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Effect of machine learning methods on
predicting NSCLC overall survival time
based on Radiomics analysis
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Abstract

Background: To investigate the effect of machine learning methods on predicting the Overall Survival (OS) for
non-small cell lung cancer based on radiomics features analysis.

Methods: A total of 339 radiomic features were extracted from the segmented tumor volumes of pretreatment
computed tomography (CT) images. These radiomic features quantify the tumor phenotypic characteristics on the
medical images using tumor shape and size, the intensity statistics and the textures. The performance of 5 feature
selection methods and 8 machine learning methods were investigated for OS prediction. The predicted performance
was evaluated with concordance index between predicted and true OS for the non-small cell lung cancer patients. The
survival curves were evaluated by the Kaplan-Meier algorithm and compared by the log-rank tests.

Results: The gradient boosting linear models based on Cox’s partial likelihood method using the concordance index
feature selection method obtained the best performance (Concordance Index: 0.68, 95% Confidence Interval: 0.62~ 0.74).

Conclusions: The preliminary results demonstrated that certain machine learning and radiomics analysis method could
predict OS of non-small cell lung cancer accuracy.

Keywords: Overall survival, Non-small cell lung cancer, Machine learning, Radiomics analysis

Background
Lung cancer is the leading cause of cancer-related deaths
worldwide [1]. Lung cancer could be clinically divided
into several groups: 1) the non-small cell lung cancer
(NSCLC, 83.4%), 2) the small cell lung cancer (SCLC,
13.3%), 3) not otherwise specified lung cancer (NOS,
3.1%), 4) Sarcoma lung cancer (0.2%), and 5) other speci-
fied lung cancer (0.1%) [2]. The ability to predict clinical
outcomes accurately is crucial for it allows clinicians to
judge the most appropriate therapies for patients.
Radiomics analysis can extract a large number of im-

aging features quantitatively, which could offer a
cost-effective and non-invasive approach for individual
medicine [3–5]. Several studies have shown the predictive
and diagnostic ability of radiomics features in different
kinds of cancers using various medical imaging modalities,

such as PET [6–8], MRI [9] and CT [4, 10, 11]. It is also
demonstrated that the radiomic features are associated
with the overall survival. Besides, these associations can
be used to establish positive predictive models.
Machine-learning (ML) can be resumptively defined as

the computational methods utilizing data/experience to
obtain precise predictions [12]. The ML method can first
learn laws from the data and then establish accuracy and
efficiency prediction model based on these laws auto-
matically. Moreover, an appropriate model is essential
for the success use of radiomics. Hence, it is crucial to
compare the performance of different ML models for
clinical biomarkers based on radiomics analysis. Besides,
appropriate feature selection methods should be applied
first for the high-throughput radiomics features who
may cause serious overfitting problems.
In this study, we investigated the effect of 8 ML and 5

feature selection methods on predicting OS for
non-small cell lung cancer based on radiomics analysis.
The effectiveness of ML and feature selection methods

* Correspondence: jiangmingyan@sdu.edu.cn
1School of Information Science and Engineering, Shandong University,
Qingdao, Shandong 266237, People’s Republic of China
Full list of author information is available at the end of the article

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Sun et al. Radiation Oncology  (2018) 13:197 
https://doi.org/10.1186/s13014-018-1140-9

http://crossmark.crossref.org/dialog/?doi=10.1186/s13014-018-1140-9&domain=pdf
mailto:jiangmingyan@sdu.edu.cn
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


on the prediction of OS were evaluated utilizing the con-
cordance index (CI) [6, 13–16].

Methods
Data acquisition
The data used in this study was obtained from the
‘NSCLC-Radiomics’ collection [4, 17, 18] in the Cancer
Imaging Archive which was an open access resource [19].
All the NSCLC patients in this data set were treated at
MAASTRO Clinic, the Netherlands. For each patient,
manual region of interest (ROI), CT scans and survival
time (including survival status) were available. All the
ROIs in this data set were the 3D volume of the gross
tumor volume (GTV) delineated by a radiation oncologist.

Prediction process
The flow chart of the prediction process [20, 21] for all
the ML methods in this study was outlined in Fig. 1.
The performance of each ML and feature selection
methods for the 283 NSCLC patients were evaluated
using the cross-validation (CV) method (3-CV in this
study). For each CV process, the total patients were di-
vided into three folds, in which two folds (training fold)
for training the machine learning model and the third
(validation fold) for evaluating the model.
For each training fold, the training algorithm required

both the training inputs (for prediction) and the predic-
tion targets (for validation) data. The training inputs re-
ferred to the selected radiomics features, while the
prediction targets referred to the OS of the patients. The
radiomics features were first extracted from the images
and then selected (dimension reduction) using the filter

based feature selection methods to reduce the risk of
overfitting. Finally, the selected features would be used
to optimize and train all the ML models. In this study,
the Bayesian optimization method was applied to deter-
mine the optimal parameters [22].
For each validation fold, the corresponding selected

radiomics features were first extracted from the images
and then transferred into the trained model. Finally, the
prediction OS would be used to evaluate the goodness
of each model.

Image pre-processing and Radiomics features extraction
Prior to extracting the radiomics features, we fixed the
bin number (32 bins) of all the pre-treatment CT scans
to discretize the image intensities. It should be noted
that the original voxels for the images were used in this
study. Then, the radiomics features were automatically
extracted from the GTV region of the CT images by our
in-house developed radiomics image analysis software
and the Wavelet toolbox based on the Matlab R2017a
(The Mathworks, Natick, MA). Total 43 unique quanti-
tative features in 4 categories (Fig. 2) were extracted:
1) Intensity features: to describe the shape characteris-

tics of the CT volume’s gray-level intensity histogram,
i.e., a probability density function (PDF) of gray-level
distribution.
2) Fine texture features: to describe the high-resolution

heterogeneity in the ROI. These features were derived
from the ROI’s Gray-Level Co-Occurrence Matrix
(GLCOM), a joint PDF that measures the frequency of
co-occurring adjacent voxel pairs having the same gray-
scale intensity at a given direction [23].

Fig. 1 The flow chart of predicted process for each ML method. (I) Dividing total data into three folds using the cross validation method. (II)
Training each ML model using the selected radiomics features of the training fold. (III) Validating the prediction performance of each ML model
on the validation fold
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3) Coarse texture features: to describe the
low-resolution heterogeneity in the ROI. These features
were calculated from the ROI’s Gray-Level Run Length
Matrix (GLRLM), a joint PDF that measures the size of a
set of consecutive voxels with the same grayscale intensity
at a given direction [24].
4) Morphological features: to describe the morpho-

logical characteristics of the ROI [25].
Here, the first category and the following two (second

and third) categories required the intensity histogram and
textural image processing steps, respectively. Both the
above two image processing steps and the 43 radiomics
features used in this study matched benchmarks of the
Image Biomarker Standardization Initiative (IBSI) [26].
Moreover, these radiomics features were also

extracted from different wavelet decompositions of
the original CT image by a three levels wavelet
transformation [27, 28]. However, the morphological
features weren’t extracted from the images with the
wavelet decompositions for the wavelet transformation
didn’t have effect on these features. Hence in total,
339 features were extracted for each patient in this
study.

Features selection and machine learning methods
Pearson’s (PCC) [29], Kendall’s (KCC), [30] Spearman’s
linear correlation coefficient (SCC) [31], Mutual informa-
tion (MI) [32] and CI [15] were used as the filter based
feature selection methods to reduce the dimensions of
radiomics features in this study. In order to make sure the
reliability of the selected features, we repeated each fea-
ture selection process 100 times using the bootstrap sam-
ples of each training fold and recorded the selected
feature subset each time. Then, we selected the most fre-
quently selected radiomics features as the final features
which were used to train the ML models [6]. In this study,
the first four feature selected methods (PCC, KCC, SCC
and MI) were implemented using the Matlab R2017a and
the following one method (CI) was implemented using the
R software 3.5.1. All the feature selection methods would
be performed on each training fold.
The effect of 8 ML methods were investigated in this

study, including: Cox proportional hazards model (Cox)
[33], gradient boosting linear models based on Cox’s par-
tial likelihood (GB-Cox) [34], gradient boosting linear
models based on CI’s partial likelihood (GB-Cindex) [34],
Cox model by likelihood based boosting (CoxBooxt) [35],

# Feature Name # Feature Name

1 Intensity Histogram Energy 27 Short Run Emphasis

2 Intensity Histogram Entropy 28 Long Run Emphasis

3 Intensity Histogram Kurtosis 29 Gray Level Non-uniformity

4 Intensity Histogram Skewness 30 Run Length Non-uniformity

5 Autocorrelation 31 Run Percentage

6 Cluster Prominence 32 Low Gray Level Run Emphasis

7 Cluster Shade 33 High Gray Level Run Emphasis

8 Cluster Tendency 34 Short Run Low Gray Level Emphasis

9 Contrast 35 Short Run High Gray Level Emphasis

10 Correlation 36 Long Run Low Gray Level Emphasis

11 Difference Entropy 37 Long Run High Gray Level Emphasis

12 Dissimilarity 38 Shape Size Compactness 1

13 Energy 39 Shape Size Compactness 2

14 Entropy 40 Shape Size Sphericity

15 Homogeneity 1 41 Shape Size Sphericity Disproportion

16 Homogeneity 2 42 Shape Size Surface Area

17 Informational Measure of Correlation 1 43 Shape Size Volume

18 Informational Measure of Correlation 2

Intensity Features

Fine Texture Features

Coarse Texture Features

Morphological Features

19 Inverse Difference Moment Normalized

20 Inverse Difference Normalized

21 Inverse Variance

22 Maximum Probability

23 Sum Average

24 Sum Entropy

25 Sum Variance

26 Variance

Fig. 2 Radiomics features used in this study. The definitions of radiomics features could be found in the IBSI document [26]. (I) Intensity features
(1–4): 3.4.19, 3.4.18, 3.3.4 and 3.3.3 sections; (II) Fine texture features (5–26): 3.6.20, 3.6.23, 3.6.22, 3.6.21, 3.6.12, 3.6.19, 3.6.7, 3.6.5, 3.6.11, 3.6.4, 3.6.14,
3.6.16, 3.6.24, 3.6.25, 3.6.17, 3.6.15, 3.6.18, 3.6.1, 3.6.8, 3.6.10, 3.6.9 and 3.6.3 sections; (III) Coarse texture features (27–37): 3.7.1, 3.7.2, 3.7.9, 3.7.11,
3.7.13 and 3.7.3–3.7.8 sections; (IV) Morphological feature: 3.1.5, 3.1.6, 3.1.8, 3.1.7, 3.1.3 and 3.1.1 sections
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bagging survival tree (BST) [36], random forests for sur-
vival model (RFS) [37], survival regression model (SR) [38]
and support vector regression for censored data model
(SVCR) [39, 40]. All the machine learning methods were
implemented on each training fold using the R software
3.5.1. The specifics of the packages for each feature selec-
tion and ML method were showed in the Table 1. Besides,
the descriptions of each feature selection and ML method
could be found in the Additional file 1: Supplementary A
and B, respectively.

Parameters tuning
For each ML method, the parameters were selected from
the combination of parameters that produced the best
performance using the three-fold CV on each training
fold. Similar procedures were implemented in Brungard
et al. [41] and Heung B et al [42].
The range of parameters used in this study was showed

in Table 1. The GB-Cox, GB-Cindex, SVCR and SR
methods just required one parameter to tune while the
Cox method did not require parameterization. The com-
plex models, such as the BTS and RFS, were time con-
suming for tuning parameters. The parameters from all of
these models, such as the average terminal node size of
forest and the number of trees for the RFS model, the
minimum number of observations that must exist in a
node (Minsplit) and the number of trees for BST, made up
a large range of parameter permutation and combination
choices. It should be noted that the feature number se-
lected by the feature selection methods were also used as
a tuning parameter (range [3, 29]) for all the ML methods.

Evaluation methods
CI with confidence interval (CFI) based on bootstrap-
ping technique (the number of bootstrap samples was

2000 in this study) was used to assess the performance
of difference ML methods on the merged validation fold
(merged all the three validation folds). The percentage of
CFI was 95% in this study. A nonparametric analytical
approach method proposed by Kang L et al. [43] and the
z-score test method were used to compare the signifi-
cance between pairs of machine learning algorithms for
each validation fold. Besides, the survival curves were
evaluated by the Kaplan-Meier algorithm and compared
by the log-rank tests [44] for each validation fold.

Results
Figure 3 depicted the performance of ML (in rows)
and feature selection methods (in columns) on the
merged validation fold. Besides, the maximum CI
with confidence interval for each ML method on the
merged validation fold was showed in Table 2. The
GB-Cox method using the CI feature selection
method obtained the best performance (CI: 0.682,
95% CFI: [0.620, 0.744]). However, the CoxBoost
method using CI feature selection method also
obtained a favorable performance (CI: 0.674, 95% CFI:
[0.615, 0.731]). We found only the above mentioned
two prediction method’s CIs were close. Hence, we
just calculated the p-value using the z-test between
the above two methods. The p-value of CI between
these two methods was 0.5, indicating that the differ-
ence of prediction performance between these two
methods wasn’t significant. The values selected for
the hyper-parameters mentioned in Table 3, as well as
the number of selected features on each validation
fold could be found in the Additional file 1:
Supplementary C.
Patients on each validation fold were divided into

two groups (low- and high- risk group) based on the

Table 1 The specifics of the packages for each feature selection and machine learning method

Methods Software Packages Website Links

PCC SML toolbox corr https://ww2.mathworks.cn/help/stats/corr.html

KCC

SCC

MI MIToolbox mi https://github.com/Craigacp/MIToolbox

CI Hisc rcorr.cens https://github.com/harrelfe/Hmisc

Cox survival coxph https://github.com/therneau/survival

GB-Cox mboost mboost https://github.com/boost-R/mboost

GB-Cindex mboost mboost https://github.com/boost-R/mboost

CoxBoost CoxBoost CoxBoost https://github.com/binderh/CoxBoost

BST ipred bagging https://github.com/cran/ipred

RFS randomForestSRC rfsrc https://github.com/kogalur/randomForestSRC

SR survival survreg https://github.com/therneau/survival

SVCR survivalsvm survivalsvm https://git-hub.com/imbs-hl/survivalsvm

SML statistics and machine learning
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predicted risk of each radiomics model at the cut-off
value. The cut-off value utilized for stratification was
the median of each training fold which would be ap-
plied to the corresponding validation fold unchanged.
Then, the Kaplan-Meier and log-rank tests methods
were used to evaluate and compare the survival
curves for each validation fold, respectively. Among
all the ML methods, the GB-Cox method with the CI
feature selection method obtained the best stratified
result on the 3 CV folds (Fig. 4). Besides, the p-value
of the CoxBoost method with the PCC feature selec-
tion method was also significant for each validation
fold. The heatmap of p-values on each validation fold
for all the ML methods was showed in the Additional
file 1: Supplementary D.

Discussion
Several previous studies have compared the prediction
performance of the ML models based on the radio-
mics analysis. Parmar C et al. [11] identified that
three classifiers, included Bayesian, random forest
(RF) and nearest neighbor, showed high OS prediction
performance for the head and neck squamous cell
carcinoma (HNSCC). Parmar C et al. [17] also evalu-
ated the effect of ML models (classifiers) on the OS
prediction for NSCLC patients and found that the
random forest method with Wilcoxon test feature

selection method obtained the highest prediction
performance. However, the outcome of interest in
these two studies explored by Parmar C et al. was
transformed into a dichotomized endpoint. This may
lead to the bias of prediction accuracy [13]. Hence,
Leger S et al. [13] assessed the prediction
performance (OS and loco-regional tumor control) of
ML models which could dealt with continuous
time-to-event data for HNSCC. His study found that
the random forest using maximally selected rank
statistics and the model based on boosting trees using
CI methods with Spearman feature selection method
got the best prediction performance for the
loco-regional tumor control. Besides, the survival
regression model based on the Weibull distribution,
the GB-Cox and the GB-Cindex methods with the
random feature selection method achieved the highest
prediction performance for the OS. In this study, the
effect of 8 ML models and five feature selection
methods based on radiomics feature analysis were in-
vestigated to predict the time-to-event data (OS) of
non-small cell lung cancer. In general, the GB-Cox
method obtained the best predictive performance in
the systematic evaluation on the merged validation

Fig. 3 The performance of feature selection and machine learning methods on the merged validation fold

Table 2 Maximum CI with confidence interval for each
machine learning method on the merged validation fold

Methods FS Maximum CI CFI of Maximum CI

GB-Cox CI 0.682 [0.620, 0.744]

CoxBoost CI 0.674 [0.615, 0.731]

Cox MI 0.646 [0.578, 0.714]

GB-Cindex SCC 0.357 [0.290, 0.423]

RFS PCC 0.627 [0.558, 0.695]

SR MI 0.380 [0.310, 0.452]

BST SCC 0.385 [0.318, 0.450]

SVCR KCC 0.405 [0.341, 0.470]

FS feature selection method

Table 3 The range of parameter tuning

Methods Parameters Range of Parameters

Cox

GB-Cox Number of boosting steps [1, 500]

GB-Cindex Number of boosting steps [1, 500]

Coxboost Number of boosting steps [1, 500]

BST Minsplit [1, 10]

Number of trees [1, 500]

RFS Average terminal node size
of forest

[1, 10]

Number of trees [1, 500]

SR Assumed distribution Weibull, Gaussian,
Exponential

SVCR Parameter of regularization [0.01, 1]
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fold. However, the CoxBoost methods with certain
feature selection method also showed comparable
positive performance compared with the GB-Cox
method. Hence, we thought a wide range of ML
methods have the potential to be effective radiomics
analysis tools. Besides, a significant difference for OS
prediction on each validation fold was found between
the low- and high- risk groups using the GB-Cox and
CoxBoost methods, which showed the clinical poten-
tial of ML methods on the OS prediction.
As shown in Fig. 3, almost all of the ML methods

using the KCC feature selection method didn’t obtain
a positive result. This indicated that the feature selec-
tion method was also important for the performance
of OS prediction. Sometimes, the effect of feature se-
lection methods was even more obvious than the ML
models. A large panel of feature selection methods
had been used for data mining of high-throughput
problems [45, 46]. In general, the feature selection
methods would be divided into three categories: the
filter based, the wrapper based and the embedded
methods. In this study, we only investigated five dif-
ferent filter based methods because this kind of
methods were not only less prone to overfitting but
also more efficient in computation than other two
methods [45, 46]. Moreover, the filter based methods
were more independent than the wrapper and embed-
ded methods, which could increase the fairness of
ML methods comparison.

Some previous studies [4, 5] have shown the potential
clinical utility of the prognostic models based on radio-
mics analysis. This study could be a crucial supplemen-
tary reference for the use of prognostic models based on
radiomics analysis because we compared a large number
of machine-learning methods for the OS prediction of
the NSCLC cancer. Such a comparison would be helpful
in the selection of the optimal ML methods for OS
prediction based on radiomics analysis.

Conclusion
The preliminary results demonstrated that certain
machine learning and radiomics analysis method could
predict OS of non-small cell lung cancer accuracy.

Additional file

Additional file 1: Supplementary A: Feature selection methods.
Supplementary B: Machine learning methods. Supplementary C: The
values selected for the hyper-parameters on each validation fold. Supple-
mentary D: P-values of the log-rank test for all the feature selection and
ML methods on each validation fold. (PDF 625 kb)
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BST: Bagging survival tree; CFI: Confidence interval; CI: Concordance index;
Cox: Cox proportional hazards model; CoxBoost: Cox model by likelihood
based boosting; CT: Computed tomography; CV: Cross-validation; GB-
Cindex: gradient boosting linear models based on concordance index; GB-
GB-Cox: gradient boosting linear models based on Cox’s partial likelihood;
GLCOM: Gray-level co-occurrence matrix; GLRLM: Gray-level run length
matrix; GTV: Gross tumor volume; HNSCC: head and neck squamous cell
carcinoma; KCC: Kendall’s correlation coefficient; MI: Mutual information;

Fig. 4 Examples of the Kaplan-Meier evaluations. All the NSCLC patients on each validation fold were stratified into low- and high- risk groups
based on the cut-off values determined by the corresponding training fold. Here, (a), (b) and (c) presented the Kaplan-Meier curve of the three
CV validation folds, respectively
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