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Abstract

Background: The aim of this work is to assess the impact of using different deformable registration (DR) algorithms
on the quality of cone-beam CT (CBCT) correction with histogram matching (HM).

Methods and materials: Data sets containing planning CT (pCT) and CBCT images for ten patients with prostate
cancer were used. Each pCT image was registered to its corresponding CBCT image using one rigid registration
algorithm with mutual information similarity metric (RR-MI) and three DR algorithms with normalized correlation
coefficient, mutual information and normalized mutual information (DR-NCC, DR-MI and DR-NMI, respectively).
Then, the HM was performed between deformed pCT and CBCT in order to correct the distribution of the
Hounsfield Units (HU) in CBCT images.

Results: The visual assessment showed that the absolute difference between corrected CBCT and deformed pCT
was reduced after correction with HM except for soft tissue-air and soft-tissue-bone interfaces due to the improper
registration. Furthermore, volumes comparison in terms of average HU error showed that using DR-NCC algorithm
with HM yielded the lowest error values of about 55.95 ± 10.43 HU compared to DR-MI and DR-NMI for which the
errors were 58.60 ± 10.35 and 56.58 ± 10.51 HU, respectively. Tissue class’s comparison by the mean absolute error
(MAE) plots confirmed the performance of DR-NCC algorithm to produce corrected CBCT images with lowest
values of MAE even in regions where the misalignment is more pronounced. It was also found that the used
method had successfully improved the spatial uniformity in the CBCT images by reducing the root mean squared
difference (RMSD) between the pCT and CBCT in fat and muscle from 57 and 25 HU to 8HU, respectively.

Conclusion: The choice of an accurate DR algorithm before performing the HM leads to an accurate correction of
CBCT images. The results suggest that applying DR process based on NCC similarity metric reduces significantly the
uncertainties in CBCT images and generates images in good agreement with pCT.
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Background
In the past decade, on board cone-beam CT, integrated
into linear accelerators was frequently used for image
guidance of radiotherapy. It allowed the verification and
the correction of patient’s setup during the course of
treatment in three dimensions with sufficient soft tissue
contrast and low patient dose [1–4]. Therefore, it be-
came a powerful tool for improving tumor targeting and
reducing dose delivery to normal tissues [5].
Recently, the development of CBCT systems in terms

of images acquisition, rapidity and improved image qual-
ity has underlined the question of using CBCT images
for adaptive radiation therapy (ART). This technique
aims to adapt the treatment planning with patient anat-
omy modification throughout the entire treatment; it is
mainly based on three complex and consuming time
processes: acquisition of daily CBCT images for making
decision if the re-planning is necessary by comparing
them to the CT images, the second process concerns the
acquisition of new pCT images and the delineation of
volumes of interest to provide a base for the last process
which is the dose re-calculation [6]. However, repeated
acquisition of CT images for each planning is unjustifi-
able, due to the accumulated dose. In addition, the prep-
osition of using daily CBCT images directly for dose
calculation is limited, owing to their reduced contrast
compared to CT images, as shown in Fig. 1, and the
large variation of Hounsfield Units caused by the in-
creased amount of scattered radiation [7, 8].
Despite these drawbacks, several studies investigated

the feasibility of CBCT images for dose calculation pro-
posing three main “pCT-based” approaches to correct
the HUs distribution and minimize as possible the dens-
ity differences between CBCT and pCT to ensure an ac-
curate dose calculation based on CBCT images. The
first approach, known as HU mapping, consists of

replacing the HUs values in CBCT by their equivalent
points in pCT after the application of rigid or deform-
able registration. The accuracy of this approach is
strongly dependent on region of body in which it is ap-
plied and it is available just for regions where the
intra-scan motion and organs deformation are insignifi-
cant [9, 10]. The second approach is the Multilevel
Threshold (MLT), it classifies all CBCT pixels with simi-
lar HUs into three or four different segments based on
pCT. The use of such approach showed a high accuracy
especially when combined with DR which minimizes the
effect of organs deformation [11–14]. The last approach
is the histogram matching (HM) which allows the adjust-
ment of HUs values between CT and CBCT using cumula-
tive histograms. This modification yielded a good agreement
between CT and modified CBCT even for breast and pros-
tate cancer where the intra-scan motion and organs deform-
ation are significant [13, 15]. Other correction categories can
be found in literature such as: “Scatter calibration” and “phy-
sics-based” techniques, which aim to directly use CBCT im-
ages without recourse to pCT-based strategies using
empirical look-up-table (LUT) to calibrate CBCT images
[16–18] and scatter measurement or simulation [19–23].
Focusing on pCT-based techniques, the previously

cited works showed that the correction accuracy de-
pends on the correspondence between the voxels of
CBCT and pCT images. Therefore, the choice of DR al-
gorithm must be validated.
The present paper aims to evaluate the impact of using

different DR algorithms on the accuracy of CBCT enhance-
ment by HM. A dataset containing CT and CBCT images
for patients with prostate cancer was used to generate cor-
rected CBCT, then, HUs values were compared for cor-
rected CBCTand original CT using different metrics.
The remainder of this paper is organized as follows. In

section “Methods and Materials”, used data and each

Fig. 1 pCT and CBCT for the same patient (axial, coronal and sagital views) displayed using the same window level
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step to correct CBCT images are described. Numerical
results based on ten prostate cancer patient data sets are
presented in section “Results”. In section “Discussion”,
we further discuss the performance and the effect of DR
on the correction quality, and finally conclude the paper
in section “Conclusion”.

Methods and materials
Data description
This study was performed on data sets of 10 patients
with prostate cancer containing pCT and CBCT images
obtained by GE CT scan (General Electric Medical Sys-
tems) and on-board imager (OBI, Varian Medical Sys-
tems) mounted on the gantry of clinical iX21 linear
accelerator, respectively. The settings of pCT and CBCT
acquisition according to pre-defined protocols are reca-
pitulated in Table 1. The slices number differed from a
patient to another; it ranged from 123 to 159 slices in
the pCT images and from 50 to 64 slices in the CBCT
images giving sufficient information about the anatom-
ical distribution and the motion artifact variations. For
all these data CBCT images were acquired for the first
day of treatment to minimize the error of patient’s setup
under the treatment machine. Since this technique is
newly integrated in the clinical practice, the number of
patients used in this study is limited.

Images pre-processing
Initially, collected CBCT and pCT contained not only
the information describing the patient’s body but also
the couches of the CT scanner and the linear acceler-
ator. For that reason, all images were pre-processed
using the FIJI software [24] to select the region including
the patient volume and remove the couches. Further-
more, to eliminate all unnecessary content, a fixed
threshold was applied to assign all pixels outside the
body surface (below − 700 HU for pCT and bellow
-600HU for CBCT) to standard CT value for air
(-1000HU) using the 3D Slicer software [25].

Corrected CBCT generation
In order to assess the impact of DR on the quality of
CBCT enhancement, three intensity-based algorithms
with different similarity metrics implemented in Elastix
[26] were used. The workflow of corrected CBCT gener-
ation is described in Fig. 2.
Before starting the DR, the data sets for each patient

were aligned using rigid 3D transformation with mutual

information similarity metric (step1 in Fig. 2). Moreover,
to minimize the effect of difference in organ deformation
between pCT and CBCT, a multi-resolution B-Spline
transformation including 3 levels was performed (step2
in Fig. 2). It is mainly based on the displacement of con-
trol points around a control point grid that is put on
fixed image, according to the considered similarity
metric [26]. The B-Spline interpolator was used to esti-
mate iteratively the deformation field in these points and
at each iteration the control points displacement was op-
timized using the adaptive stochastic gradient descent
(ASGD). In this DR process, three similarity metrics
were considered: the Normalized Correlation Coefficient
(NCC), the Mutual Information (MI), and the Normal-
ized Mutual Information (NMI).
The Normalized Correlation Coefficient (NCC) is

given by:

NCCðI F ; IMÞ ¼
P

xi∈Ω F
ðI FðxiÞ− I F

��ÞðIMðTðxiÞÞ− IM
��ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

xi∈Ω F
ðI FðxiÞ− I F

��Þ2ðIMðTðxiÞÞ− IM
��Þ2

q
ð1Þ

With IF the fixed image, IM the moving image using a
given transformation T and |ΩF| is the number of voxels
of the fixed image. I F and IM are the average gray values
for the fixed and the moving images respectively.
The Mutual Information (MI) is defined as:

MI I F ; IMð Þ ¼ H I Fð Þ þ H IMð Þ−H I F ; IMð Þ ð2Þ

Where: HðI FÞ ¼ −
R
pI F ðaÞ logpI F ðaÞda and HðIMÞ

¼ −
R
pIM ðbÞ logpIM ðbÞdb:

With: H(IF) and H(IM) the entropies of IF and IM re-
spectively. pI F ðaÞ and pIM ðbÞ are the pixel’s probabilities
with values a and b in IF and IM respectively. H(IF, IM) is
the joint entropy of IF and IM.
The NMI is given by:

NMI I F ; IMð Þ ¼ 1þMI I F ; IMð Þ
H I F ; IMð Þ

¼ H I Fð Þ þ H IMð Þ
H I F ; IMð Þ ð3Þ

After DR, the 3D slicer software [25] was used to
match the histograms of the CBCT images against the
corresponding deformed pCT (step3 in Fig. 2). This pro-
cessing method aims to adjust the HU values between
pCT and CBCT images using their cumulative

Table 1 Acquisition settings

Protocol Tube current (mA) Exposure time (ms) Tube voltage (kVp) Axial image size (pixels) Voxel size (mm3)

CT 360 500 100 512 × 512 0.8496 × 0.8496 × 3

CBCT 80 8632 125 512 × 512 0.8789 × 0.8789 × 2.5
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histograms. Each pixel value in the CBCT images is re-
placed by the HU having the same cumulative value in
the pCT images according to the following formula:

CBCT H1ð Þ ¼ pCT H2ð Þ ð4Þ

Where CBCT(H1) represents the HU values for CBCT
and pCT(H2) represents the HU values for pCT [13, 15].

Data analysis
To evaluate the quality of corrected CBCT, deformed
pCT images were considered as a reference for each pa-
tient. A visual assessment was performed by the calcula-
tion of absolute difference between pCT and CBCT
images before and after HM to assess the discrepancies
between them.
Furthermore, to evaluate quantitatively the agreement

between corrected CBCT and pCT, three methods were
used. The first one consists of the average HU error esti-
mation over the entire volume [27] given by:

Verr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mean HUpCT x; y; zð Þ−HUCBCT x; y; zð Þ� �2� �r

ð5Þ

The second method is the Mean Absolute Error
(MAE) plots creation which allows comparing the differ-
ent tissue classes. It is based on the calculation of the
MAE between pCT and corrected CBCT in equidistant
bins across the HU scale. For this comparison a size of
20 HU was taken for each bin and the formula describ-
ing the MAE is given by:

MAE ¼ 1
N

XN
0

jHUpCT−HUCBCT j ð6Þ

Where N is the number of pixels having intensities in
[HU-10, HU + 10] in the pCT [28].

The third one is the image quality evaluation in terms
of spatial uniformity. For this method, the mean pixel
value among five regions of interest (ROIs) having 10 by
10 pixels and positioned in regions of the same soft tis-
sue area is measured [29]. Then, the RMSD between the
mean pixel values in the pCT and the CBCT images be-
fore and after correction are calculated.

Results
Visual assessment
Figure 3 shows the absolute difference between de-
formed pCT and CBCT images for one patient before
and after HM using three DR algorithms (DR-NCC,
DR-MI and DR-NMI). Obtained results for a RR algo-
rithm are also included to confirm the effect of morpho-
logic deformation between pCT and CBCT on the
quality of correction. The effect of applying HM is
clearly visualized; it reduced the amount of artefacts in
CBCT and yielded corrected images in good agreement
with deformed pCT. However, high differences in bony
regions and soft tissue-air interfaces are present due to
the misalignment between CBCT and pCT.

Volumes comparison
Results of volumes comparison for each patient in terms
of HU average error between deformed pCT and CBCT
before and after correction are shown in Table 2. The
mean and the standard deviation are also presented.
The largest magnitude of Verr is observed for unpro-

cessed CBCT images especially when using RR process
where the mean HU error value was about 206.47 ±
52.21 HU. For the DR process, a significant decrease
was obtained with error values ranging from 64.15 ±
9.50 to 68.20 ± 10.12 HU which confirms the perform-
ance of DR algorithms. Whereas, after the correction of
CBCT images reduced values of HU of about 55.95 ±
10.43 HU, 56.58 ± 10.51 HU and 58.60 ± 10.35 HU were
obtained for DR-NCC, DR-NMI and DR-MI,

Fig. 2 Workflow of corrected CBCT generation
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respectively, indicating that the HM after using
DR-NCC yielded corrected CBCT images in good agree-
ment with pCT images compared to unprocessed CBCT
images.

Tissue class’s comparison
Since volumes comparison may not give information
about the presence of large errors and their location, the
MAE plots for each algorithm over the HU scale are il-
lustrated in Fig. 4. Similarly to [13], HU scale for pCT
images was divided according to the tissue type on dif-
ferent classes. All the values lower than − 400 HU was
considered as air. The HU values between − 400 and 250
HU were associated to soft tissues, while those between
250 and 600 HU presented the soft bone. The remaining
values (higher than 600 HU) were considered as bone.
Figure 4a compares MAE results using RR algorithm

before HM with those obtained after HM. It shows

obviously that the use of HM with RR increases the un-
certainties in CBCT images, due to the misalignment be-
tween pCT and CBCT images. However, in (Fig. 4b, c, d)
the MAE becomes lower and the combination of DR
with HM contributes significantly to reduce the errors
after correction, especially for pixels with CT number
higher than 200 HU. For the values below − 200 HU a
mismatch is observed and the MAE values after correc-
tion are higher than before. This is due to the low num-
ber of pixels in corrected CBCT containing the same
HU values as pCT in the interfaces soft tissue-air, which
is in agreement with the visual assessment where high
errors were noticeable in those regions owing to the im-
proper registration.
The DR performance comparison is depicted in Fig. 5.

Plotting together the MAE values before and after cor-
rection against each other (Fig. 5a and b respectively)
shows that the use of DR based on NCC metric was

Fig. 3 Absolute difference between deformed pCT and CBCT in the first row and corrected CBCT in the second row using one RR and three DR
algorithms. Blue colors represent low discrepancies while red colors represent the highest ones

Table 2 HU average error values between deformed pCT and CBCT before and after HM for each patient with the mean and the
standard deviation

Verr [HU]

Patient’s
number

RR-MI DR-NCC DR-MI DR-NMI

Before HM After HM Before HM After HM Before HM After HM Before HM After HM

1 138.50 141.33 71.03 64.70 75.94 68.07 73.53 65.67

2 140.00 143.01 57.89 49.10 60.77 51.76 59.90 49.87

3 260.62 288.10 73.58 65.17 76.33 66.71 75.09 64.84

4 257.67 274.16 65.76 55.10 71.23 57.05 68.51 54.03

5 239.04 267.54 67.48 55.73 73.34 59.89 71.44 58.02

6 258.85 269.82 82.09 77.88 87.37 80.24 86.24 79.04

7 171.96 195.80 57.74 47.26 60.12 48.18 58.90 46.26

8 193.20 194.09 54.89 45.74 58.68 47.75 57.23 46.03

9 153.75 173.61 51.82 45.90 56.13 51.47 54.33 49.09

10 251.15 269.41 59.29 52.92 62.16 54.96 60.62 53.01

Mean 206.47 221.68 64.15 55.95 68.20 58.60 66.57 56.58

SD 52.21 57.97 9.50 10.43 10.12 10.35 10.06 10.51
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better than MI and NMI especially in soft tissue-air in-
terfaces. Moreover, using the NCC metric in combin-
ation with HM produced more accurate CBCT images.
Concerning the uniformity of resulted CBCT images,

the RMSD of the mean pixel values of ROIs between
CBCT, corrected CBCT and pCT images are summa-
rized in Table 3. The obtained results showed that the
use of HM reduced the RMSD in fat and muscle (soft
tissues) from about 57 and 25 HU to 8 HU, respectively,
indicating that the CBCT image quality was brought
closer to the pCT image quality through this correction
technique.

Discussion
In this work, the impact of choosing different registra-
tion algorithms on the quality of CBCT correction by

HM was studied. One RR algorithm based on MI simi-
larity metric and three DR algorithms including NCC,
MI and NMI similarity metrics were validated.
Several studies investigated the accuracy of dose calcu-

lation based on corrected CBCT using HM with DR
based on MI [13, 15] but our strategy differs from those
studies because it aims to initially choose the appropri-
ate DR algorithm, and then generate corrected CBCT
images.
All the results confirmed that the performance of DR

of each algorithm is strongly dependent on the region in
which the transformation was applied. It was shown that
all DR algorithms provided a good alignment between
anatomical structures in pCT and CBCT compared to
RR registration but their reduced ability to align some
regions as soft tissue-air and soft tissue-bone interfaces

Fig. 4 MAE values of CBCT images before and after correction using a) RR-MI, b) DR-NCC, c) DR-MI and d) DR-NMI

Fig. 5 MAE values of CBCT images for each algorithm before HM (a) and after HM (b)
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was clearly visualised. In addition, the sensitivity of HM
process to the quality of registration has been proved. It
has been found that the better the alignment the more
significant is the HM contribution to correct the HU
distribution in CBCT images. For that reason, the best
compromise for this correction method seems to be the
use of DR with NCC similarity metric for which the
MAE values after correction were found to be the lowest
as indicated in Fig. 5. Also, this choice can be justified
by Table 2 where reduced HU errors in corrected CBCT
were obtained for the DR-NCC algorithm.
Despite the influence of DR accuracy on the HM

process, the use of DR-NCC before HM yielded accept-
able HU errors values compared to other studies investi-
gating pCT-based approaches and direct approaches
without recourse to pCT [29, 30]. In [29], Kida et al. ap-
plied a deep convolutional neural network (DCNN)
method to improve the quality of CBCT images ac-
quired for 20 prostate cancer patients. They reported
that the RMSD of the mean pixel values for corrected

CBCT images was about 11 and 14 HU in fat and
muscle, respectively, while in our study the same evalu-
ation showed that the RMSD was about 8 HU. This sug-
gests that our proposed workflow had successfully
improved the spatial uniformity in the CBCT images.
Besides, Poludniowski et al. [30] studied for 12 patients
(6 brain, 3 prostate and 3 bladder cancer patients) four
correction methods based on “scatter calibration” and
“scatter measurement” using CBCT images acquired by
other linear accelerator (Elekta Linac). They reported
that for prostate cancer the average HU error for each
method, called also Root Mean Squared Difference, were
about 95.5, 91.5, 73.1 and 67.7 HU. Whereas, in our
study the HM considered as pCT-based approach re-
sulted in average HU error of about 55.95 ± 10.43 HU
when using DR-NCC indicating that although our CBCT
images differs from theirs; our results are better than
their findings.
To improve the correctness of the proposed workflow,

the minimization of its limitations as the existence of
non-comparable regions in the pCT and CBCT images,
e.g. regions of gas in the rectum, is a priority. Thus, fur-
ther investigations taking into account the correction of
these regions before performing DR and HM are re-
quired. In addition, dosimetric evaluation is needed to
validate the efficiency of using corrected CBCT for dose
calculation in the context of adaptive radiation therapy.
Also, we are looking forward to applying this workflow
on large number of patients and translate it to other
body regions.

Conclusion
In this study, the impact of using different DR algo-
rithms on the HM process to correct CBCT images was
evaluated. The results showed that the quality of correc-
tion is strongly dependent to the accuracy of DR process
and revealed that performing HM after DR with the
NCC similarity metric contributed significantly to re-
duce the uncertainties in CBCT images. On the basis of
this study, a combination of the present workflow with
automatic segmentation algorithms could be a promising
way towards online adaptive radiation therapy.

Abbreviations
ART: Adaptive Radiation Therapy; ASGD: Adaptive Stochastic Gradient
Descent; CBCT: Cone Beam Computed Tomography; DCNN: Deep
Convolutional Neural Network; DR: Deformable Registration; DR-
MI: Deformable Registration based on Mutual Information similarity metric;
DR-NCC: Deformable Registration based on Normalized Correlation
Coefficient similarity metric; DR-NMI: Deformable Registration based on
Normalized Mutual Information similarity metric; HM: Histogram Matching;
HU: Hounsfield Unit; LUT: Look Up Table; MAE: Mean Absolute Error;
MLT: Multilevel Threshold; OBI: On-Board Imager; pCT: Planning Computed
Tomography; RMSD: Root Mean Squared Difference; ROIs: Regions of Interest;
RR-MI: Rigid Registration based on Mutual Information similarity metric;
Verr: Average HU error over the entire volume

Table 3 Comparison of the mean pixel values in fat and muscle
between the pCT, CBCT and corrected CBCT images with the
three different DR algorithms

Mean pixel values [HU]

Patient’s
number

Fat

pCT CBCT CBCTDR-NCC CBCTDR-MI CBCTDR-NMI

1 − 108.16 − 144.37 −90.73 −92.50 −92.06

2 −87.68 − 163.92 −84.98 −88.25 −85.77

3 −104.83 − 139.75 −90.03 −91.48 −91.16

4 − 103.80 − 151.60 −104.64 − 105.23 −105.19

5 −103.43 − 170.34 − 102.28 −103.16 −102.89

6 −109.43 − 130.55 −98.50 − 99.30 −99.09

7 −97.70 − 148.56 −97.08 −98.47 −97.97

8 −108.62 − 213.92 − 108.76 − 108.53 −108.04

9 − 110.23 −160.35 − 105.87 − 106.76 −106.82

10 −99.50 −123.33 −100.24 − 101.55 −101.40

RMSD 56.83 8.19 7.38 7.57

Muscle

1 49.45 −1.37 31.76 30.62 30.68

2 51.61 25.39 42.09 41.12 41.68

3 47.59 59.00 53.25 54.53 53.25

4 42.17 45.81 50.65 51.61 50.93

5 48.87 11.70 47.66 47.66 47.65

6 49.68 40.03 50.09 50.78 50.25

7 49.73 28.39 45.44 46.12 46.01

8 46.46 13.39 36.65 39.04 39.34

9 48.85 56.30 52.18 51.95 51.86

10 49.44 51.98 45.97 47.25 46.40

RMSD 25.49 7.72 8.28 8.02
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