
RESEARCH Open Access

Predicting acute radiation induced
xerostomia in head and neck Cancer using
MR and CT Radiomics of parotid and
submandibular glands
Khadija Sheikh, Sang Ho Lee, Zhi Cheng, Pranav Lakshminarayanan, Luke Peng, Peijin Han, Todd R. McNutt,
Harry Quon and Junghoon Lee*

Abstract

Purpose: To analyze baseline CT/MR-based image features of salivary glands to predict radiation-induced xerostomia
3-months after head-and-neck cancer (HNC) radiotherapy.

Methods: A retrospective analysis was performed on 266 HNC patients who were treated using radiotherapy at our
institution between 2009 and 2018. CT and T1 post-contrast MR images along with NCI-CTCAE xerostomia grade (3-
month follow-up) were prospectively collected at our institution. CT and MR images were registered on which parotid/
submandibular glands were contoured. Image features were extracted for ipsilateral/contralateral parotid and submandibular
glands relative to the location of the primary tumor. Dose-volume-histogram (DVH) parameters were also acquired. Features
were pre-selected based on Spearman correlation before modelling by examining the correlation with xerostomia (p< 0.05).
A shrinkage regression analysis of the pre-selected features was performed using LASSO. The internal validity of the variable
selection was estimated by repeating the entire variable selection procedure using a leave-one-out-cross-validation. The
most frequently selected variables were considered in the final model. A generalized linear regression with repeated ten-fold
cross-validation was developed to predict radiation-induced xerostomia at 3-months after radiotherapy. This model was
tested in an independent dataset (n= 50) of patients who were treated at the same institution in 2017–2018. We compared
the prediction performances under eight conditions (DVH-only, CT-only, MR-only, CT +MR, DVH+ CT, DVH+CT +MR,
Clinical+CT +MR, and Clinical+DVH+CT +MR) using the area under the receiver operating characteristic curve (ROC-AUC).

Results: Among extracted features, 7 CT, 5 MR, and 2 DVH features were selected. The internal cohort (n= 216) ROC-AUC
values for DVH, CT, MR, and Clinical+DVH + CT +MR features were 0.73 ± 0.01, 0.69 ± 0.01, 0.70 ± 0.01, and 0.79 ± 0.01,
respectively. The validation cohort (n = 50) ROC-AUC values for DVH, CT, MR, and Clinical+DVH + CT +MR features were
0.63, 0.57, 0.66, and 0.68, respectively. The DVH-ROC was not significantly different than the CT-ROC (p = 0.8) or MR-ROC
(p = 0.4). However, the CT +MR-ROC was significantly different than the CT-ROC (p = 0.03), but not the Clinical+DVH +
CT +MR model (p = 0.5).

Conclusion: Our results suggest that baseline CT and MR image features may reflect baseline salivary gland function
and potential risk for radiation injury. The integration of baseline image features into prediction models has the potential
to improve xerostomia risk stratification with the ultimate goal of truly personalized HNC radiotherapy.
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Background
Radiation therapy (RT), often with concurrent chemo-
therapy, is frequently used in the management of head
and neck cancer (HNC) as definitive or adjuvant treat-
ment. RT for HNC improves local control but is associ-
ated with significant treatment-related toxicities such as
xerostomia [1, 2]. Approximately 50–80% of patients
with HNC will experience xerostomia to some degree
after RT [3, 4]. While these swallow-related toxicities
significantly influence long-term patient outcomes and
quality of life, our ability to robustly characterize these
complications as they relate to individual patients and
the radiotherapy dosimetry delivered to salivary glands is
limited.
In radiation oncology, there is increasing popularity

for rapid-learning health systems which use routine clin-
ical data to develop models that can be used to predict
patient specific treatment outcomes [5–7]. In addition to
predicting outcomes, the goal of decision support sys-
tems is to improve overall patient care and determine
when and how to personalize patients’ treatments. Ma-
chine learning algorithms have emerged as popular tools
for decision support. These algorithms are already being
applied to many aspects of radiation therapy including:
target delineation [8, 9], treatment planning [10, 11], ra-
diation physics quality assurance [12], and outcome [13]
and tumor response modelling [14]. With recent ad-
vancements in image processing, informatics, and ma-
chine learning, medical imaging is increasingly being
used for improved clinical decision making. Studies have
demonstrated that the variability in clinical image inten-
sity, shape, and texture can be quantified generating a
radiomic signature for individual tumors and normal
anatomic structures [15–20]. For radiation therapy,
radiomics offers the potential to significantly influence
clinical decision-making, therapy planning, and follow-
up workflow. In HNC, a radiomic signature has been
shown to be prognostic and has been validated across
several institutions [19, 20]. Radiomics derived from com-
puted tomography (CT) have also been used to predict xer-
ostomia and survival in HNC patients [18, 21, 22].
To our knowledge, the incorporation of MR-based

biomarkers with CT and dosimetry features in acute
RT-induced xerostomia prediction models has not
been investigated in HNC. Thus, the objective of this
study was to analyze baseline CT/MR image features
of salivary glands to better understand their role in
the prediction of radiation-induced xerostomia 3
months after HNC radiotherapy. We hypothesized
that baseline CT/MR image features are related to
xerostomia and incorporating these into a prediction
model improves the accuracy of predicting radiation-
induced xerostomia compared to dosimetric informa-
tion alone.

Materials and methods
Patients
HNC patients treated at Johns Hopkins Hospital who
underwent intensity modulated radiotherapy (IMRT)
from 2009 through 2018 (on a protocol for retrospective
data analysis approved by the institutional review board)
were included. Patients who did not have MR images
were excluded. NCI-CTCAE v4.0 xerostomia grade was
assessed by physicians at the point of care at 3 months
post-RT. Moderate to severe xerostomia incidence was
defined as grade ≥ 2, compared to the reference group
which was defined as xerostomia grade 0 or 1. All pa-
tients were treated with either IMRT, VMAT, or
TomoTherapy. All treatments included a simultaneous
integrated boost and attempted to spare dose to the par-
otid glands and swallowing structures without com-
promising the dose to the target volumes.

Image data
All images were acquired at the time of simulation, prior
to the start of treatment. For both training and valid-
ation sets, T1-weighted MRI was acquired using Siemens
Magnetom Espree 1.5 T scanner (Siemens Medical Sys-
tems, Erlangen, Germany) with a turbo spin echo se-
quence post-Gd administration (TE = 8.9 ms, TR = 577
ms, flip angle = 150°, matrix size = 256 × 256, pixel size
ranged from 0.8 × 0.8 mm2 to 1.1 × 1.1 mm2 depending
on the field of view defined at simulation, and slice
thickness = 3 mm). To reduce bias and improve inter-
pretation of the image features, MR images were
resampled such that the in-plane pixel size was consist-
ently 0.89 × 0.89 mm2, which was the size for majority of
the patients. CT images were acquired using a 16-slice
Philips Brilliance Big Bore scanner (Philips, Andover,
MA) with tube voltage 120 kVp and exposure of 200
mAs. Images had 512 × 512 pixels with a pixel size of
1.2 × 1.2 mm2, and a slice thickness of 3 mm. CT images
with metal artifacts (most commonly caused by dental
fillings and implants) were corrected using Metal
Artifact Reduction for Orthopedic Implants reconstruc-
tion. However, patients with severe artifacts were ex-
cluded in the image analysis to avoid undesirable strong
influence to the image features and analysis.

Feature extraction
For each patient, ipsilateral/contralateral parotid and
submandibular glands (iPG, cPG, iSG, cSG) were con-
toured by the attending radiation oncologist. The saliv-
ary gland volumes (including combined salivary gland
volumes) were determined in centimeters cubed. The
tumor volume was also determined for each patient in
centimeters cubed. Missing contours were automatically
segmented using in-house implemented multi-atlas-
based auto-segmentation software based on a GPU-
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accelerated demons deformable image registration [23]
and a statistical label fusion [24]. Each auto-segmented
contour was visually checked and manually corrected for
any erroneously segmented regions. CT images were
registered to the MR images using Velocity (V3.2.1,
Varian Medical Systems Inc., Palo Alto, CA). Contours
were propagated from CT images to the MR images.
Each co-registration was visually verified by overlapping
the registered CT and the target MR images focusing on
the target glands as well as by overlapping the propa-
gated contours on the target by a single observer (KS).
For each derived region of interest (ROI), dose-volume
histograms (DVHs) features were calculated in 5% incre-
ments from D10 to D95.
For each segmented salivary gland ROI, high-

dimensional image features were extracted from both
CT and MR images using the PyRadiomics software
package accessed via the Radiomics module of 3D Slicer
[25]. The ROI was analyzed as a 3D volume. A sche-
matic showing the feature extraction process is shown in
Fig. 1. CT gray level intensities were discretized at a bin
width of 25. This fixed bin width resulted in 20–25 bins
for CT images based on the salivary gland ROI specified.
It should be noted that texture features have been shown
to be affected by the bin width used to discretize image
intensities [26]. Although the optimal bin width for
image feature analysis has not been established, previous
HNC work has used a 25 unit bin width for the evalu-
ation of image features [27, 28]. A fixed bin count of 25

was used for the MR images as per the Image Biomarker
Standardization Initiative guidelines [29]. Briefly, a fixed
bin count introduces a normalizing effect for MR which
may be beneficial when intensity units are arbitrary and
allows for a direct comparison of feature values across
multiple analyzed ROIs (e.g. across different samples).
All textural features were normalized by subtracting the
values from their mean and dividing by the standard
deviation.
Major categories of extracted features included shape,

first order statistics, gray level co-occurrence matrix
(GLCM), gray level run-length matrix (GLRLM), and
gray level size-zone matrix (GLSZM) features derived
from original images as well as after wavelet filtering.
The angles required for the computation of the GLCM
and GLRLM were automatically generated and averaged
to achieve rotational invariance. The distance for the as-
sociated angle was set to 1 voxel in all directions for the
GLCM. We used 25 equally sized bins for CT and 25
fixed bin count for MR for first-order statistics, and gray
levels were quantized into 20–25 levels for CT and 25
levels for MR for GLCM and GLRLM calculations. For
the detailed list of features calculated, we refer readers
to [25]. Wavelet filtering resulted in either a high-pass
or low-pass filter in each of the three dimensions (e.g.
wavelet LLL corresponded to low-pass filter applied in
the x-, y-, and z-axis directions). In broad terms, first
order features describe the statistics of voxel intensity
distributions within the ROI while higher order features

Fig. 1 Radiomics feature extraction pipeline. a CT images (shown in hot color map) were registered to the MR images (shown in grayscale).
Salivary gland contours were propagated from CT images to the MR images (b). For each segmented salivary gland ROI, high-dimensional image
features were extracted from both CT and MR images (c1), and DVH features (c2)
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such as GLCM, GLRLM, and GLSZM seek to quantify
textural characteristics. Taken together, 2877 image fea-
tures and 48 DVH features were extracted for each pa-
tient. The datasets used and analyzed during the current
study are available from the corresponding author on
reasonable request.

Feature selection and xerostomia prediction
As per Transparent Reporting of a multivariable predic-
tion model for Individual Prognosis Or Diagnosis (TRI-
POD) guidelines [30], a Spearman correlation was used
prior to modelling to pre-select features that were corre-
lated with the outcome (p < 0.05). There was no correc-
tion performed for multiple testing. This resulted in 102
image features and 44 DVH features. A shrinkage re-
gression analysis of the pre-selected features (including
the image features, DVH information, age, gender, and
tumor volume) was performed using the least absolute
shrinkage and selection operator (LASSO). The internal
validity of the variable selection was estimated by repeat-
ing the entire variable selection procedure using a leave-
one-out-cross-validation. The most frequently selected
variables (> 50%) were considered in the final model. Fi-
nally, to further address collinearity, if the correlation
coefficient between two features was larger than 0.80,
only the variable with the highest correlation with xeros-
tomia was selected, as previously described [31, 32]. This
resulted in one image feature to be removed (specifically,
the CT contralateral submandibular wavelet LLH
GLSZM Gray Level Non Uniformity Normalized). Fea-
ture selection was performed on the training set only
(specifically, patients treated between the years 2009 and
2016).
Trained on the institution cohort of patients treated

between the years 2009 and 2016, prediction modelling
was performed using generalized linear model (GLM)
with a repeated ten-fold cross validation [33] to predict
radiation-induced xerostomia at 3 months after RT. The
ten-fold cross validation was performed 100 times with
random initialization of 10 disjoint groups. As per TRI-
POD guidelines [30], in an independent set of patients
who were treated in 2017 and 2018 (specifically after
December 31, 2016), we compared the prediction per-
formance under eight different scenarios: 1) only DVH
features, 2) only CT image features, 3) only MR image
features, 4) both CT and MR image features, 5) DVH
and CT image features, 6) DVH and CT/MR image
features, 7) clinical and CT/MR image features, and 8)
clinical, DVH, CT/MR image features. Clinical data in-
cluded age, sex, and tumor volume. The model perform-
ance measures were the area under the receiver
operating characteristic curve (ROC-AUC). DeLong’s
test was used to analyze the areas under correlated ROC

curves [34]. The 95% confidence interval (CI) was com-
puted for the AUC.
All statistical analysis and predictive modeling was

performed in R (version 3.4.1). Results were considered
significant when the probability of making a Type I error
was less than 5% (p < 0.05).

Results
Study subjects
Two hundred and sixty-six HNC patients were evaluated
including those with and without xerostomia. Table 1
shows demographics, tumor and DVH information for
all patients. Most patients had tumors of the oropharynx
(n = 119/266, 45%) or the oral cavity (n = 23/266, 23%).
All patients were treated with IMRT, specifically, 7% of
patients in the training cohort and 44% of patients in
the validation cohort, received TomoTherapy.
CT and MR images of parotid glands from four repre-

sentative patients are shown in Fig. 2. Briefly, patients
with post-treatment xerostomia appeared to have more
hypodense and heterogeneous parotid glands at baseline,
compared to those without xerostomia in the CT im-
ages. Both CT and MR images of patients with xerosto-
mia appeared to have more regions of lower intensity.
Figure 3 shows CT and MR images of submandibular

glands for four representative patients. On CT, the

Table 1 Characteristics for head and neck cancer patients (n =
266). Continuous variables are displayed as mean (SD), while
categorical variables are displayed as count (%)

Internal Validation
Cohort
(n = 216)

External Validation
Cohort
(n = 50)

Patient Demographics

Age (yrs) 58 (10) 60 (13)

Male n 176 (81) 46 (92)

Xerostomia > 2
n

87 (40) 14 (28)

TomoTherapy n 16 (7) 22 (44)

Tumor Site

Oropharynx 92 (43) 27 (54)

Oral Cavity 49 (23) 13 (26)

Nasopharynx 13 (6) 6 (12)

Hypopharynx 4 (2) 0 (0)

Larynx 19 (9) 3 (6)

Thyroid 5 (2) 0 (0)

Accessory
Sinuses

7 (3) 1 (2)

Other 27 (12) 0 (0)

DVH Parameters

cPG D40 (Gy) 27.8 (14.7) 22.8 (9.9)

cSG D60 (Gy) 56.8 (23.5) 49.5 (17.8)
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submandibular glands of patients with xerostomia again
appeared more hypodense and heterogeneous compared
to those patients without xerostomia. The MR images of
patients with xerostomia appear to be more heteroge-
neous and hypointense than the patients without xeros-
tomia similarly as in CT.

Xerostomia prediction models
Table 2 shows the performance of prediction models for
development of xerostomia at 3 months post-RT for the
internal validation cohort. Using DeLong’s test, the
DVH-ROC was not significantly different from MR-
ROC (p = 0.6) and CT-ROC (p = 0.6). The CT-ROC was
not significantly different from the MR-ROC (p = 0.7).
Combining CT with MR features suggested an improve-
ment in xerostomia prediction performance compared
to CT features alone (p = 0.01). Finally, the model per-
formance improved with the combination of DVH and
CT +MR features compared to DVH (p = 0.003) or CT +
MR (p = 0.03). There was a trend towards significance
when comparing the DVH + CT-ROC to the DVH +
CT +MR-ROC (p = 0.06). The model performance im-
proved with the combination of DVH and CT +MR

features compared to DVH, CT, or MR alone (p < 0.005).
Finally, adding the clinical data did not significantly
change the DVH + CT +MR-ROC (p = 0.2). Training set
ROC curves are shown in the supplement as Additional
file 1: Figure S1.
Table 3 shows the regression coefficients (β) and odds

ratios (ORs) for all the features used in the GLM predic-
tion models. For the DVH only model, cPG D40 contrib-
uted significantly to the model (OR = 1.51, p < 0.001).
For the CT only model, features that contributed signifi-
cantly to the model included those from both salivary
glands, and interestingly, most of the image features
stemmed from the wavelet filtered images. For the MR
only model, features from both the parotid and subman-
dibular glands contributed significantly to the model in-
cluding the cPG least axis (OR = 2.66, p = 0.004), iPG
wavelet LHL GLSZM small area high gray level em-
phasis (OR = 0.50, p = 0.03), and iSG wavelet LHH
GLSZM small area high gray level emphasis (OR = 3.22,
p = 0.0005).
In the model containing Clinical, DVH, CT, and MR

features, the features that significantly contributed to the
model were the cPG D40 (OR = 2.79, p = 0.04), CT cSG

Fig. 2 CT and MR images of representative patients’ parotid glands. From left to right: S1: 57-yr old male with squamous cell carcinoma of the
nasopharynx, S2: 82-yr old female with melanoma of nasal cavity, S3: 61-yr old male with squamous cell carcinoma of the nasopharynx, and S4:
69-yr old male with carcinoma ex pleomorphic adenoma of eye. Images are displayed using the same window and level

Sheikh et al. Radiation Oncology          (2019) 14:131 Page 5 of 11



wavelet LLL GLSZM gray level non uniformity normalized
(OR = 2.29, p = 0.04), MR iSG wavelet LHH GLSZM small
area high gray level emphasis (OR = 3.59, p = 0.002), and
the MR iSG wavelet LHH GLSZM gray level non uniform-
ity normalized (OR = 0.40, p = 0.04). Interestingly, all of the
significant image features came from wavelet filtered im-
ages and stemmed from the GLSZM. Additional file 3:
Table S1 shows the beta coefficients and OR for the CT +
MR, DVH+CT, DVH+CT+MR, and Clinical+CT +MR
models.
Table 4 shows the performance of the prediction

models for the validation cohort and ROC curves are
shown in the supplement. The CT-ROC and MR-ROC
were not significantly different (p = 0.4). The DVH-ROC
was not significantly different than the CT-ROC (p =
0.8) or MR-ROC (p = 0.4). However, the CT +MR-ROC
was significantly different than the CT-ROC (p = 0.03),
but not significantly different than the DVH-ROC (p =
0.4) or MR-ROC (p = 0.8). The Clinical+CT +MR ROC
was significantly different than the CT-ROC (0.02), but
not MR-ROC (0.2). The Clinical+DVH +CT +MR
model was significantly different from Clinical+CT +MR
(p = 0.03), but not from the CT +MR model (p = 0.5).

Fig. 3 CT and MR images of representative patients’ submandibular glands. From left to right: S1: 71-yr old male with squamous cell carcinoma
of the base of tongue, S2: 82-yr old female with melanoma of nasal cavity, S3: 54-yr old female with squamous cell carcinoma of the tonsil, and
S4: 61-yr old male with squamous cell carcinoma of the nasopharynx. Images are displayed using the same window and level

Table 2 Multiple Logistic Regression performances using a 10-
fold cross validation at predicting xerostomia at 3 months after
radiotherapy for internal validation cohort (n = 216). Mean and
standard deviation of area-under-the curve is reported for the
repeated 10 fold cross-validation

Mean ± SD AUC Sensitivity Specificity

Generalized Linear Model

DVH 0.73 ± 0.01 0.76 ± 0.01 0.56 ± 0.02

CT 0.69 ± 0.01 0.76 ± 0.01 0.50 ± 0.02

MR 0.70 ± 0.01 0.80 ± 0.01 0.50 ± 0.02

CT +MR 0.75 ± 0.01 0.76 ± 0.01 0.58 ± 0.02

DVH + CT 0.77 ± 0.01 0.79 ± 0.01 0.60 ± 0.02

DVH + CT + MR 0.79 ± 0.01 0.78 ± 0.01 0.65 ± 0.02

Clinical+CT + MR 0.77 ± 0.01 0.79 ± 0.02 0.61 ± 0.02

Clinical+DVH + CT +MR 0.79 ± 0.01 0.78 ± 0.02 0.65 ± 0.02
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Adding clinical data to the DVH +CT +MR model,
modestly improved the model performance with a trend
towards significant (p = 0.1). Test set ROC curves are
shown in the supplement as Additional file 2: Figure S2.

Discussion
In this study, to better understand the influence of image
features in the prediction of RT-induced xerostomia, we
investigated the relationships between CT and MR image
features with xerostomia scores in HNC patients using
machine learning approaches. We made the following
observations: 1) image features from both the parotid
and submandibular glands significantly contributed to

our prediction of xerostomia, 2) higher order texture
features for both ipsi- and contralateral salivary glands
were important predictors of xerostomia, and 3) com-
bining multimodal image features with dosimetry fea-
tures improved xerostomia prediction. Collectively, these
observations further support prior work [22, 35] demon-
strating that baseline salivary gland image features with
CT along with quantifying radiation injury are important
in predicting for the risk of xerostomia 3 months follow-
ing RT.
mage features from both salivary glands significantly

contributed to the prediction of xerostomia post-RT,
concordant with the readily apparent differences

Table 3 GLM summary including odds ratios (OR) and 95% confidence interval (CI) for the prediction of xerostomia

DVH Model CT Model MR Model Clinical + DVH + CT +
MR Model

β OR
(95% CI)

β OR
(95% CI)

β OR
(95% CI)

β OR
(95% CI)

Intercept −2.58 – −9.21 −0.31 −6.54

Age – – – – – – −0.69 0.50 (0.47–
0.54)

Gender – – – – – – 1.09 2.97 (1.93–
4.01)

Tumor Volume – – – – – – 0.45 1.56 (1.56–
1.58)

cPG D40 1.51 4.57 (4.56–
4.58)

– – – – 1.03 2.79 (2.78–
2.79)

cSG D60 0.60 1.81 (1.80–
1.82)

– – – – 0.63 1.86 (1.86–
1.88)

CT cSG wavelet LLL GLSZM Gray Level Non
Uniformity Normalized

– – 1.00 2.73 (−11.3–
16.7)

– – 0.83 2.29 (−14.4–
19.0)

CT iPG original GLSZM Low Gray Level Zone
Emphasis

– – −0.64 0.53 (−9.0–
10.1)

– – − 0.61 0.55 (−10.4–
11.5)

CT iSG wavelet HLL GLCM Inverse Variance – – 0.57 1.77 (−17.4–
20.9)

– – 0.36 1.44 (−21.9–
24.8)

CT cPG wavelet LHL Total Energy – – 0.42 1.53 (1.52–
1.54)

– – 0.31 1.36 (1.35–
1.37)

CT iSG wavelet HLL GLRLM Long Run High Gray Level
Emphasis

– – −0.65 0.52 (0.51–
0.53)

– – −0.69 0.50 (0.49–
0.51)

CT iPG original first order 10 Percentile – – −0.69 0.50 (0.49–
0.51)

– – −0.38 0.69 (0.68–
0.70)

CT cPG wavelet LHL GLRLM Long Run High Gray
Level Emphasis

– – 0.43 1.54 (1.53–
1.55)

– – 0.49 1.63 (1.62–
1.64)

MR cPG shape Least Axis Length – – – – 0.98 2.66 (2.59–
2.73)

0.84 2.32 (2.23–
2.42)

MR iSG wavelet LHH GLSZM Gray Level Non
Uniformity Normalized

– – – – −0.65 0.52 (−26.2–
27.2)

−0.92 0.40 (−33.8–
34.6)

MR iSG wavelet LHH GLSZM Small Area High Gray
Level Emphasis

– – – – 1.17 3.22 (3.20–
3.23)

1.28 3.59 (3.57–
3.61)

MR iPG wavelet LHL GLSZM Small Area High Gray
Level Emphasis

– – – – −0.69 0.50 (0.48–
0.52)

−0.72 0.49 (0.47–
0.51)

MR iSG wavelet LLH GLSZM Size Zone Non
Uniformity Normalized

– – – – −0.36 0.70 (−9.75–
11.2)

− 0.43 0.65 (−12.3–
13.6)

iPG ipsilateral parotid gland, cPG contralateral parotid gland, iSG ipsilateral submandibular gland, cSG contralateral submandibular gland, GLCM gray level co-
occurrence matrix, GLSZM gray level size zone matrix, GLRLM gray level run length matrix; bold indicates significant values (p < .05)
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visualized in both salivary glands using CT and MR
(Figs. 2 and 3). Patients with xerostomia after RT ap-
peared to have more heterogeneous parotid and sub-
mandibular glands at baseline. We should note that the
majority of HNC research using radiomics has focused
on the parotid glands [31, 36–39] with relatively little at-
tention paid to the submandibular glands [18, 22]. Inter-
estingly, the features with the greatest OR corresponded
to the submandibular glands. While the parotid glands
produce the majority of saliva during eating and with
oral stimulation, submandibular glands contribute up to
more than 70% of unstimulated/resting salivary output
[40] which is rich in mucin. This allows for the oral mu-
cosa to maintain its hydration [41, 42]. These results
suggest that baseline submandibular gland image fea-
tures may provide insight into unstimulated salivary
function, and this insight may improve prediction of sus-
ceptibility to post-RT xerostomia.
Important features in our cohort stemmed from the

GLRLM and the GLSZM and both the ipsilateral and
contralateral salivary glands. For the contralateral side,
the CT SG wavelet LLL GLRLM gray level non-
uniformity normalized significantly contributed to the
GLM. The cPG CT wavelet LHL GLRLM long run high
gray level emphasis, which had the second lowest stand-
ard error in the model, increases when the texture is
dominated by long runs with high intensity levels. These
results suggest that patients with xerostomia have cSG
that have lower similarity in intensities (increased gray
level non-uniformity) and more heterogeneous size zone
volumes (increased size zone non-uniformity). Further-
more, patients with increased risk of xerostomia have
finer structural textures of the cPG (decreased long run
emphasis) [22] with longer run of high intensity voxels
(increased long run high gray level emphasis). Focusing
on the ipsilateral side, the feature that contributed sig-
nificantly to the GLM included the MR iSG wavelet
LHL GLSZM small area high gray level emphasis. This

feature indicates that patients with xerostomia have ipsi-
lateral submandibular glands with more small regions of
low intensity (i.e. more locally heterogeneous as indi-
cated by an increase of small area low gray level
intensity).
Similar to previously reported work, these image fea-

tures suggest that patients who are likely to develop xer-
ostomia have more locally heterogeneous salivary glands.
The heterogeneity differences can be seen in the repre-
sentative images (Figs. 2 and 3) where patients with xer-
ostomia had more regions of low intensities in both
parotid and submandibular glands compared to those
patients without xerostomia. This is consistent with pre-
viously published work demonstrating that patients who
develop xerostomia after RT have more heterogeneous
parotid gland tissue [22]. More recently, MR derived
image features of the parotid glands were used in the
prediction of xerostomia in HNC patients [31]. This im-
portant work demonstrated that high signal intensity,
specifically the 90th percentile of the MR-intensities in
parotid glands improved the performance of the xerosto-
mia prediction model. It is well known that high signal
intensity in T1-weighted images is related to fat depos-
ition because of the short T1 relaxation time of fatty tis-
sue [43]. In fact, fat deposition may represent the loss of
normal glandular cells as this phenomenon is also seen
in diseases such as Sjögren’s syndrome which is charac-
terized by autoimmune destruction of salivary and lacri-
mal glands [44]. Of note, the salivary glands of patients
with Sjögren’s syndrome have also been shown to be
more heterogeneous than those without this syndrome
[45]. Fatty replaced salivary glands have also been shown
to be related to age [46] and xerostomia [47]. However,
in our cohort, age was not correlated with image fea-
tures or xerostomia. On CT, fatty tissue appears as low
density [48]. This is consistent with the representative
CT images (Figs. 2 and 3) of the parotid and subman-
dibular glands, where the patients with xerostomia had
hypodense salivary glands (with obvious local heteroge-
neous regions).
Finally, in our xerostomia prediction models, for our

training cohort, there were no significant differences be-
tween our DVH, CT-only, and MR-only models. How-
ever, when CT and MR were combined, the performance
improved compared to DVH alone. More importantly,
we observed that the combination of dosimetry and
image features improved overall prediction compared to
dosimetry or image features alone. However, the specifi-
city of our models with CT, MR, and DVH-only features
was low. In fact, the combination of DVH + CT +MR
features did not lead to a significant improvement in
sensitivity and specificity. With the addition of all fea-
tures in a single model, the sensitivity improved only
modestly. We should note that majority of our patients

Table 4 Multiple Logistic Regression performances at predicting
xerostomia at 3 months after radiotherapy for external validation
cohort (n = 50)

AUC Sensitivity Specificity

Generalized Linear Model

DVH 0.63 (0.51–0.81) 0.64 0.58

CT 0.57 (0.45–0.71) 0.50 0.68

MR 0.66 (0.54–0.82) 0.80 0.65

CT + MR 0.70 (0.57–0.82) 0.80 0.62

DVH + CT 0.56 (0.40–0.68) 0.60 0.56

DVH + CT +MR 0.60 (0.50–0.73) 0.67 0.53

Clinical+CT +MR 0.73 (0.62–0.86) 0.86 0.59

Clinical+DVH + CT +MR 0.68 (0.52–0.80) 0.67 0.68
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did not develop xerostomia, resulting in a biased dataset
which could influence sensitivity and specificity. Compared
to previously published work evaluating CT image features
to predict xerostomia at 12months [22], the performance
of our models was comparable. This work reported an
AUC of 0.77 with the inclusion of CT features, specifically
features derived from the GLRLM and GLSZM. Other
work that has used imaging to predict xerostomia at 12
months using CT only [37, 38] and MR only [31] parotid
gland image features has also demonstrated comparable
performance to our models (AUC range: 0.60–0.80). Cone
beam CT of the parotid glands has also been used to pre-
dict xerostomia in a single cohort with performance ran-
ging from 0.71–0.76 [49]. Other work that has used CT
parotid image features with dosimetry in a single cohort
with nested cross validation has also shown model perfor-
mances in the range of 0.68–0.88 [50]. In our validation co-
hort, we observed a similar trend where combining
imaging improved performance. Adding dosimetry to our
training cohort did improve performance which is consist-
ent with previously published work that has shown the pre-
diction of xerostomia improves when CT image features
are combined with dosimetric information [18, 22, 35, 38].
However, in our validation set, adding dosimetry to imaging
features did not improve performance. It should be noted
that our work used time to separate our training and valid-
ation sets. The decrease in performance of the DVH model
may be indicative of evolving practices of the attending
physicians. Specifically, changes in physician preferences of
dose constraints to the salivary glands. The reduction in
performance may also reflect limitations of the DVH in
capturing 3D spatial information. This may also explain the
decrease in performance of the validation models that con-
tained DVH features. It should also be noted that combin-
ing clinical data with CT and MR significantly improved
xerostomia prediction compared to CT alone. Although the
receiver operating characteristic curves had overlapping
confidence intervals, there was a trend towards prediction
improvement when combining clinical data with dosimetry
and image features compared to dosimetry and CT features
alone which to our knowledge has not been previously
demonstrated. Future work in an independent dataset is re-
quired to further determine the benefits of combining im-
aging modalities in outcome prediction modelling.
Although this study provides promising preliminary

results, future work is needed to ascertain the
generalizability of these findings. It should be noted that
random variation in small datasets can often be mis-
takenly interpreted as meaningful (i.e. overfitting), and
as a consequence the model may not perform as well in
independent datasets. In the present work, the risks of
overfitting the model were addressed by pre-selecting
variables based on their inter-correlation (with no cor-
rection for multiple comparisons since p-values at this

step were simply used to selected a group of candidate
features which were further refined using LASSO),
cross-validation of the internal dataset, and validating
our models using a temporally split dataset [30]. It
should be noted that temporal splitting is an intermedi-
ate validation method compared to internal and external
validation [30]. Future work will need to validate these
models on an independent external dataset. The pres-
ence of multiple correlated explanatory variables can
lead to unstable models with highly variable coefficient
estimates and incorrect selection of significant texture
features. In this work, collinearity was addressed by de-
termining the Pearson correlation coefficient between
two features [30–32]. If the correlation coefficient was
larger than 0.80, only the variable with the highest cor-
relation with xerostomia was selected. Modality specific
resampling was not performed for the CT images. and
non-cubic voxels were used for radiomics analysis, simi-
lar to prior studies [18, 22, 31, 38]. Resampling images
compared to using the original resolution before feature
computation is an active area of radiomics research, and
there is no widely accepted recommendation. Resam-
pling images to an isotropic resolution may lead to bet-
ter interpretation of certain features, but there will be
information loss/degradation due to interpolation
process. For our MR images, we used the same scanning
protocol for training and validation. This may limit the
translatability and generalizability of our results because
MR intensities are highly dependent on scanning proto-
col. Also, unlike CT, MR signal-intensity is influenced by
hardware factors such as the positioning of the RF coils,
which introduce inter-scan variability. Although
normalization of MR data has been proposed to address
this, the benefits of normalization for radiomic predic-
tion models to differentiate patients with or without xer-
ostomia has not been well established. Future work is
needed to establish the benefits of signal normalization
for radiomic prediction models of xerostomia. In our
work, salivary glands were contoured by the patient’s at-
tending radiation oncologist or by multi-atlas-based
auto-segmentation with manual assessment/correction
(when clinical contours were not available). Although
multiple observers did not contour the same patient,
multiple observers’ contours of the glands were included
in our feature selection and prediction model building
process. Therefore, we anticipate that the selected fea-
tures are robust to contour variability while being rele-
vant to the outcome. Although previous studies have
shown that inter-observer delineation variability has a
relevant influence on radiomics analysis [22, 51], we
should note that it is important to determine a model
that is robust to variability in raw clinically available data
so that it can be used in a real clinical scenario. How-
ever, further study will be needed to better understand
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the influence of contour variability to the computed
radiomics features and successive feature selection-
prediction performance. Finally, we acknowledge that
our image feature analysis was limited to a single bin
size for CT and single bin count for MRI. Texture fea-
tures have been shown to be affected by the bin width
or number of bins used to discretize image intensities.
Although the optimal bin width/count for image feature
analysis has not been established, previous HNC work
has used a 25 unit bin width (similar to the bin width
we used) for the evaluation of image features [27, 28].
However, since image features depend on the way they
are computed (i.e. using different binning strategies) fur-
ther work is needed to investigate the dependency of bin
width and the selection of image features on xerostomia
prediction.

Conclusions
This study suggests that baseline image features stem-
ming from both the parotid and submandibular glands
have the potential to be used as a clinical surrogate for
baseline function. Features from the submandibular
glands, specifically, may provide insight into unstimu-
lated salivary function thus providing an improved pre-
diction of susceptibility to post-RT xerostomia. Although
there was a trend towards prediction improvement when
all data was combined, future work is required to further
determine the benefits of combining imaging modalities
in xerostomia prediction. Taken together, prediction
models based on these features can further our under-
standing of the development of radiation-induced xeros-
tomia and allow us to develop patient-specific
adaptations to radiation treatment plans to minimize
toxicity.
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