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Abstract

Background: To calculate the individualized fraction regime (IFR) in stereotactic body radiotherapy (SBRT) for non-
small cell lung cancer (NSCLC) patients using the uncomplicated tumor control probability (UTCP, P*) function.

Methods: Thirty-three patients with peripheral lung cancer or lung metastases who had undergone SBRT were
analyzed. Treatment planning was performed using the dose regime of 48 Gy in 4 fractions. Dose volume histogram
(DVH) data for the gross tumor volume (GTV), lung, chest wall (CW) and rib were exported and the dose bin was
multiplied by a certain percentage of the dose in that bin which ranged from 1 to 200% in steps of 1%. For each dose
fraction, P* values were calculated by considering the tumor control probability (TCP), radiation-induced pneumonitis
(RIP), chest wall pain (CWP) and radiation-induced rib fracture (RIRF). UTCP values as a function of physical dose were
plotted and the maximum P* values corresponded to the optimal therapeutic gain. The IFR in 3 fractions was also
calculated with the same method by converting the dose using the linear quadratic (LQ) model.

Results: Thirty-three patients attained an IFR using the introduced methods. All the patients achieved a TCP value higher
than 92.0%. The IFR ranged from 3 x 10.8 Gy to 3 x 12.5 Gy for 3 fraction regimes and from 4 x 9.2 Gy to 4 x 10.7 Gy for 4

fraction regimes. Four patients with typical tumor characteristics demonstrated that the IFR was patient-specific and could
maximize the therapeutic gain. Patients with a large tumor had a lower TCP and UTCP and a smaller fractional dose than
patients with a small tumor. Patients with a tumor adjacent to the organ at risk (OAR) or at a high risk of RIP had a lower

UTCP and a smaller fractional dose compared with patients with a tumor located distant from the OAR.

Conclusions: The proposed method is capable of predicting the IFR for NSCLC patients undergoing SBRT. Further
validation in clinical samples is required.
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Background

Stereotactic body radiotherapy (SBRT) has become a
standard treatment alternative for patients with medically
inoperable early stage non-small cell lung cancer
(NSCLC), and for those refusing surgical resection [1-4].
Recent data have shown that SBRT provides outcomes
that are equivalent to those of surgery [5-7].

Although SBRT for NSCLC has achieved encouraging
outcomes, radiation-induced pneumonitis (RIP), chest wall
pain (CWP) and radiation-induced rib fractures (RIRF) are
common side effects for NSCLC patients undergoing
SBRT. The occurrence of grade > 2 RIP, grade > 2 CWP and
symptomatic RIRF ranged between 9.4 and 20.3% [8-15],
10.9 and 39% [16-20] and 12.2 and 17.0% [21-23], respect-
ively. Therefore, to develop a method for calculating the in-
dividualized fraction regime (IFR) capable of maintaining
tumor control probability (TCP) while lowering the risk of
normal tissues by considering the tumor size and proximity
to the organs at risk (OAR) is a problem to be solved.
Recently, two independent studies utilized risk-adapted
fraction regimes ranging from 3 to 8 fractions in SBRT
treatment for lung cancer and achieved a low incidence of
CWP [24, 25]. Unfortunately, the studies considered only
the risk of CWP without considering of the tumor size or
the toxicities of other OAR.

The current study aimed to develop a method to calcu-
late the patient-specific fraction regime and to maximize
the therapeutic gain for peripheral NSCLC patients by in-
corporating the uncomplicated tumor control probability
(UTCP, P*) function.

Methods

Patient eligibility

Computed tomography (CT) simulation data for 33 pa-
tients previously diagnosed with primary stage I NSCLC
or lung metastases were included in the study. The age
of the patients ranged from 51 to 77 years. The basic
characteristics of the patients are presented in Table 1.

Immobilization and CT scanning

Patients were immobilized in the supine position with a
vacuum bag (Medtec Medical, Inc., Buffalo Grove, IL) or a
thermoplastic mask (Guangzhou Klarity Medical & Equip-
ment Co., Ltd,, Guangzhou, People’s Republic of China).
All of the patients were simulated using a Brilliance Big
Bore CT (Philips Brilliance CT Big Bore Oncology Config-
uration, Cleveland, OH, USA) under free breathing condi-
tions. Ten-phase CT images were acquired at a 3-mm slice
thickness during scanning using respiratory-correlated
four-dimensional computed tomography (4DCT) via a
Real-time Position Management System (Varian Medical
System, Inc., Palo Alto, CA). Maximum intensity projection
(MIP) and average intensity projection (AIP) images were
reconstructed. The CT images, including the MIP and AIP
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Table 1 Basic characteristics of the patients

Patients Gender Age Stage GTV (cc) PTV (cc)
1 M 73 ECa M 1.6 135
2 M 55 T1 1.6 276
3 F 55 T1 2 20.2
4 M 71 T1 24 19.1
5 M 71 T1 3.1 16.3
6 M 64 T1 33 23

7 M 62 T1 34 20

8 M 73 T1 35 183
9 M 68 T1 36 276
10 M 74 ECa M 37 50.3
11 F 59 T1 4 329
12 M 61 NPC M 4 268
13 F 72 T1 54 313
14 F 66 T1 6.2 83.8
15 F 71 T 7 28.7
16 M 71 T1 77 36
17 M 64 T1 9.6 56
18 F 56 T1 9.7 635
19 M 51 SPM 10.1 48.7
20 M 68 T1 104 66.1
21 M 57 T1 109 409
22 M 75 T1 1.2 44.1
23 M 70 T1 116 408
24 M 74 T1 119 436
25 M 72 Lung M 149 64.3
26 M 71 T2 17.3 67.5
27 M 63 T2 20 73.7
28 M 72 T2 21 71
29 F 64 RCM 26.7 1054
30 M 77 T2 267 95

31 M 77 ECa M 27.5 74.3
32 M 57 T2 444 119.7
33 M 51 T2 706 1289

Abbreviations: M Male, F Female, GTV Gross target volume, PTV Planning target
volume, ECa M Pulmonary metastasis from esophageal cancer, NPC M
Pulmonary metastasis from nasopharyngeal carcinoma, SP M Pulmonary
metastasis from soft palate cancer, Lung M Left lung metastases to the right
lung, RC M Pulmonary metastasis from rectal cancer

images, were transferred to an Eclipse treatment planning
system (Version 10.0, Varian Medical System, Inc., Palo
Alto, CA) for target delineation, OAR contouring, treat-
ment planning and plan evaluation.

Target defining and OAR contouring

The internal target volume (ITV) was delineated by in-
corporating the gross tumor volume (GTV) on ten phases
of the 4DCT scans under the pulmonary windows. To
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account for the set-up uncertainties and potential baseline
tumor shift, a uniform 5mm planning target volume
(PTV) was created expanding around the ITV. For OAR
contouring, the whole lung was limited to the air-inflated
lung parenchyma, and the GTV and trachea/ipsilateral
bronchus were excluded according to the Radiation Ther-
apy Oncology Group (RTOG) 0915 report [26]. The CW
was segmented from the corrected lung edges with a 2 cm
expansion in the lateral, anterior, and posterior directions,
excluding the lung volume and mediastinal soft tissue [16,
17, 27]. If the 2 cm expansion extended outside the body,
then the contour extended only to the external patient sur-
face. To avoid cumbersome delineation of the entire CW,
we defined it within a 3 cm limit in the head-to-feet direc-
tion from the PTV [27]. To evaluate the incidence of RIRF
after SBRT treatment, the rib that was within or closest to
the target was delineated under a window level of 750 and
a window width of 1400.

Treatment planning

Dose regimes of 4 x 12 Gy were prescribed; 4 x 12 Gy
represented 48 Gy in 4 fractions. The treatment was
planned on the averaged 4DCT image using Eclipse
treatment planning system (Version 10.0). All plans were
designed on a TrueBeam LINAC with a 6 MV flattening
filter free (FFF) photon beam and a maximum dose rate
of 1400 MU/min. Treatment plans were created using
dual partial arcs, preventing irradiation of the contralat-
eral lung. The collimator angles for all plans were set to
30° and 330° to minimize the contribution of the
tongue-and-groove effect to the dose. Optimization was
performed using the progressive resolution optimizer
(PRO_10028) algorithm. The objectives were adjusted to
ensure a maximum dose higher than 120% of the pre-
scribed dose center in the GTV. The dose was pre-
scribed at 95% of the PTV covered by the prescription
dose. Dose calculation was performed using the aniso-
tropic analytical algorithm (AAA_10028) with a grid
resolution of 1 mm while accounting for heterogeneity
correction. All of the dose constraints and critical organ
dose-volume limits should meet the criteria of the
RTOG 0915 protocol and other publications [26, 28].

Radiobiological models

The 3-year TCP data was predicted using the Liu et al.
model [29] with the isocenter dose as a predictor. The
model basically considers the tumor regrowth locally
after radiation therapy, and thus can be applied to pre-
dict the TCP value as a function of follow-up time. The
calculating formula and key modelling parameters were
obtained from the original publication, with two respect-
ive sets of radiobiological parameters to predict the TCP
data for stage T1 and T2 tumors. We employed the
Wennberg et al. model [30] to predict the probability of
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2-year grade>2 RIP. The model was Lyman-Kutcher-
Burman (LKB) based and showed a dose-response rela-
tionship between RIP and the equivalent uniform dose
(EUD) of the lung. The Din et al. model [18], a Cox pro-
portional hazard (CPH)-based model, was applied to
predict 2-year grade =2 CWP. The model used a com-
bination of a normalized total dose of 99 Gy (NTDggcy)
and body mass index (BMI) for prediction. The beta co-
efficients of the model were acquired by taking natural
logarithms of the hazard ratio (HR) values shown in
Table 2 of the reference. The baseline hazard hy(t) value
was obtained from the nomogram by privately contact-
ing the author. The hg(t) value is approximately equal to
0.05 after careful measurement. The risk of 3-year RIRF
was predicted using the Stam et al. model [23]. The
model was a traditional normal tissue complication
probability (NTCP) model in which the time to toxicity
was taken into account. To calculate the probability of
rib fracture within 3years, we multiplied the NTCP
value by a latency distribution, f{z), for the time to
toxicity using the parameters described in Table 2 of the
reference, for which a log-normal distribution is as-
sumed. To estimate the probability of rib fracture within
3 years, the cumulative density function (CDF) was used
to calculate the f{z) value. The calculating process was
performed using an in-house developed program on
MATLAB 7.0 (MathWorks, USA).

Fraction regime individualization

The method described is based on maximizing the P*
function, where P*=TCP.(1-NTCP) [31, 32]. In this
study, P* = TCP-(1-NTCPjypg)-(1-NTCPcyy)-(1-NTCP,p).
The method investigates the P* values when the physical
dose changes. The dose volume histogram (DVH) data

Table 2 The IFR, TCP and UTCP values for the four patients with
typical tumor characteristics

Parameters Patient 3 fractions 4 fractions
IFR (Gy) A 3x 122 4x 106

B 3x 116 4% 100

C 3x 110 4x95

D 3x 108 4x92
TCP (%) A 974 974

B 94.7 94.5

C 93.9 93.7

D 94.9 94.6
UTCcpP A 0.84 0.84

B 0.79 0.79

C 0.77 0.77

D 0.73 0.74

Abbreviations: IFR Individualized fraction regime, TCP Tumor control
probability, UTCP Uncomplicated tumor control probability
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of the GTV (DVHgrv), lung (DVHyyng), CW (DVHcw)
and rib (DVH,;,) were extracted from the treatment plan-
ning system at a resolution of 2 cGy. The dose bins of
DVHgrv DVHyng, DVHew and DVH,y, were then multi-
plied by a certain percentage of the dose in that bin which
ranged from 1 to 200% in steps of 1%. Accordingly, 200
groups of DVH data were obtained. The TCP values of
GTV (TCP;) and the NTCP values of the lung
(NTCPlyng); CW (NTCPcw,) and rib (NTCP,,;) from
each dose fraction of the DVH were calculated separately.

The P*; values for each of the 200 sets of DVH data were
calculated. The maximum value for P*; correspond to the
optimal therapeutic gain. A flow chart of the fraction
regime individualization is presented in Fig. 1. As fraction
regimes of SBRT are often less than five fractions and single
fraction regimes were reported to be unfit by the linear
quadratic (LQ) model beyond a fractional dose of up to 20
Gy [33], the DVHg1v; DVHjung, DVHcw and DVH,y, data
were also converted to 3 fractions regimes using the LQ
model. In other words, two groups of P*; values, P*; in 3
fractions (P*; 3r) and P*; in 4 fractions (P*; 4) were
obtained.

Results

Clinical parameters

The tumor diameter ranges from 1.4-5.0cm. The GTV
and PTV ranges from 1.6-70.6cc and 13.5-128.9cc,
respectively. Detailed clinical parameters for the patients
are presented in Table 1.
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Individualized fraction regime

The IFR and corresponding TCP and UTCP values
across the 33 patients are shown in Fig. 2. The figure
shows that all the patients have patient-specific IFR,
TCP and UTCP values. All the patients achieve a TCP
value higher than 92.0%. The IFR ranges from 3 x 10.8
Gy to 3 x 12.5Gy and from 4 x 9.2 Gy to 4 x 10.7 Gy for
the 3 and 4 fraction regimes, respectively.

Four patients with typical tumor characteristics demon-
strate that the method developed is personalized. Patient A
has an off-CW small lesion (diameter of 1.9 cm and GTV
of 3.4 cc) and patient B has off-CW large lesion (diameter
of 3.7cm and GTV of 26.7 cc). The tumor of patient C is
adjacent to the CW and patient D has the largest target to
normal lung volume ratio (PTV of 83.8 cc and the normal
lung volume of only 1671.7 cc, predicted to be at high risk
of RIP). A CT image of the four patients is shown in Fig. 3.
Figure 4 shows the UTCP values as a function of physical
dose for the four patients. The physical dose corresponding
to the maximum UTCP value is referred to as the IFR, re-
gardless of whether 3 or 4 fraction regimes are utilized.
Table 2 shows that four patients with typical tumor charac-
teristics possess IFR and individualized UTCP values while
maintaining a TCP value higher than 93.0%. The UTCP
values and fractional dose of the four patients in descend-
ing order are A >B>C>D. Patients with a large tumor
has a lower TCP and UTCP and a smaller fractional dose
than patients with a small tumor (patient B vs. patient A).
Patients with tumor adjacent to the OAR (patient C) or at
high risk of RIP (patient D) exhibits lower UTCP values
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Fig. 1 Process of fraction regime individualization. The P™ values considering the TCP and NTCP values of the lung, CW and rib for each dose bin
of the DVH were calculated. The physical dose corresponding to the maximum P* value is referred to as IFR. Abbreviations: DVH = Dose volume
histogram; TCP = Tumor control probability; NTCP=Normal tissue complication probability; P* = UTCP=Uncomplicated tumor control probability;
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and smaller fractional dose than patients with a tumor lo-
cated distant from OAR (patient A and B).

Discussion
In the current clinical practice of SBRT treatment for lung
cancer, some “rigid” fraction regimes are commonly used.
Clinical practice does not take into account tumor diver-
sity, such as the size and proximity to normal tissues,
which will lead to an underdose in some patients and to
adverse side effects due to overdose in others. In this
study, we first developed a method to calculate the IFR to
avoid any underdose or overdose for NSCLC patients
undergoing SBRT.

Efforts to search for the optimal dose of SBRT for stage
I NSCLC are ongoing. Park et al. found that a biologically

effective dose (BED) > 100 Gy was required to achieve a >
85% local control rate regardless of tumor size. The opti-
mal dose for small tumors of < 3 cm appeared to be within
a range below 150 Gy BED. The escalation of BED to high
levels (>150 Gy) might be required for patients with a
tumor size larger than 3cm [34]. Guckenberger et al.
reported that doses of > 100 Gy BED to the CTV based on
4D dose calculation resulted in excellent local control
rates [35]; Kestin et al. found a significant dose—response
relationship for local control of NSCLC following image-
guided SBRT with an optimal PTV .., BED;o> 125Gy
[36]; Lee et al. observed that tumors <2 c¢cm had no local
recurrence regardless of dose, whereas for tumors > 2 cm,
an escalated BED of approximately 150 Gy, provided
significantly higher local tumor control [37]; Koshy et al.
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Fig. 3 CT images of the four patients with typical tumor characteristics. a Patient with an off-CW small tumor; b Patient with an off-CW large
tumor; ¢ Patient’s tumor was adjacent to the CW; and d Patient at a high risk of RIP
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concluded that higher doses (> 150 Gy BED) were associ-
ated with a significant survival benefit in patients with T2
tumors [38]; and Zhang et al. reported that a medium or
medium to high BED (range, 83.2—-146 Gy) for SBRT may
currently be more beneficial and reasonable in stage I
NSCLC [39]. However, the studies above drew inconsist-
ent conclusions for the following reasons. First, the studies
were derived from samples at various tumor stages and a
wide variety of fraction regimes. Second, the studies
mainly concentrated on local control data, and toxicity to
the normal tissues was less considered. In other words, we
believe that the optimal dose of SBRT for lung cancer is
patient specific when the factors of tumor stage and prox-
imity to the OAR are all considered. The so-called“one-
size-fits-all” fraction regime does not exist.

The absolute values of LC and NTCP were partially
dependent on the radiobiological models used. In the
study, the regrowth model was employed to predict the
TCP value for the following reasons: (1) It is the one
and only TCP-predicting model to separate between
stage T1 and T2 tumors. It was also proven to offer a
better fit to the clinical data compared with the universal
survival curve (USC) and the modified linear quadratic
and linear (mLQL) models. (2) It is the only model to
estimate local control for a certain follow-up time for
primary lung cancer patients. (3) The model is highly in

accordance with other published data in which the isocen-
ter dose (also denoted as the maximum dose) was corre-
lated with tumor local control [40, 41]. We used the
Wennberg et al. model to calculate the risk of RIP because
it uses bilateral lung exclusive of the GTV as the definition
of lung volume, which is generally recognized in lung
SBRT [8, 13, 15]. The Din et al. model and the Stam et al.
model are unique models that calculate the incidence of
CWP and RIRF. Moreover, 7 of the 33 patients in the
study had pulmonary metastases from different primaries,
and we assume a similar dose-response relationship be-
tween the primary and secondary lung tumors according
to the results of Guckenberger et al. [42].

The applicability of the LQ model for local control
modelling has been widely reported. Guckenberger et al.
suggested that traditional LQ formalism could model pa-
tients with stage I NSCLC undergoing SBRT more ac-
curately than LQ-L formalism based on 395 patients
from 13 German and Austrian centers [40]. Shuryak et
al. also found that the LQ model provided a significantly
better fit to local control data for NSCLC than any of
the models requiring extra terms at a high dose range
[43]. Santiago analyzed 1975 patients and demonstrated
that the LQ model was a robust method for predicting
3-year local control data [41]. Unfortunately, there is
limited evidence on the validity of the LQ model for RIP
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prediction. Only Scheenstra et al. reported that the
alpha/beta ratio of 1.3 Gy using the traditional LQ model
was applicable for RIP prediction [44]. Whether the
USC model characterized by an additional dose modifi-
cation beyond a certain transitional dose (dr) is more
suitable for modelling the RIP prediction has not been
well established [45]. The lack of strong evidence for the
applicability of the traditional LQ model for RIP predic-
tion prompted us to use the Wennberg model, which is
characterized by a USC model for converting the equiva-
lent dose into 2 Gy fractions (EQD,) when the fractional
dose of the DVH is greater than 5.8 Gy [30].

Although our study demonstrated that the method
based on maximizing the P* value is able to calculate the
IFR in SBRT for lung cancer, there are some limitations.
(1) We have to perform the treatment planning and
export the dose data before calculating the IFR for each
patient, which requires several hours to complete the
process of fraction regime individualization. However, we

may chart the IFR using the following variables when
enough patients are analyzed because tumor size [29, 38],
tumor-CW distance [46] and the PTV to total lung vol-
ume ratio [47] were widely reported to be correlated with
LC, CWP, RIRF and RIP. (2) As the time points of TCP
and NTCP data are inconsistent (2 year for CWP and RIP
prediction and 3year for TCP and RIRF prediction, we
can’t determine whether the IFR was calculated in 2-year
or 3-year follow up. (3) The study used the radiobiological
models to calculating the P* values; however, the correct-
ness of the parameters is a bit questionable. Therefore,
clinical validation is required to confirm the results.

Conclusions

The proposed method based on maximizing the P* value
is able to predict the IFR in SBRT for lung cancer pa-
tients. However, clinical validation is required to confirm
the results.
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quadratic; MIP: Maximum intensity projection; mLQL: Modified linear
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