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Abstract: Radiotherapy is frequently used in the therapy of lymphoma. Since lymphoma, for example Hodgkin's
disease, frequently affect rather young patients, the induction of secondary cancer or other long-term adverse
effects after irradiation are important issues to deal with. Especially for mediastinal manifestations numerous organs
and substructures at risk play a role. The heart, its coronary vessels and cardiac valves, the lungs, the thyroid and,
for female patients, the breast tissue are only the most important organs at risk. In this study we investigated if
proton-radiotherapy might reduce the dose delivered to the organs at risk and thus minimize the therapy-
associated toxicity.

Methods: In this work we compared the dose delivered to the heart, its coronary vessels and valves, the lungs, the
thyroid gland and the breast tissue by different volumetric photon plans and a proton plan, all calculated for a
dose of 28.8 Gy (EURO-NET-PHL-C2). Target Volumes have been defined by F18-FDG PET-positive areas, following a
modified involved node approach. Data from ten young female patients with mediastinal lymphoma have been
evaluated. Three different modern volumetric IMRT (VMAT) photon plans have been benchmarked against each
other and against proton-irradiation concepts. For plan-evaluation conformity- and homogeneity-indices have been
calculated as suggested in ICRU 83. The target volume coverage as well as the dose to important organs at risk as
the heart with its substructures, the lungs, the breast tissue, the thyroid and the spinal cord were calculated and
compared. For statistical evaluation mean doses to organs at risk were evaluated by non- parametric Kruskal-Wallis
calculations with pairwise comparisons.

Results: Proton-plans and three different volumetric photon-plans have been calculated. Proton irradiation results
in significant lower doses delivered to organ at risk. The median doses and the mean doses could be decreased
while PTV coverage is comparable. As well conformity as homogeneity are slightly better for proton plans. For
several organs a risk reduction for secondary malignancies has been calculated using literature data as reference.
According to the used data derived from literature especially the secondary breast cancer risk, the secondary lung
cancer risk and the risk for ischemic cardiac insults can be reduced significantly by using protons for radiotherapy
of mediastinal lymphomas.

Conclusion: Irradiation with protons for mediastinal Hodgkin-lymphoma results in significant lower doses for
almost all organs at risk and is suitable to reduce long term side effects for pediatric and adolescent patients.
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Introduction

Hodgkin’s disease is interdisciplinary treated. It’s incidence
follows a bimodal distribution regarding the age of onset
[1]. One peak is reached at the age of 20years and the
other one around 70 years of age [1]. Nowadays, over all
stages more than 80% of the patients can be cured on a
long-term scale [1]. Therefore, evolving therapy strategies
over the last decades aimed mainly at reduced therapy-
associated toxicities. This resulted in balanced multidis-
ciplinary concepts of deescalated chemotherapeutic ap-
proaches and shrinking volumes and minimized doses in
radiotherapy. Depending on stage radiotherapy concepts
evolved from extended field/mantle field [2—5] to involved
field [6-12] and finally for certain stages to involved
node [13]. At the same time the dose was deescalated
from 40 Gy [2-4] to 30 Gy [6—12] and finally down to
20 Gy [14-16], also depending on stage and chemo-
therapeutics applied. While carefully adjusting and
balancing the aim of progressions free survival versus
critical toxicities from chemotherapy or radiotherapy
[15-21], study protocols for minors and adolescents
followed a similar approach. When treating affected
lymphatic tissues in the mediastinal region different
sensitive organs at risk are vulnerable to both chemo-
therapeutics and radiation. Major late toxicities that
came up decades after initial treatment and that are
related to initial radiotherapy are cardiovascular events with
a focus at ischemic [22, 23] and valvular diseases [23]. Sec-
ondary malignancies, mainly breast-cancer [24-26], lung
cancers [25, 27], soft-tissue sarcomas [28—31] and thyroid-
cancers [32, 33] also increase in incidence years or decades
after the treatment of Morbus Hodgkin. Most negative ef-
fects exhibit a dose dependency for both, chemotherapeutic
agents and radiotherapy. Additionally, they depend on the
irradiated volume of the organ at risk. Thus, lower doses
and lower irradiated volumes lead consequently to lower
toxicities [22—-27, 29, 32—34].

Despite the already ongoing reductions of radiotherapy-
dose and irradiated volumes modern radiotherapy with
highly conformal treatment techniques, such as image-
guided intensity-modulated radiation therapy (IMRT) and
proton therapy (PT) might further reduce the dose deliv-
ered to organs at risk and in consequence diminish the
toxicity of radiotherapy [35]. However, IMRT-approaches
feature one drawback at this point. Due to the many dif-
ferent gantry-angles they distribute low doses of radiation
over large fractions of the body with possible conse-
quences for late onset secondary malignancies. That is a
problem which can in general be avoided by using inten-
sity modulated proton therapy (IMPT). Especially proton
therapy (PT) for mediastinal target volumes is supposed
to reduce the dose to critical organs at risk such as the
heart, the lungs and breasts. Therefore, reducing the risk
of cardiac morbidity and second malignancies [28, 36—38].
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However, the steep dose fall-off in IMPT leaves little room
for error and caution is needed when using this technique
to avoid increased risk of recurrences [39]. Techniques for
motion management (i.e. 4D-CT, internal target volume
concepts, breath-hold techniques) and robustness opti-
mized IMPT plans are therefore required. In the adult
population particle therapy has been used in limited stud-
ies [40—43] but only few data [44] are available analyzing
PT in pediatric or adolescent patients suffering from
Hodgkin’s disease.

In this study we report on our dosimetric comparison
of different IMRT techniques and PT in 10 underaged
or young adult patients with mediastinal and paracardial
Hodgkin’s disease. Our aim was to determine which
technique best optimizes radiation dose distribution by
minimizing dose to organs at risk with focus on the
breast tissue, the lungs and the heart with its cardiac
substructures while maintaining optimal coverage of the
target volume.

Methods and patients

We included ten different minor or young adult patients
with Hodgkin’s disease in our study. At least mediastinal
(m), in some cases also supraclavicular (sc), cervical (c)
or axillary level III (a) affections were present. Two pa-
tients had solely upper mediastinal involvement, three
only lower mediastinal disease and five patients feature
combined upper and lower mediastinal involvement.

Figure 1 displays the PTV target volumes for all ten
patients. Radiotherapy doses have been taken from the
protocol of the pediatric and adolescent Euronet-PHL-
C2 [20, 45] study. For the COPDAC-28 treatment arm a
PTV dose of 28.8 Gy, 95% isodose encompassing the
PTV, was used as dose prescription [45]. Target volume
delineation was done according to study protocol. Thus,
for GTV delineation PET positive residual areas after
initial chemotherapy cycles have been used. Only partly
PET positive tissues were encompassed in whole. For
CTV definition 5mm were added to delineated GTVs.
PTV expansion was done by adding again 5 mm to the
CTV.

Organs at risk have been delineated by experienced ra-
diation oncologists and include the heart, the coronary
vessels, the cardiac valves, the esophagus, the trachea,
the lungs, the breast tissue, the spinal cord and the
thyroid.

For each individual patient one Proton-Plan and three
additional IMRT Plans with different Couch and Gantry
Starting positions have been calculated. Intensity modu-
lated Proton (IMPT) plans were calculated with 45°
beams from each side of the patient. One axial full rota-
tion IMRT, one axial half rotation IMRT and one IMRT
plan with a 90° turned couch and 45° tilted 90° Arcs
have been prepared (See Fig. 2 for additional explanation
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level Ill, supraclavicular or cervical lymphatic tissues as well

Fig. 1 Target Volumes (PTV) for each of the ten included patients. Besides a mediastinal involvement some target volumes encompass axillary

of the used techniques). The two 45° tilted arcs were
based on the butterfly approach [46, 47] which was
modified to better fit our clinical setup. All plan optimi-
zations have been done using Varian Eclipse V13.7. Pho-
ton plans were calculated for a True-Beam 2.5 linear
accelerator, proton- plans were used using the machine
data of the Marburg Ion Therapy (MIT) center. The
MIT facility has three 90° beamlines and one 45° beam-
line (IEC 61217). The lymphoma PTV can encompass
besides the mediastinal region also supraclavicular and
cervical ones. The 45° beamline was chosen in order to
achieve short path lengths and avoid passing through
critical organs like the lung. It also has been shown that
the peculiarity of the lung tissue introduces an intrinsic
dose modulation [48], which scales with the length of
the tissue, imposing further optimization parameters

which can be avoid. The movement mitigation technique
we use is breath-hold with iso-layered rescanning [49].
4D- CT- scans have also been available. Multi-field ro-
bust optimization on CTV was employed with Varian
Eclipse V13.7 considering +2mm setup uncertainty
and + 3.5% range uncertainties. Generalized equivalent
uniform dose (gEUD) values were 30.1 + 0.3 respectively
28.8 £ 0.29. Plans have each been individually been opti-
mized with first priority on PTV coverage (95% isodose
covering the PTV). Secondary objectives were to
minimize the heart-dose, the dose to cardiac-valves and
the dose to coronary vessels, the minimal Vg, of the
Lungs and V,gy of the breast tissue. Further organs at
risk with importance include the esophagus, the spinal
cord and, whenever PTV made it necessary, the thyroid.
For the calculation of the body dose the body segment

Full rotation

Anterior half rotation

2

N

have been benchmarked against the proton-plans

Two 45° tilted frontal arcs

Two 45° proton beams

Fig. 2 Schematics of the calculated proton- and IMRT plans. Full rotation, anterior half rotation and two non-coplanar 45° tilted quarter rotations
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between the fourth cerebral and the first lumbar verte-
brae has been utilized.

Mean DVHs involving all individual DVHs for each
organ at risk were computed using Eclipse 13.7 (Varian)
and 3DSlicer V4.8.1 [50]. In addition, mean doses for all
organs at risk have been calculated and compared.
Homogeneity- and conformity indices (HI and CI) were
assessed according to ICRU83 [51] (see Eq.1 and Eq.2)
For statistical evaluation non-parametric ANOVA with
pair-wise comparisons (Kruskal-Wallis) of the mean-
dose to organs at risk has been undertaken. A statistics
software (SPSS V21.0, IBM, New York, USA) was uti-
lized. Significance level was set at p < 0.05.

H, — Dag~Dogy,

(1)

D503,
Eq 1: Homogeneity Index [51] as defined in ICRU83

Vs

C =
! Vpry

(2)
Eq 2: Conformity Index [51] as defined in ICRU83.

Results

All IMRT plans as well as the IMPT plans feature excel-
lent PTV coverage, high conformity and homogeneity
for all patients. Figure 3 shows the averaged PTV-DVH.
The averaged homogeneity- and conformity- indices for
the PTV coverage were calculated according to ICRU83
[51]. Nevertheless, the proton plan is slightly superior
especially regarding the conformity of the PTV coverage
(Conformity- Index mean / median for proton-RT 0.97
and 0.98, for full arc- RT 0.93 and 0.95, for half arc-RT
0.94 and 0.94 and for tilted quarter arc-RT 0.94 and
0.94). Statistical significance with a p-value of p =0.016
was reached for the comparison of the conformity be-
tween the anterior-half-rotation and the proton-plan.
The comparison of protons versus full rotation IMRT
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missed significance by a hair’s breadth with a p value of
0.051. Other differences were not statistically significant.

The mean-DVHs that were calculated for the heart,
the cardiac valves, the left coronary artery, the right cor-
onary artery, the ramus circumflexus, the left and right
lung, the thyroid, the left and right breast tissue, the tra-
chea and the esophagus can be seen in Fig. 4. Over the
complete dose range the proton plans feature superior
dose-sparing of organs at risk, especially in the lower
and intermediate dose region of the DVHs. The mean
dose delivered to the breast tissue is reduced by 3.1 Gy
and 3.2 Gy comparing IMPT with full-arc or anterior
half-arc IMRT at significance levels of p =0.0026 and
p =0.05. Regarding the breast tissue the non-coplanar
IMRT plans achieve a dose-sparing comparable to the
proton-plans. Thus, in consequence, the mean dose to
the heart is raised by 4.4 Gy (p=0.012) to 8.5 Gy. Full
and half in plane Arcs lead to mean heart doses around
3 Gy above the doses of the proton plans (p =0.028 for
full-arc compared to protons). Other cardiac substruc-
tures that have significantly been spared by using pro-
tons were the left ventricle (2.7Gy — 3.5 Gy mean dose
reduction compared to the arc-rotations, p-values of
0.018, 0.035 and 0.012) and the ramus circumflexus
(dose reductions of 5.0 Gy - 7.5 Gy, p-values 0.009, 0.024
and 0.01). Additionally, statistically significant mean-dose
reductions were achieved for the esophagus and the spinal
cord (Fig. 5 and Additional file 1: Table S1). The dose-
sparing of anatomical features in the vicinity of the PTV is
more limited compared to that of organs in the more ex-
tended neighborhood. That is valid for example for the left
coronary artery, the right ventricle and also for the thyroid
when the PTV extends to the cervical region (see Figs. 4
and 5). However, despite not all calculated mean doses to
organs at risk reached statistical significance mean doses
delivered by proton planes to the lungs, the right and left
coronary arteries and the cardiac valves were lower com-
pared to all three calculated photon plan varieties (Fig. 5
and Additional file 1: Table S1).
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Fig. 3 PTV-DVH, PTV-homogeneity- and -conformity-indices calculated according ICRU83 [51]
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Right breast tissue

—— Protons
— FullArc axial
— HalfArc axial
—— Frontal 45°Arcs

0 5 10 15 20 25 30
Gray
Left breast tissue
[ —— Protons
— FullArc axial
t — HalfArc axial
—— Frontal 45°Arcs
0 5 10 15 20 25 30
Gray
Left coronary artery
[ — Protons
—— FullArc axial
r — HalfArc axial
—— Frontal 45°Arcs
0 5 10 15 20 25 30
Gray
Right coronary artery

— Protons

—— FullArc axial
— HalfArc axial
— Frontal 45°Arcs

15 20
Gray

o
o b
-
o

Ramus circumflexus

—— Protons

— FullArc axial
— HalfArc axial
— Frontal 45°Arcs

10 15
Gray

o
o

20 25 30

Volume [%]

Volume [%]

Volume [%]

Volume [%]

Volume [%]

Heart
100 (- — Protons
—— FullArc axial
80+ —— HalfArc axial
—— Frontal 45°Arcs
Left ventricle
100 — Protons
—— FullArc axial
80 — HalfArc axial
—— Frontal 45°Arcs
60
40
20
0t . N
0 5 10 15 20 25 30
Gray
Right ventricle
100 - — Protons
—— FullArc axial
80 — HalfArc axial
— Frontal 45°Arcs
Cardiac valves
100 - —— Protons
— FullArc axial
80 — HalfArc axial
— Frontal 45°Arcs
60 -
40
20
Oty . .
0 5 10 15 20 25 30
Gray
Esophagus
100 —— Protons
— FullArc axial
80 — HalfArc axial
— Frontal 45°Arcs
60 -
40+
20
0k I I | | |
0 5 10 15 20 25 30
Gray

sparing of organs at risk while PTV coverage of all plans is comparable

Volume [%]

Volume [%]

Volume [%]

Volume [%]

Volume [%]

100

80

60

40

20

100

80

60

40

20

100

80

100

80

60

40

20

PTV
— Protons
[ | — FullArc axial
—— HalfArc axial
t | —— Frontal 45°Arcs
0 5 10 15 20 25 30
Gray
Right lung
[ —— Protons
— FullArc axial
r — HalfArc axial

— Frontal 45°Arcs

o
o b
o
-
o

— Protons

—— FullArc axial
— HalfArc axial
—— Frontal 45°Arcs

20

o
o b
o
-
3

25 30
Gray
Trachea
[ — Protons
—— FullArc axial
r — HalfArc axial

— Frontal 45°Arcs

20

25 30
Gray
Thyroid
[ —— Protons
— FullArc axial
r — HalfArc axial
— Frontal 45°Arcs

0 5 10 15 20

Gray




Lautenschlaeger et al. Radiation Oncology (2019) 14:157 Page 6 of 15

1 8 L Right breast tissue| Left breast tissue Thyroid Spinal cord Esiecllagus
15+ T |
12 - . . *% - v
';: I *k
O 9F » =
% 6 l l n Y l Y
o J J e A
c
g 3- I ‘ J
= 4l Y M i
3L
Right lung Left lung Trachea Cardiac valves Heart
21+
. *
18 T
_15r v .
6’ B ° .
012+ " v
g - l
g 9r o l l v
S L
c 6~ J
s 3 .
0 L
3L
| Ramus circumflexus | Right coronary artery| Left coronary artery Right ventricle Left ventricle
21+
18r
15—+
QgL i
[0} *
17} L A\ 4 [ )
o 9 l ® Ay —
T [ |
c 6F Y l
®
o) J v
= 3 -% + { \
ol 1!t
3k
-6
HProtons @FullArc axial AHalfArc axial YFrontal 45° Arcs
Fig. 5 Mean dose and standard error for different photons or proton plans and for all delineated organs at risk. P values were calculated for mean dose,
comparing proton and photon planning approaches. P values were given if significance has been reached. (*¥p = < 0.05; **¥p < 0.01; **3p < 0.001)
A\

To visualize the findings mentioned above, as an ex-  Figure 6 displays the results, an axial CT slice in the
ample, we plotted the dose difference between each pho- mediastinum has been chosen. The PTV has been delin-
ton and the proton plan for one patient for each plan. eated as filled red structure. Isodose-lines were plotted
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in addition to the colorwash dose representation. All
IMRT plans distribute more dose to all organs at risk
across the body. For the non- coplanar 45° quarter-
rotations, as it has been already seen in the DVHs, while
sparing dose to the breast tissue, the heart dose in-
creases. Generally, in beam direction anterior to the
PTV the proton plan delivers a higher dose to normal
tissue. All relevant organs at risk receive lower doses
with proton therapy.

Subgroup analysis for upper, lower and combined me-
diastinal involvement has been undertaken. Upper medi-
astinum has been defined as the region between the
thoracic inlet and the thoracic plane. Lower mediasti-
num was defined as the region below the superior medi-
astinum, with the diaphragm as caudal border. Two
patients had solely upper mediastinal disease, three pa-
tients lower mediastinal lymphoma and five patients fea-
tured combined upper and lower mediastinal disease. As
organs at risk for this subgroup analysis the breasts, the
heart, the lungs, the trachea, the esophagus and the
spinal cord have been selected. Figure 7 shows the mean
doses to the organs at risk for upper, lower and upper
and lower mediastinal disease (numeric values can be
found in Additional file 1: Table S2).

The doses to organs at risk differ for the different me-
diastinal locations of Hodgkins disease. Upper medias-
tinal irradiation leads to higher doses to the trachea and

the esophagus for all four different irradiation concepts.
The lymphatic tissues in this region are in the direct vin-
cinity of the two organs at risk so dose sparing with
proton-radiotherapy is limited. For upper mediastinal in-
volvement the heart and the breast tissue as organs at
risk don’t play that role as for lower mediastinal disease.
Nevertheless, proton-RT deliveres lower mean doses
(right breast: 0.17 Gy, left breast: 0.32 Gy, heart: 0.27)
compared to photon approaches (right breast: 0.97-1.8
Gy, left breast: 1.87-1.98 Gy, heart: 0.77-1.39 Gy).

Radiotherapy for lower or combined lower and upper
disease lead to increased doses to the heart and the
breast tissue for all techniques. While photon irradiation
delivers 7.23-9.76 Gy to the heart and 2.47-6.76 Gy to
the breasts, protons cut the dose to these two organs at
risk to values below 2.9 Gy for the breast tissue and
below 5.6 Gy for the heart.

Doses to the esophagus and the trachea are lower
for all techniques compared to upper mediastinal dis-
ease. However, the dose reduction is pronounced for
proton-RT.

The dose delivered to the body, in our case the trunk be-
tween the fourth cerebral and the first lumbar vertebrae, has
been calculated for all different four radiotherapy tech-
niques. The V10 (Volume of the body receiving 10 Gy or
more) and the mean- dose to the body are displayed in Fig. 8.
Proton radiotherapy reduces the mean dose to the body
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roughly about the factor of 2 (1,8 Gy for proton-RT versus
4,3 Gy for full arc, 3.75 Gy for half-arc or 3,6 Gy for the tilted
quarter arcs). The volume of the body-compartment receiv-
ing 10 Gy or more is reduced by about 30 - 50% when ir-
radiating with protons (V10 =7.1% for protons versus 12.3%
for full arc, 10,8% for half arc and 10.1% for quarter arcs).

Discussion

Therapy associated toxicities are major drawbacks in
modern cancer treatment especially for the treatment of
children and adolescents. For Hodgkin’s disease over the
last decade radiotherapy as well as chemotherapy evolved
to risk adapted concepts with, for radiotherapy, decreasing
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Wallis ANOVA with pairwise comparisons. Significance p = 0.025 for difference in V10 protons versus Full-ARC- RT, p = 0.017 for mean-dose
protons versus FullArc-RT and p < 0.001 for protons versus Half-ARC-RT)

irradiated volumes and radiation doses. So far photons
have been the preferred type of radiation whenever the ne-
cessity of radiotherapy arose. Recently modern volumetric
intensity modulated techniques pushed back the conven-
tional 3D approach and feature excellent conformity and
homogeneity for PTV coverage. In the clinical routine, the
IMRT is used in different forms. The IMRT techniques
differ in terms of conformity and low dose exposure to or-
gans at risk. Multiple arc techniques (butterfly VMAT) are
described as a good option to achieve the most balanced

compromise between high conformity and low dose ex-
posure of organs at risk [47]. Further optimization of these
modern IMRT techniques (e.g. full-arc butterfly VMAT)
may lead to a risk reduction for cardiovascular events [46].
Nevertheless, one flaw of photons that cannot be resolved
because of basic physics is the infinite range of photons.
Whenever a photon beam enters the body every structure
that lies in its way to the opposing body surface is going
to receive some extend of radiation dose. That's where
particle beams, in our case protons, are in advantage. Due
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to their finite range and Bragg-peak energy deposition
characteristics they feature both excellent homogeneity,
conformity and a reduced dose delivered to organs at risk.
Plan comparison studies are an effective instrument to
show superiority of one radiotherapy plan over another.
Though, one flaw of this method is that the general quality
of the different plans has to be equal. Therefore, in our
study we compared three different IMRT approaches with
axial full-rotations, axial half-rotations or non-coplanar
45° rotations and protons plans with two fixed 45° beams.
They all feature their unique characteristic of dose distri-
bution to organs at risk. So far to our best knowledge no
other study benchmarked different VMAT concepts
against proton plans and almost all other planning studies
so far used virtual proton facilities while we used the data
of the real Marburg-Ion-beam Therapy-Center synchro-
tron. Also, we investigated underaged and adolescent pa-
tients or young adults under the age of 30 which has not
systematically been done in the past.

For mediastinal location of Hodgkin’s disease important
therapy related adverse effects are cardio-vascular events
[22, 52-55], secondary cancers and hypothyroidism [56, 57].
Secondary cancers partly promoted by radiotherapy include
for mediastinal tumors mainly breast cancer [26, 58-62],
lung cancer [27, 63, 64], sarcoma [28-30] and thyroid can-
cers [65]. For all these cancers a radiation- dose and in the
case of breast cancer also an irradiated area dependency has
been derived over the decades in literature.

Of undisputed importance is of course the develop-
ment of breast cancers in female Hodgkins’s disease sur-
vivors. The lifetime risk for females to develop breast
cancer in Germany is roughly 13% [1]. Therefore,
changes in relative risk might afflict many patients. Espe-
cially underaged and young adults under the age of 30
years have a significantly elevated risk of developing
breast cancer within their lifespan. Hancock et al. [59]
reported a strong dependency of the excess relative risk
of developing breast cancer on the age of irradiation. Pa-
tients treated below the age of 20 suffer a 26 times ele-
vated relative lifetime breast-cancer risk. For young
adults treated for Hodgkin’s disease between 20 and 30
years of age the elevated relative risk was 7.8. A depend-
ency on radiation dose for development of breast cancer
has also been discussed. Travis et al. [26] demonstrated an
elevated breast cancer risk with increasing fraction of the
breast tissue receiving 4 Gy or more. Inskip et al. [58]
found a linear slope of 0.27 Gy~ ' mean dose to the breast
tissues for the increase in relative cancer risk. The findings
were confirmed by several other studies [58, 60-62], how-
ever one has to mention that available data analyze cases
mainly from the 70s and 80s when modern treatment
techniques in radiotherapy were not available and applied
doses have been retrospectively reconstructed using the
available data (mainly 2-D radiographs). Nevertheless,
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with the data available we estimated the lifetime excess
relative risks for developing breast cancer for each used
technique. Table 1 shows the calculated values, the in-
crease in relative risk has been assessed by multiplying the
mean dose to the breast tissues with the data provided by
Inskip et al. [58]. Clearly the two axial VMAT plans, the
half- and the full rotation with mean doses to the breasts
of around 5 Gy increases relative risks of patients under
30years for lifetime breast cancer by up to 148%, while
the proton and the non-coplanar VMAT treatment per-
form head-to-head, deliver mean doses of 1.5 to 2 Gy
(relative risk for breast cancer increased by around 50%
for both modalities). Both approaches offer excellent spar-
ing of the breast tissue also by minimizing the breast vol-
ume receiving 4 Gy and above. For the non-coplanar tilted
arc VMAT plan the sparing of the breast tissue leads to
increased doses to other organs at risk. Particularly the
heart receives an increased mean dose of 8.5 Gy while the
axial VMAT plans deliver 7-7.5 Gy to the heart. The pro-
ton mean dose is 4.1 Gy. Nimwegen et al. reported an ele-
vated relative risk for coronary heart disease of 7.4% per
Gy mean heart dose [52]. We calculated our excess rela-
tive risk in Table 1 according to these data by multiplying
the mean heart dose for each technique with 7.4% Gy .
The excess risk for heart diseases is reduced by 50% when
using protons instead of photons. Interesting is that they
also state that for patients below the age of 27 years the
excess relative risk per Gray is even as high as 20%. That
might even be of bigger importance for our pediatric and
adolescent patients all aged below 30 years. For the cardiac
substructures it has not been finally clarified if delineating
and sparing the coronary arteries or the cardiac valves
bears the possibility of reducing ischemic events or valvu-
lar disease. Retrospective data from large cohort analysis
[22, 53, 54, 66] found either no significant dependency on
dose to the coronary vessels and adverse effects or con-
cluded that there might be some dependency but the sug-
gested statistical model performed better by using the
mean heart dose as independent factor. The mean dose
delivered to the heart so far is the only validated predictor
for radiation induced ischemic events. The impact of ir-
radiation of the cardiac valves so far is not clear. Historical
data from patients irradiated from the 70s to the 90s show
an increase in valvular disease for Hodgkin survivors with
high RT doses [55]. However, the administered doses to
the valves were quite high and in the range between 20 Gy
and 40 Gy or even above. Thus, despite the excellent dose
reduction from 9 to 11.5Gy for the photon approaches to
3.6 Gy mean dose for the proton plan (see Fig. 5 and
Additional file 1: Table S1), the clinical significance re-
mains unclear. Finally, when dealing with cardiovascular
toxicity one has to mention the excess risk due to
anthracycline-containing chemotherapeutical regimes
[22, 67, 68] when treating morbus Hodgkin. Long-
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Table 1 Estimation of excess risk for long term adverse effects for organs at risk. The lungs, the breast tissue, the heard and the
thyroid were evaluated

Mean Dose Mean Dose Mean Dose
Secondary [Gy] Photons - |[Gy] Photons - |[Gy] Photons - [Mean Dose
cancer risk Full rotation Half rotation |2 tilted arcs [Gy] Protons Excess RR for Major Sec. Cancer
Photons - Full| Photons - Photons - 2
rotation Half rotation | tilted arcs Protons
Whole lung 7.97 7.97 6.73 3.54 64% 64% 54% 28%|
Thyroid 4.85 4.54 6.49 5.96 37% 35% 50% 46%1
Left breast
tissue 5.47 5.25 2.06 1.53 148% 142% 56% 41%
Right breast |
tissue 492 515 1.68 181 133% 139% 45% 49%

Mean Dose Mean Dose Mean Dose
Risk for major |[Gy] Photons - |[Gy] Photons - [Gy] Photons - |Mean Dose
cardiac events |Full rotation |Half rotation |2 tilted arcs [Gy] Protons Excess RR for major cardiac events
Photons - Full| Photons - Photons - 2
rotation Half rotation | tilted arcs [Protons
Heart 7.65 7.14 8.53 4.12 57% 53% 63% 30%
Mean Dose Mean Dose Mean Dose
Pneumonitis- |V5 Full V5 Half [Gy] Photons - |[Gy] Photons - |[Gy] Photons - [Mean Dose
Risk rotation rotation V5 2 tilted arcs | V5 Protons Full rotation  |Half rotation |2 tilted arcs [Gy] Protons
Left lung 66.01 39.32 33.31 21.05 7.24 5.7 533 4.13
Right lung 66.31 63.46 53.78 21.57 7.03 8.31 7.63 2.92
Risk of breast
cancer - Area
of D 2 4Gy V4 Full rotation in % VB Half rotation in % Vd tilted arcs in % V4 Protons in %
Right breast
tissue 53.7 47.4 19.92 15.2
Left breast
tissue 50.4 47.2 11.97 13.9

term survivors of Hodgkin’s disease have an up to three-
fold elevated risk of developing cardiac events when
treated with anthracyclines solely [66]. Effects of chemo-
therapy and radiotherapy are additive [22, 66, 67] and up
to now anthracyclines are an important part of all thera-
peutic regimes [5, 7, 8, 11-14, 18, 20, 21, 45, 69] used. As
of more importance for long-term outcome, particularly
for pediatric patients, a reduced cardiac toxicity from
radiotherapy will be.

Only few reports [27, 63, 70] investigated secondary
lung cancers after treatment of Hodgkin’s or Non-
Hodgkin’s disease. Travis et al. [27] report that mean
lung doses of 5 Gy lead to a higher relative risk of devel-
oping lung cancer at the irradiated site up to decades
after Hodgkin treatment but no quantitative risk assess-
ment has been done. However, the effect is more pro-
nounced for higher mean doses and does not exist for
mean doses below 5 Gy. The risk estimate in Table 1 has

been calculated according to the data published by
Inskip et al. [64] for the development of lung- cancer
after radiotherapy for breast cancer. Inskip et al. re-
ported an increased relative risk of 8% Gy ' mean lung
dose for secondary lung cancers [64]. We multiplied the
mean dose to the whole lung with this value to estimate
the elevated relative risk for secondary lung cancers.
Due to the fact that the mean and median age of the pa-
tients in the study of Inskip et al. cannot be retrieved
from the publication our calculations are only a rough
estimate and can well underestimate the lung-cancer
risk. But even with these data it can be clearly seen that
the mean doses to the lungs are lower and the low-dose
bath from VMAT is absent for proton therapy. Thus,
this will not only decrease the risk for lung cancer but
also the pneumonitis risk from irradiation. Abou-Yehia
et al. [71] found an elevated pneumonitis risk if the
mean lung dose exceeded 13.5Gy or with increasing
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lung volume that received 5 Gy or above. Proton irradi-
ation minimize both factors down to threefold smaller
values. This should lead to a reduced rate of post-
radiotherapy pneumonitis.

The induction of sarcoma by radiotherapy in survivors
of childhood cancers, and especially in survivors of Hodg-
kin’s disease is important as well. Literature reports sar-
coma to be the second most common malignancy in
childhood cancer survivors [29, 30]. Radiotherapy in-
creases the relative lifetime risk for secondary sarcoma de-
pending on the RT-dose and the irradiated area [28, 30].
In contrast to the organ specific secondary malignancies
like breast- or lung cancer, sarcoma can briefly occur in
any location. There is no defined organ at risk except the
irradiated body. Data from childhood survivor studies re-
ported by Henderson et al. [29] suggest a dependency for
the development of sarcoma from the applied dose per
volume. They found elevated risks for areas irradiated with
more than 10 Gy (Odds-Ratio for the development of sar-
coma = 15.6 [29]). The higher dose regimes (> 30Gy) with
even more elevated ORs are not reached in our study. We
calculated in addition to the mean body dose the Viq
which is the fraction of the body receiving a RT dose of
10 Gy or more. Using proton- RT as well the mean body
dose as the V10 body volume is reduced by roughly a fac-
tor of two. Therefore, the induction of secondary sarcoma
using proton-RT instead of photon-approaches might be
reduced as well (see Fig. 8).

The thyroid has to be taken into account. Hypothyroidism
with its onset approximately 5 years after the Hodgkin treat-
ment seems to be multifactorial. Chemotherapy and Radio-
therapy play their role as well. Due to the fact that again
most data rely on old mantle-field or extended field treat-
ments [56, 57] a risk- quantification up to now seems diffi-
cult. Undisputed should be that avoiding dose to the thyroid
should be one goal when irradiating cervical lymphatic
nodes. Unfortunately whenever the lymphatic nodes in the
cervical region have to be irradiated the thyroid can, due to
its adjacent position to the lymphatic structures, not be
spared. Doses to the thyroid are especially increased for the
techniques that use anterior fields only, in our case for the
proton and the non-coplanar tilted 45° arcs. However, the
other investigated beam- configurations deliver high doses
as well. Despite the uncertainties for the hypothyroidism for
the induction of secondary thyroid cancers a risk estimation
was made by using the data published by Ron et al. [65].
They supposed an increased relative risk for thyroid cancers
of 7.7% Gy~ * mean dose to the organ at risk. Thyroid mean
doses from our study have been multiplied with this value
to assess the increase in relative risk for thyroid cancers. As
to be expected both ventral only techniques feature a slightly
increased relative risk for thyroid cancer of roughly 10-15%
higher in relative risk compared to the axial VMAT tech-
niques. Lifetime-risk for Thyroid cancer in Germany is 0.4%
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for men and 0.8% for women [1], slight increases of relative
risks might therefore play not a major role. However litera-
ture hints that especially thyroid glands of children are vul-
nerable to radiation [65]. When irradiating target volumes
in the upper mediastinum or cervical region even more at-
tention is necessary to choose the optimal radiotherapy-
technique.

Under discussion in literature is if patients with lower
mediastinal disease benefit more than patients with
upper mediastinal disease. 2018 the ILROG published a
guideline [72] in which they proposed advantages espe-
cially for proton RT for lower mediastinal involvement.
Recently Everett et al. [42] and Ntentas et al. [43] pub-
lished data dealing with that issue as well. In both stud-
ies doses to organs at risk, in particular to the heart, the
lungs and the breast tissue is lower for proton RT com-
pared to IMRT photon approaches in lower mediastinal
disease. The dose-sparing effect is pronounced for lower
mediastinal disease, however as well existent for upper
mediastinal involvement. In addition Ntentas at al [43].
confirmed a dosimetric advantage for proton-RT, re-
garding the organs at risk, for axillary involvement. In
the study conducted by Everett et al. [42] deep inspir-
ation breath hold for proton-RT featured no or only
minimal dosimetric advantages compared to free breath-
ing techniques when irradiating lower mediastinal
lymphoma. Thus, breathhold-techniques might be dis-
pensable which would simplify the proton-RT process.
Comparing the two studies with our own results, the
dose reduction comparing proton-RT with IMRT pho-
ton techniques is around the same scale we find in our
study. Of course, numeric values are not one-to-one
comparable due to different target volumes and anatom-
ical features in each investigated case. For our cases in-
vestigated here, we also suppose that lower mediastinal
disease benefits most from proton-RT in regard to the
sparing of the heart, the lungs and the breast tissue.
However, the usage of protons for upper mediastinal dis-
ease likewise spares that organs at risk to a limited ex-
tent. Thus, for patients under 30 we would recommend
the usage of proton-RT for upper and lower localizations
of mediastinal Hodgkin’s lymphoma.

Conclusion

Proton therapy for mediastinal lymphoma reduces sig-
nificantly the dose to organs at risk and the integral
body dose. It might lead to reduced late toxicities and
secondary malignancies. This is especially important for
children and young adults. It should be considered for
both sexes, as both male and female patients benefit
from the unique features of particle irradiation. When-
ever proton for mediastinal lymphoma is not available or
technical not feasible the alternative photon concepts
have to be chosen carefully. Depending on the used
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technique certain organs at risk, i.e. the breasts in young
females, can be spared with higher priority. However,
with all photon techniques that comes at the cost of
higher doses to the other organs at risk. If available, pro-
ton therapy should be the standard pattern of care for
mediastinal lymphoma for young adults below 30 years
of age, no matter if male or female.

Additional file

Additional file 1: Table S1. Mean dose and standard error for different
photons or proton plans and for all delineated organs at risk. P values
were calculated for mean dose, comparing proton and photon planning
approaches. P value were given if significance has been reached. Table S2.
RT doses to organs at risk, divided into upper-, lower- and combined
mediastinal disease. (DOCX 35 kb)
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