
which have shown improvement in staging accuracy as
well as providing additional prognostic information
[110-113]. An unplanned post-hoc analysis of patients
staged with additional F-FDG PET/CT (309/540 pa-
tients) in the CONVERT study — a multicenter phase 3
study, which randomized patients with limited stage
SCLC to twice daily (45 Gy in 30 fractions or once-daily
(66 Gy in 33 fractions) platinum-based CRT, survival
outcomes (OS, PFS) were not significant. However,
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patients staged with **F-FDG PET/CT had smaller gross
tumor volumes and received lower radiation doses to
normal tissue (lung, heart, and esophagus). Caution
should be taken, when interpreting these data as inher-
ent confounders cannot be excluded. Importantly, the
analysis does not address the role of '*F-FDG PET/CT
for TVD in particular [114].

Furthermore, there are some drawbacks vis-a-vis re-
sponse assessment on PET e.g. acquisition time, PET pa-
rameters (SUV, total lesion glycolysis (TLG) and MTV)
and cut-offs. The lack of an undisputed, univocal param-
eter remains a challenge. Nevertheless, a current system-
atic review addressed the role of interim '*F-FDG PET/
CT during.

CRT for early prediction of clinical outcome in
NSCLC and showed that early identification of meta-
bolic tumor response was a predictor of response and
prognosis in NSCLC patients [115]. Kong et al. con-
ducted a phase II trial in 42 inoperable stage II-III
NSCLC patients, delivering individualized conformal
CRT (39 pts./93%) or RT alone (3 pts./7%) to a fixed risk
of radiation-induced lung toxicity (grade >2) and adap-
tively escalating the dose to the residual tumor defined
on mid-treatment FDG-PET after an equivalent dose in
2 Gy per fraction (EQD2) of 50 Gy up to a physical total
dose of 86 Gy (EQD2 of 92 Gy [alpha / beta=10 for
tumor]) in 30 daily fractions and showed favorable LRC
[116]. The RTOG 1106 trial is a follow-up ongoing clin-
ical study from the same group validating this finding in
a randomized manner (NCT01507428).

Moreover, residual metabolic tumor volume after de-
finitive treatment could further determine prognosis:
Ohri et al. reported that 30-month cumulative incidence
rates of local progression were 32 and 5% for lesions
with residual MTV >25cm® vs. <25cm?, respectively
[117]. Roengvoraphoj et al. demonstrated that pre-
treatment primary tumor (PT)-MTV <63 cm? post-
treatment PT-MV < 25 cm® and > 15% reduction in mid-
to post-PT-MV significantly improved OS [118]. In a
follow-up analysis, the same group analyzed the prog-
nostic value of a post-treatment PET/CT and demon-
strated that PT-MTV reduction of at least 80%
(complete and major metabolic response) improved pa-
tient outcome [119].%”

Prostate cancer

PET/CT PSMA-ligands labeled with ®®*Ga or '®F is in-
creasingly used in prostate cancer screening worldwide,
as it provides an excellent target-to-background ratio
leading to an improved detection rate [120]. PSMA is
highly specific for prostatic tumoral tissue, even if PSMA
expression in ganglia, sarcoidosis or benign bone dis-
eases may lead to incidentally false-positive findings
[121, 122]. A significant benefit in lymph node staging
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has been observed for PSMA PET/CT compared to
standard of care imaging: A recent meta-analysis with
histopathology as standard of reference and reported
combined sensitivities and specificities of 80 and 97% at
lesion level and 86 and 86% at patient level, either at ini-
tial staging and/or at biochemical recurrence [123-125].
However, PSMA PET/CT may still underestimate the
true extent of nodal involvement, especially with regards
to small lymph node metastases <3mm [126, 127].
Hence, PSMA PET/CT at the current state may prob-
ably not yet allow a perfect node-based therapeutic ap-
proach alone, e.g. stereotactic body radiotherapy (SBRT)
in comparison to elective nodal radiotherapy (ENRT)
[128] or limited salvage lymph node dissection (SLND)
compared to super-extended SLND [129]. For detection
of bone metastases, PSMA PET/CT outperformed planar
bone scans in two large analyses [130, 131]. Only few in-
stitutions have the possibility to perform PSMA PET/
MRI and head to head comparisons between PSMA
PET/MRIs and PET/CT are scarce. Overall, there seems
to be a very low discordance between the two imaging
techniques including PET-positive lymph nodes of nor-
mal size [132].

One further unique characteristic of PSMA PET/CT is
its high detection rate of metastases even at low pre-
PET PSA levels, e.g. at PSA level < 0.2 ng/ml in 33% and
at 0.2-0.49 ng/ml in 45% of the patients, which partly
explains the high impact of PSMA PET/CT on the indi-
vidual patient management, particularly, in patients with
biochemical recurrence or persistence [123, 133, 134].
So far, high-level evidence on the benefit of an earlier
detection of node or distant metastases is missing and
randomized controlled trials evaluating the management
and outcome of patients with PSMA PET-positive dis-
ease are currently under way. Thus, up to now there are
no clear recommendations in the European or NCCN
guidelines on application of PSMA PET/CT at initial
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staging and only a weak recommendation for patients
with persistent or recurrent PSA [135]. Nevertheless,
particularly in the postoperative setting in persistent or
recurrent disease prior to radiotherapy, evidence is accu-
mulating: recently, a single-arm prospective trial on 635
patients with biochemically recurrent prostate cancer re-
ported a high detection rate of 75% and a substantial
inter-reader reproducibility for PSMA PET/CT [136].
From a prospective survey, it is known that information
from PSMA PET/CT lead to management changes in
more than 50% of prostate cancer patients with bio-
chemical recurrence [137]. With special regard to radio-
therapy, the specific impact of PSMA PET/CT on
salvage radiotherapy was investigated in patients with a
PSA recurrence of <1.0ng/ml after radical prostatec-
tomy: In this analysis, patients had a median PSA of
0.48 ng/ml and the PSMA PET/CT result was compared
to standard of care Radiation Therapy Oncology Group
(RTOG) clinical target volume (CTV) of both the pros-
tate bed and the pelvic lymph nodes. Overall, 132 of 270
included patients had PSMA PET-positive lesions and
52 patients had at least one lesion not covered by con-
sensus CTVs [138]. These findings have led to a ran-
domized imaging trial of salvage radiotherapy with or
without PSMA PET/CT (NCT03582774) investigating
its potential benefit on clinical outcome in a prospective
setting [139]. So far, few retrospective studies reported
patient outcome after PSMA PET/CT-based salvage
radiotherapy. The mean PSA response rate in these
studies was 74% (range, 60—83%) after a mean follow-up
time of 19 months [140-144], for an example see Fig. 4.
Overall, one might expect that PSMA PET/CT improves
salvage radiotherapy and thereby potentially outcome in
numerous ways: Firstly, visualizing macroscopic recur-
rence allows for dose-escalation. Secondly, CTVs can be
expanded to areas not normally treated by consensus
CTV. Thirdly, macroscopic recurrence might lead to

Fig. 4 A 68-years old male patient with newly diagnosed anal cancer Stage IlIC (T4 cN1 cM0) and "F-FDG PET/CT with '"®F-FDG avid primary
tumor and inguinal lymph node (a). '®F-FDG PET/CT was then used for radiotherapy planning with boost to the right inguinal lymph nodes and
primary tumor (b)

~
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early application of androgen deprivation therapy con-
current with radiotherapy and finally, salvage radiother-
apy might be abandoned in case of overt metastatic
disease. Regarding primary prostate cancer, current re-
search is focusing on the identification and accurate
contouring of the intraprostatic tumor volume based on
PSMA PET/CT in order to allow for focal radiation
therapy with dose escalation to the PSMA PET-positive
lesions within the prostatic gland [145, 146]. For intra-
prostatic boosting, PSMA PET/CT may even replace
multiparametric MRI (mpMRI): In a prospective valid-
ation study, an increased consensus of PSMA PET/CT
with histopathologic correlation was observed for intra-
prostatic gross tumor volume delineation compared to
mpMRI. Additionally, mpMRI contours significantly
underestimated tumor volume [147]. Also, analysis of
radiomic features gain access into the evaluation of pros-
tate cancer patents [148]. In recent years, treatment of
oligometastatic prostate cancer has sparked new interest
since the STAMPEDE trial reported a significant overall
survival benefit by prostate radiotherapy and life-long
ADT in patients with low metastatic burden [149] and
the STOMP trial an ADT-free longer survival by
metastasis-directed therapy vs. surveillance [150]. This
has led to various studies all incorporating PSMA PET/
CT as diagnostic imaging like the PEACE V trial
(NCT03569241) or the “Prostate Cancer Subclinical
Metastatic Ablative MR-guided Radiotherapy” study
(NCT03160794).

Moreover, in analogy to neuroendocrine tumors,
where radioligands labeled with the beta-emitters such
as ""Lu-DOTATATE are approved and successfully
used in clinical routine [151], PSMA-ligands labeled with
7Lu can also be used for radioligand therapy [152]. In
several countries, PSMA-ligands show to be a valuable
treatment option in patients with metastasized,
castration-resistant prostate cancer, so that several trials
such as the “VISION” trial (NCT03511664) are on their
way.

Overall, the use of PSMA PET/CT prior to radiother-
apy of primary or postoperative prostate cancer warrants
further high-level research to find its rightful place in
the current guidelines. Nevertheless, the available evi-
dence already suggests that PSMA PET/CT will become
an even more decisive tool in the guidance and treat-
ment of prostate cancer patients than it nowadays
already is.

Gastrointestinal oncology

Radiation oncology is a crucial part of the treatment in
several gastrointestinal tumors. Particularly in curative
intended treatment of esophageal carcinoma, rectal can-
cer, and anal cancer radiotherapy (RT) is a key treatment
modality. The impact of '*F-FDG PET/CT on staging of

Page 8 of 15

patients with gastrointestinal malignancies, radiation
treatment planning, and response assessment is well

established.

Esophageal cancer

In curative treatment of patients with locally advanced
esophageal cancer chemoradiation (CRT) is either per-
formed as neoadjuvant treatment before surgery or as
definitive treatment in case of unresectable tumor. Neo-
adjuvant treatment is performed in patients who are fit
to undergo major surgery. However, patients with thor-
acic squamous cell carcinoma of the esophagus who
show good response to CRT might have a similar out-
come with definitive CRT compared to surgery [153].
Several studies have gathered evidence that '*F-FDG
PET/CT has a high prognostic value in patients under-
going CRT for esophageal cancer [154, 155] and can
therefore be useful to guide treatment decisions.

RT planning in patients with esophageal cancer is
challenging since the primary tumor is often poorly vis-
ible on standard morphological imaging with CT alone.
Given the submucosal spread of the tumor, diagnostic
modalities such as barium swallow, gastroesophagoscopy
or MRI are frequently used to further determine the
exact tumor extend. While the additional effect of 'SF-
FDG PET/CT on primary tumor volume delineation
seems limited with different studies reporting conflicting
results either with benefit [156] or no benefit [157] of
PET/CT over conventional imaging alone. In contrast,
the effect on metabolic imaging on the identification of
involved nodes has been shown [157, 158]. |F-FDG
PET/CT has a high specificity and sensitivity in detect-
ing involved nodes in esophageal cancer and should
therefore be considered for pre-treatment imaging in pa-
tients with esophageal cancer [159].

Pancreatic cancer

RCT or stereotactic radiotherapy [160] can be offered to
patients as part of multidisciplinary treatment in locally
advanced pancreatic cancer (LAPC) either as neoadju-
vant or as definitive treatment. The pancreas is localized
in close proximity to highly radiation sensitive organs
such as the duodenum and small bowel that need to be
spared [161]. Large safety margins to account for in-
ternal movement and positioning uncertainties are
therefore obsolete and precise tumor delineation re-
mains the main challenge in treatment planning of
LAPC. While malignancies of the pancreas can be im-
aged using different PET tracer such as '*F-FDG and
'8F_fluorothymidine (FLT) [162] the value of metabolic
imaging for delineating GTV in pancreatic cancer re-
mains debatable. Due to a long acquisition phase
encompassing several breathing cycles misregistration
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between PET and CT occur and can lead to uncertain-
ties in determining the actual tumor extend [163].

Concerning patient management pre-therapeutic "*F-
FDG PET/CT has a prognostic value as initial low SUV-
max showed an association with better median survival
after SBRT in one study with 55 LAPC patients [164].
Accordingly another study with 33 patients reported that
high metabolic tumor volume (MTV) and total lesion
glycolysis (TLG) prior to induction gemcitabine and
SBRT were associated with inferior overall survival
[165]. A histopathological correlation in patients with
borderline resectable pancreatic carcinoma and LAPC
undergoing multimodality neoadjuvant treatment
showed both post-neoadjuvant CA19-9 and post-
neoadjuvant therapy SUV,,., significantly correlating
with tumor regression grade [166].

Rectal cancer

Neoadjuvant RT or CRT before total mesorectal excision
(TME) is well established in the treatment of locally ad-
vanced rectal cancer (LARC). It has been proven that
pathological complete response (pCR) after CRT corre-
lates with improved long-term outcome [167]. More-
over, a correlation between applied radiation dose and
pCR was found [168, 169]. Therefore, to further improve
response to neoadjuvant treatment while sparing normal
tissue focal dose escalation on macroscopic tumor seems
worthwhile [170]. Commonly, CT-based radiation treat-
ment planning is complemented by MRI information for
better soft tissue contrast. In a prospective study, gross
tumor volume delineation on MRI and '*F-FDG PET/
CT was compared in 77 patients [171]. The authors con-
cluded that '®F-FDG PET/CT added important informa-
tion for the delineation process with PET-based GTV
been smaller than MRI-based GTV but larger GTV vol-
umes when both MRI and PET information was used. A
comparison of tumor extend in pathological specimens
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even showed a better correlation to tumor extend mea-
sured on F-FDG PET/CT than on CT or MRI [172]
underlining the importance of including metabolic im-
aging in the initial treatment planning.

In up to 20% of patients with LARC pCR can be
achieved after neoadjuvant CRT [173]. This high rate of
pathological response fuels efforts to provide organ-
preserving treatment to patients with good clinical re-
sponse [174] thus emphasizing the need for valid treat-
ment assessment. So far, post-treatment *F-FDG PET/
CT has been evaluated extensively in retrospective stud-
ies with promising results [175-178]. However, at this
stage, further validation is needed.

Anal cancer
Squamous cell carcinoma of the anus (SCCA) is a rare
disease accounting for approximately 1-2% of gastro-
intestinal tumors only [179]. CRT is the treatment of
choice for curative intended organ-preserving treatment
with surgery reserved for salvage. The majority of SCCA
is highly '®F-FDG-avid [180] and multiple studies have
described a change in tumor staging in up to 20% of
cases with the use of "*F-FDG PET/CT [181, 182].
Concerning radiation treatment planning metabolic
imaging can be useful to guide target definition of elect-
ive lymph nodes regions and boost to primary tumor,
see Fig. 5. A recent meta-analysis reported a change in
target volume delineation with the use of **F-FDG PET/
CT in almost 25% of patients [183] compared to treat-
ment planning based on conventional imaging. More
specifically, "®F-FDG PET/CT contributes to identifying
involved lymph nodes that need to be included into the
radiation field. A recent study evaluated the distribution
of involved lymph nodes on PET/CT and correlated
their findings with three established delineation guide-
lines. The authors reported detection of involved lymph
nodes outside the borders of standardized clinical target

Fig. 5 A 69-years old patient with biochemical recurrence of prostate cancer (pT2c pNO RO Gleason score 9, preoperative PSA 11.7 ng/ml) and
evidence of PET-positive lymph node metastases (a) and radiotherapy-plan with dose-escalation to the PET-positive lymph nodes (b)
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volumes (CTV) recommended by the respective delinea-
tion guidelines of 10-29% [184]. The impact on '°F-
FDG PET/CT on delineation of primary tumor gross
tumor volume (GTV) has been described by Krengli
et al. They reported that metabolic imaging had a
greater influence on GTV definition than on CTV delin-
eation [185]. Attempts to identify ®F-FDG-avid sub-
volumes for further dose escalations within the primary
tumor have been made [186] however, this approach
needs further research. Utilization of metabolic imaging
as biomarker for the prediction of treatment outcome in
anal cancer has been evaluated intensively. Several retro-
spective and prospective studies have reported on the
value of '"®F-FDG PET and PET/CT for early detection
of tumor recurrence as well as the predictive value of
different parameters in pre- and posttreatment '*F-FDG
PET/CT for response assessment [187-190] with prom-
ising results.

Summary

PET imaging is increasingly used in the clinical manage-
ment of patients undergoing radiotherapy. Especially,
this is the case for a broad variety of cancer entities, as
presented in the current manuscript. Moreover, PET im-
aging is increasingly included in randomized trials fo-
cused on radiotherapy, where parameters from PET are
used as imaging biomarkers. Hence, in radiation oncol-
ogy practice, imaging biomarkers derived from PET
comprise valuable additional information beyond stand-
ard morphologic imaging for tumor staging, radiother-
apy planning, but also - after undergoing radiotherapy -
for treatment monitoring and the differentiation of
tumor relapse from inflammatory or radiation induced
changes. So far, "*F-FDG is the most widely used tracer
as described above; however, there is a strong trend to-
wards radioligands, which target more specific tumor
features rather than only glucose metabolism, e.g.
PSMA-targeted ligands for prostate cancer imaging or
SSR-directed ligands for meningioma imaging. Along
with anticipated technical innovations such as whole
body PET, methodological innovations such as the appli-
cation of PET-derived radiomics and deep learning
methods will further improve tumor characterization,
identification and, hence, the clinical workup of patients
undergoing radiotherapy.
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