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Abstract

Background: Better knowledge of the dose-toxicity relationship is essential for safe dose escalation to improve
local control in cervical cancer radiotherapy. The conventional dose-toxicity model is based on the dose volume
histogram, which is the parameter lacking spatial dose information. To overcome this limit, we explore a comprehensive
rectal dose-toxicity model based on both dose volume histogram and dose map features for accurate radiation toxicity
prediction.

Methods: Forty-two cervical cancer patients treated with combined external beam radiotherapy (EBRT) and brachytherapy
(BT) were retrospectively studied, including 12 with Grade ≥ 2 rectum toxicity and 30 patients with Grade 0–1
toxicity (non-toxicity patients). The cumulative equivalent 2-Gy rectal surface dose was deformably summed
using the deformation vector fields obtained through a recent developed local topology preserved non-rigid point
matching algorithm. The cumulative three-dimensional (3D) dose was flattened and mapped to a two-dimensional
(2D) plane to obtain the rectum surface dose map (RSDM). The dose volume parameters (DVPs) were calculated from
the 3D rectum surface, while the texture features and the dose geometric parameters (DGPs) were extracted from the
2D RSDM. Representative features further computed from DVPs, textures and DGPs by principle component analysis
(PCA) and statistical analysis were respectively fed into a support vector machine equipped with a sequential feature
selection procedure. The predictive powers of the representative features were compared with the GEC-ESTRO
dosimetric parameters D0.1/1/2cm

3.

Results: Satisfactory predictive accuracy of sensitivity 74.75 and 84.75%, specificity 72.67 and 79.87%, and area
under the receiver operating characteristic curve (AUC) 0.82 and 0.91 were respectively achieved by the PCA
features and statistical significant features, which were superior to the D0.1/1/2cm

3 (AUC 0.71). The relative area
in dose levels of 64Gy, 67Gy, 68Gy, 87Gy, 88Gy and 89Gy, perimeters in dose levels of 89Gy, as well as two texture
features were ranked as the important factors that were closely correlated with rectal toxicity.

Conclusions: Our extensive experimental results have demonstrated the feasibility of the proposed scheme. A
future large patient cohort study is still needed for model validation.

Keywords: Rectum toxicity prediction, Machine learning, Dose accumulation, Deformable registration, Cervical
cancer
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Background
The combination of the external beam radiotherapy (EBRT)
and brachytherapy (BT) (EBRT+BT) is a common therapy
regime for locally advanced cervical cancer [1]. Recent
monocentric and multicentric EBRT+BT studies [2–4] have
shown promising results with high tumor local control rate.
However, radiation induced side effect (or toxicity) on
organs at risk (OARs), such as rectum, bladder and vagina,
is still a concern. Serious side effects such as bowel obstruc-
tion can occur months to years after treatment and impact
negatively on the patients’ quality-of-life. The correlation
between OARs’ morbidity and radiation dose parameters
was analyzed in EMBRACE study [2]. Particularly, the
D0.1cm

3, D1cc and D2cm
3 of rectum were used to establish

dose-toxicity relationship in the occurrence of rectal
morbidity. D0.1/1/2cm

3 are conventional dose volume parame-
ters (DVPs) extracted from dose volume histogram (DVH).
Inherently, they are in deficiency of dosimetric spatial infor-
mation. Studies have shown close relationship between the
spatial dose characteristics and rectal toxicity [5–12]. For
instance, Wortel et al. [12] observed significant differences
in local rectal dose distribution between prostate cancer
patients with and without toxicity by utilizing the unfolded
two dimensional (2D) rectum surface dose map (RSDM).
Similarly, Munbodh et al. [10] demonstrated that late rec-
tal toxicity was related to dose on the upper rectum region
by investigating dose pattern on the RSDM. Buettner et al.
[6] analyzed the RSDM and found significant correlation
between the subjective sphincter control and the dose
delivered to the anal sphincter region. Another issue with
current D0.1/1/2cm

3 evaluation procedure is that the cumu-
lative dose is summed with an assumption that the hotspot
regions are stationary throughout the entire fractional
treatments [13, 14]. However, this static assumption is
often violated by the large inter-fraction rectum deform-
ation, especially in intra-cavity brachytherapy treatment
cases [15–17]. Recently, promising advancements have
been reported by Moulton et al. who investigated the
associations between RSDM and gastrointestinal toxicities
after deformably registering each phase of a combined
EBRT-BT prostate cancer treatment [18]. These limited
but inspiring studies shed light on the possibility of reveal-
ing more accurate dose-toxicity relationship by exploring
the spatial dose distribution patterns on the deformable
accumulated dose.
In this study, we proposed and evaluated a rectum

dose-toxicity prediction scheme using both dose volume
parameters and dose map spatial information. In addition,
the accumulated rectal dose maps are obtained with the
aid of an accurate deformable image registration. The
accumulated 3D rectal surface dose was flattened to obtain
a 2D RSDM. The DVPs were extracted from the DVHs of
cumulative dose, while the texture features and the dose
geometric parameters (DGPs) were extracted from the 2D

RSDM. Representative features further computed from
DVPs, textures and DGPs by principle component ana-
lysis (PCA) and statistical analysis were respectively
feed into a support vector machine (SVM) equipped
with a sequential feature selection (SFS) procedure. The
predictive powers of the representative features were
compared with the GEC-ESTRO dosimetric parameters
D0.1/1/2cc.

Methods
Patient cohort
Forty-two cervical cancer patients were retrospectively
studied. These patients were treated with EBRT and BT.
EBRT treatment plans were generated on the Pinnacle
treatment planning system (Philips Medical Systems,
Andover, MA, US) with 4-field box 3D plans or 9 field
intensity modulation radiotherapy (IMRT) plans. EBRT
plans were delivered with a total dose of 45Gy delivered
in 25 fractions (1.8Gy per daily fraction). BT treatment
boost were planned on Eclipse treatment planning system
(Varian Medical Systems, Palo Alto, US). The BT boost
plans were delivered immediately followed by the EBRT
treatment with total dose of 28Gy in 4 fractions (7Gy per
fraction and two fractions per week) or 30Gy in 5 fractions
(6Gy per fraction and two fractions per week). The col-
lected data include planning images and treatment plans.
The patient was scheduled for follow-up examination
every 2~ 3 months after treatment. Patients complaining
of hematochezia were further examined by colonoscopy.
Twelve patients scored as Grade ≥ 2 rectal toxicity per
CTCAE v4 [19] were characterized as toxicity patients,
and the other 30 Grade 0–1 patients were non-toxicity
patients. To account for biologic effects of different
fractionation schemes, both the rectum physical doses
received in BT and EBRT were converted to EQD2
doses using a linear quadratic model [20] with an α/β
ratio of 3 for dose summation [21, 22]. This retrospective
study was approved by the institutional review board
(IRB).

Deformable dose accumulation and rectum unfolding
For all patients, the volume of rectum was defined as
the total rectal wall segmented between the level of the
ischial tuberosity and the rectosigmoid junction, with a
length ranging from 6~ 9 cm in the patient cohort. The
rectum surface meshes were generated using rectum con-
tours via a particle-based surface meshing approach [23].
A previously developed local topology preserved non-

rigid registration point matching algorithm (TOP-DIR)
was employed for rectum surface registration [24]. Details
of theTOP-DIR algorithm can be found in Additional file 1:
Appendix A. We regarded the first BT fraction as the refer-
ence and registered the other BT fractions rectum surface
to the reference fraction rectum surface to obtain the
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deformation vector fields (DVFs), which were used to
deform and sum fractional BT rectal doses to yield cu-
mulative BT rectal dose. Considering a homogenous
dose distribution often covers the entire pelvic region
in our EBRT treatment plan regimen, we assumed a
homogenous EBRT dose in the pelvic region and added
the EBRT dose to the BT cumulated dose without de-
formation to obtain the total EBRT+BT dose.
The EBRT+BT rectal dose was then flattened via a

3D-2D mapping to generate a 2D RSDM. The 3D-2D rectal
dose mapping is detailed in Additional file 1: Appendix B.

Dosimetric features extraction
Three types of dosimetric features, DVPs, texture feature
and DGPs were extracted. The DVPs (21 in total) were
Dx-cc (minimum dose in the most exposed x-cm3 volume,
x ∈ [0.1,10] with 0.5cm3 intervals) calculated from the 3D
EBRT+BT rectal dose. The texture features (43 in total)
were extracted from the RSDM, including 3 first-order gray
level statistical global features, 9 Gy level co-occurrence
matrix (GLCM) texture features, 13 Gy level run-length
matrix (GLRLM) texture features, 13 Gy level size zone
matrix (GLSZM) texture features, and 5 neighborhood
gray-tone difference matrix (NGTDM) texture features
[25]. The DGPs (224 in total) were computed from the
RSDM at various dose levels, ranging from 45Gy to 100Gy
with 1Gy interval, including 1) the relative area (%) of the
dose region with respect to the area of rectum surface in
the RSDM; 2) the perimeter (mm) of the dose region; 3)
the relative width (%), the ratio between the maximum
width of the dose region with respect to the rectum
circumference on the corresponding CT slice; and 4) the
length (mm) of the dose region. The DGPs are illustrated
in Fig. 1.

Toxicity prediction scheme
We employed the support vector machine (SVM) [26]
based method as our prediction scheme. A sequential

forward feature selection (SFS) algorithm [27] was used to
select a subset of features with best SVM prediction from
the feature set (detailed in Additional file 1: Appendix C).
We refer the above predictive scheme as SVM-SFS
hereafter in this paper.
Considering the unbalanced training patient cohort

where the toxicity group constitutes only a relative small
portion of the dataset in this study, a synthetic minority
over-sampling technique (SMOTE) [28] was used. The
SMOTE balances the training dataset by over-sampling
the minority class via introducing synthetic examples
along the line segments joining k minority class nearest
neighbors. This data balancing technic has been shown
to be helpful for avoiding over-fitting and better model
generalization [29–33]. In the five-fold cross validation in
this study, data balancing was merely applied to the train-
ing dataset in each fold of validation, while the validation
dataset was kept unchanged for its “purity”.

Quantification and comparison
The rectum surface registration accuracy is measured
by four similarity metrics [24, 34], including the Dice’s
coefficient (DC), the percent error (PE), the mean vertex
to vertex distance (VVD), and the Hausdorff distance
(HD). Higher DC or lower PE, VVD, and HD indicate
better results.
The predictive performance was quantified by the

accuracy (ACC), sensitivity (SEN), specificity (SPE), and
the area under the receiver operating characteristic
(ROC) curve (AUC). An AUC of 0.5 is expected if a
random prediction is performed. ACC, SEN and SPE
are defined as: ACC = (TP + TN)/(TP + FP + FN + TN),
SEN = TP/(TP + FN) and SPE = TN/(TN + FP), where TP
is true positive, TN is true negative, FP is false positive
and FN is false negative. The mean ACC, SEN, SPE and
AUC via a repeated (100 times) 5-fold cross validation
was reported.

Fig. 1 Example of DGPs extracted from the RSDM at a certain dose level
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For a comparison study, the conventional dose volume
parameters D0.1/1/2cm

3 calculated via the “static-hotspot
assumption” (SA) approach [35] were used as a baseline
(referred as SA-D0.1/1/2cm

3). The SA-D0.1/1/2cm
3 were

compared to the features computed from the deformably
summed EBRT+BT EQD2 dose on 3D rectum surfaces
(DVPs) and flattened 2D RSDMs (texture features and
DGPs). With many DVP and DGP parameters, it is
possible to cause overfitting. To guard against overfitting,
we extract representing features from DVPs and DGPs
with 1) principle component analysis (PCA), and 2)
statistical analyses (referred as FPCA and Fsta, respectively).
The FPCA were features in the PCA domain that calcu-
lated by performing the PCA on all the DVPs, texture
features and DGPs with the first n principal components
account for > 99% of the variance. The Fsta were computed
by performing statistical analyses (Mann-Whitney U test
with raw p-values reported) on each feature category of
DVPs, texture features and DGPs between the toxicity and
non-toxicity groups, to screen out those statistical signifi-
cant features.
The prediction capabilities of SA-D0.1/1/2cm

3, FPCA and
Fsta were compared by respectively feeding them into
the SVM-SFS. The Z-test (p-values were adjusted by the
Bonferroni correction) was used for ROC curves com-
parisons, and all the statistical analyses conducted in this
study were considered significant if p < 0.05.

Results
Rectum DIR
The TOP-DIR was demonstrated to be robust for different
rectum DIR scenarios, as seen in three example cases
(Fig. 2a) with small, large and complex deformation. For
all the evaluated cases, 156 DIRs were performed, and the

DC, PE, VVD and HD over the patient groups are
depicted in Fig. 2b. Significant improvements were
achieved after TOP-DIR point matching, with the median
of DC increased from 0.71 to 0.86 (p < 0.001), the median
of PE, VVD and HD decreased from 0.60, 1.53 mm and
6.52 mm to 0.26 (p < 0.001), 0.74 mm (p < 0.001) and
4.06 mm (p < 0.001), respectively.

Representative features FPCA and Fsta
The computed FPCA were 10 representative PCA features
that the first n = 10 principal components were used.
While the Fsta were statistical significant (p < 0.05) features
of DVPs, texture features and DGPs, which were identified
via the Mann-Whitney U test. These significant features
Fsta (73 in total) included: ① 13 DVPs from D0.1cm

3 to
D6cc; ② 6 texture features: correlation in GLCM, long
run high gray-level emphasis (LRHGE) in GLRLM, low
gray-level zone emphasis (LGZE), high gray-level zone
emphasis (HGZE) and small zone high gray-level
emphasis(SZHGE) in GLSZM, complexity in NGTDM;
③ 54 DGPs, including relative areas in dose levels of
55Gy~64Gy, 67Gy~68Gy, 87Gy~89Gy; perimeters in
dose levels of 54Gy~65Gy, 87Gy~89Gy; relative widths
in dose level of 87Gy~89Gy; and length in dose levels
of 59Gy~60Gy, 63Gy~64Gy, 66Gy~73Gy, 79Gy~83Gy,
85Gy, 87Gy~89Gy.

Prediction comparisons of SA-D0.1/1/2cm
3, FPCA and Fsta

The prediction performance of SA-D0.1/1/2cm
3, FPCA and

Fsta were listed in Table 1. For traditional SA-D0.1/1/2cm
3,

the prediction resulted in SEN 66.25%, SPE 66.73%, and
AUC 0.71 (95% confidence interval [CI]: 0.68–0.72). For
the FPCA, better prediction performances were observed
when compared with SA-D0.1/1/2cm

3 (p < 0.001), with SEN

Fig. 2 a Three example rectum TOP-DIRs with small, large and complex deformation. b Boxplots of DC, PE, VVD and HD over the patient groups
before and after TOP-DIR. The boxes run from the 25th to 75th percentile; the two ends of the whiskers represent the 10 and 90% percentiles,
the horizontal line and the square in the box represent the median and mean values, respectively. The diamonds represent outliers. Significant
differences are marked with “*”
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74.75%, SPE 72.67%, and AUC 0.82 (95% CI: 0.75–0.85).
While for Fsta, we compared different combinations of
the significant features of DVPs, texture features and
DGPs in Fsta. It is observed that using the DVPs alone
in Fsta had only limited improvement when compared
with SA-D0.1/1/2cm

3 (p = 0.025). In contrast, using the
texture features in Fsta or the DGPs in Fsta achieved better
predictive performances than both the SA-D0.1/1/2cm

3 and
DVPs in Fsta. The best predictive results were achieved by
using the combinations of “DGPs + texture” or “DVPs +
DGPs + texture” when compared with SA-D0.1/1/2cm

3 (p <
0.001), with SEN 85.17%/84.75%, SPE 79.13%/79.87% and
AUC 0.91 (95% CI: 0.85–0.92)/0.91 (95% CI: 0.87–0.93).
The comparisons of SA-D0.1/1/2cm

3, FPCA and Fsta via
SVM-SFS were depicted by the ROC analysis in Fig. 3.

Top ranked features statistics in Fsta
By utilizing all the 73 significant features of Fsta, the
SVM-SFS model was repeated 100 times and the features
were ranked according to their frequencies of being selected.

The feature selection frequency distributions are shown in
Fig. 4. The top-10 features included relative areas in dose
levels of 64 Gy, 67Gy, 68Gy, 87Gy~89Gy, perimeters in dose
levels of 89Gy, length in dose levels of 87Gy and 88Gy, and
two texture features: HGZE and complexity. No DVPs were
ranked as the top-10 features.
Statitics of the top-10 features between the toxicity

and non-toxicity groups are depicted in Table 2. For
DGPs, the relative area in dose levels of 64Gy, 67Gy,
68Gy was significantly larger in the toxicity group (p =
0.034, 0.049 and 0.045, respectively). For the dose levels of
87Gy, 88Gy and 89Gy (with median = 0 for both toxicity
and non-toxicity groups), differences in distributions for the
relative area were observed (p = 0.023, 0.023 and 0.023,
respectively). Similarly, the perimeter in dose levels of 89Gy
and the length in dose levels of 87Gy and 88Gy (all with
median = 0 for both toxicity and non-toxicity groups) have
statistically significant differences in distributions between
the two groups (p = 0.023, p = 0.016 and 0.023, respect-
ively). For texture features, the median (interquartile

Table 1 SVM-SFS prediction on different features

Features SEN SPE ACC AUC (95% CI)

SA-D0.1/1/2cm
3 66.25% 66.73% 66.55% 0.71 (0.68–0.72)

FPCA 74.75% 72.67% 73.22% 0.82 (0.75–0.85)

Fsta DVPs 63.42% 73.20% 70.37% 0.76 (0.69–0.80)

Texture 75.50% 73.23% 73.86% 0.82 (0.75–0.86)

DGPs 60.42% 74.53% 70.46% 0.79 (0.72–0.81)

DVPs + Texture 81.00% 78.60% 79.36% 0.88 (0.84–0.91)

DVPs + DGPs 61.92% 73.83% 70.40% 0.79 (0.72–0.82)

DGPs + Texture 85.17% 79.13% 80.84% 0.91 (0.85–0.92)

DVPs + Texture + DGPs 84.75% 79.87% 81.32% 0.91 (0.87–0.93)

Fig. 3 a ROC analysis for different significant features and their combinations via SVM-SFS. b ROC curves comparisons via Z-test (p-values were
adjusted by the Bonferroni correction)
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range, IQR) of HGZE were 317.81(51.19) vs. 376.63(37.70)
(p = 0.0007), and the complexity were 130.71(9.04) vs.
119.77(10.18) (p = 0.0087) between the two groups.

Discussion
An effective rectal toxicity prediction scheme is essential
for guiding radiation treatment planning. D0.1/1/2cm

3 are
recommended by the GEC-ESTRO guidelines [36] for
rectum dose monitoring, however, their predictive capabil-
ities for rectal toxicity are still under investigation. Other
studies reported that the D5cc may be a more reliable esti-
mate than other dose volume parameters to predict risks of
rectosigmoid mucosal changes and late rectal complications
[37, 38]. All these studies essentially used DVPs to predict
rectal toxicity. The findings in current work align with the
previous studies, e.g., statistically significant differences
were observed in DVPs ranging between D0.1cm

3~D6cc.
However, better prediction was accomplished by utilizing
all the significant DVPs in Fsta when compared with merely
using the SA-D0.1/1/2cm

3 (Table 1).
In this study, we have compared two approaches, i.e., the

PCA analysis and the statistical analysis, in extracting rep-
resentative features for feeding the SVM-SFS prediction
scheme. The merit of performing PCA is to reduce the

number and correlation of the potential features by
converting the features into a set of values of linearly
uncorrelated variables (FPCA in this study). However,
these converted values in the PCA domain carry no
physical meanings, it is therefore difficult to interpret
the prediction why the FPCA features are responsible
for yielding corresponding prediction result. On the
other hand, the statistical analysis approach reserves
the physical meanings of the features by statistically
pre-screening the significant features (Fsta in this study),
and the comparison evaluations also showed superior
performance if all the features in Fsta were used for pre-
diction, when compared with FPCA.
Recently, researchers started to investigate the prediction

model with spatial dose information. For instance, Buettner
et al. presented a late rectal toxicity method based on the
parameterized representation of the 3D rectal dose [39].
Lee et al. proposed a metric based on both surface dose and
distance to predict incidence of the rectal bleeding in pros-
tate cancer patients treated with radical radiotherapy [40].
Drean et al. identified rectal subregions at risk of rectal
bleeding by performing voxel-wise analysis on the rectal
dose distribution [7]. In this study, we took advantage of
the hollow structure of the rectum and flattened the 3D

Fig. 4 Feature ranking via SVM-SFS (repeated 100 times) on feature combinations of “DVPs + Texture + DGPs” from Fsta

Table 2 Statistical analysis of the top 10 features in Fsta between the toxicity and non-toxicity groups

DGPs Texture

Relative area (%) Perimeter
(mm)

Length (mm)

64Gy 67Gy 68Gy 87Gy 88Gy 89Gy 89Gy 87Gy 88Gy HGZE Complexity

Median(IQR) Toxi 25.26 (15.57) 19.07 (20.57) 16.87 (20.22) 0 (0.3) 0 (0.12) 0 (0.05) 0 (9.77) 0 (3.5) 0 (1.75) 317.81 (51.19) 130.71 (9.04)

Non-toxi 16.87 (16.59) 12.26 (18.29) 9.48 (16.28) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 376.63 (37.70) 119.77 (10.18)

P-Value 0.034 0.049 0.045 0.023 0.023 0.023 0.023 0.016 0.023 0.001 0.009
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rectal dose to 2D RSDM to establish dose map toxicity pre-
diction scheme. Though the RSDM neglects the doses in
the rectum thickness direction, it preserves spatial dose
information. The texture features and the DGPs, which are
crafted to capture spatial dose distribution characteristics
from the 2D RSDM, are able to provide more geometric
and positional dosimetric information. Pioneer studies have
shown potential correlations of spatial dose characteristics
with rectal toxicity. For example, Drean et al. reported that
the rectal subregions at risk of rectal bleeding are primarily
located in the subprostatic anterior hemi-rectum and upper
part of the anal canal [7]. Kim et al. found substantial
correlation between rectal toxicity and percent rectal
circumference at certain dose levels. Similarly, in this
study, we have seen texture features and the geometric
dosimetric features had better predictive power than
the DVPs. These results hint us that rectum’s response
to dose might be dose-spatial dependent. As shown in
Table 2 and Fig. 4, geometric feature such as the relative
area, the perimeter and the length were found to be
associated with rectal toxicity. The toxicity group tended
to have larger dose coverage on the high dose region (64,
67 and 68Gy). This finding was in agreement with previ-
ous studies that rectal bleeding was significantly correlated
with high-dose metrics [25, 41–43]. In addition, although
only four DGPs were investigated in this work, other
DGPs which were explored in previous studies also
indicated associations with rectal toxicity. For instance,
Buettner et al. investigated the eccentricity of the fitted
ellipse of the dose region and found associations of the
eccentricity with loose stools [5, 39, 44]. Moulton et al. also
reported that compactness, circularity and confinement to
the ellipse fits were correlated with rectal bleeding [18].
Incorporating these spatial features, which are crafted to
depict the dose coverage and the shape of dose distribu-
tion, into the current model may potentially improve
the predictive performance. Besides, two texture features,
i.e., the HGZE and Complexity, were statistically different
between the two groups, where the toxicity group has
lower HGZE value (the Median(IQR) 317.81(51.19) vs.
376.63(37.70), p = 0.0007) but higher Complexity value
(the Median(IQR) 130.71(9.04) vs. 119.77(10.18), p =
0.0087). However, how these texture features impact on
rectal toxicity is still unclear. We applied the texture
features on the RSDM with the intention to describe
localized dosimetric patterns on the RSDM which are
usually difficult to be noticed by human eyes. Yet, the
drawbacks of the texture features are their deficiency of
physical implications on interpreting correlations. More-
over, feature stability, e.g., whether the selected texture
feature will change if different patient cohort size are used,
is still an exploratory issue [45–47]. Since current work is
a pioneer feasibility study of applying texture feature
analysis on the deformably accumulative rectum surface

dose map, more in-depth investigations on a larger patient
cohort is still required in the future.
In this study, the generated 2D RSDM reserves the

physical length of the rectum in both the superior-inferior
direction and the circumferential direction on each slice
(see Additional file 1: Appendix B). This was to ensure
that the geometric features (e.g., area, perimeter, length,
etc.) extracted from the RSDM would carry physical im-
plications to signify the scale of dose delivered on rectum
surface. Note that the drawback for reserving the physical
dimension of the rectum is that the inter-patient varia-
tions of the rectum size could possibly influence/mask the
significances of differences of the extracted geometric
features between the two groups, especially given a small
patient cohort. But the rectum size tends to be a random
number across patients and therefore its impact would
decrease and be minor in a larger patient cohort.
In addition, reporting accurate accumulated dose over

the entire treatment course is a nontrivial task because
of the substantial inter-fractional rectum deformation
exists in the BT treatments. In this work, a previously
developed TOP-DIR algorithm was used, although accurate
geometric registration accuracy had been achieved and vali-
dated on a porcine bladder phantom (~ 2 mm), further
phantom studies are still needed to justify its effectiveness
in rectum registration, and the dosimetric errors in the sub-
sequent dose summation step also need to be monitored.
In this study, we added the EBRT dose to the accumu-

lated BT dose without deformation. The reasons are two-
fold: firstly, a homogenous dose distribution (hot spot <
107%) often covers the entire pelvic region in our EBRT
treatment plan regimen. Often large portion of rectum are
within treatment fields, especially for 3D plans. Only a very
small inferior portion of the rectum is outside of the large
pelvis treatment fields and dose variation across rectum is
often within 15%. With this relative homogenous dose in a
large region across the pelvis, we could assume rectum
receiving a consistent and homogenous dose in EBRT as
planned. In this study, the EBRT plans were generated with
4-field box 3D plans or 9 field IMRT plans. Theoretically,
these two techniques on a same patient would result in dif-
ferent EBRT dose distributions due to dose conformity and
hence different accumulated dose on RSDM. It is therefore
more appropriate to investigate the extracted features
for each technique. However, it is impractical to imple-
ment in current study since only a small patient sample
was available. The influence of these two EBRT techniques
on the stability of the extracted features still needs further
investigations on a larger patient cohort.
On the other hand, DIR between EBRT and BT CTs is

challenging because of the clinical use of the intracavitary
applicator in BT. Registering the BT CT image with appli-
cator to the EBRT CT image without applicator (or vice
versa) is difficult, if not impossible, since the point-to-point
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correspondence assumption is usually violated in most
DIR algorithms. Consequently, the dosimetric uncer-
tainties via EBRT-BT DIR might be possibly even larger
than that summed without deformation. There are
several reported attempts to address this issue [48, 49],
for example, Berendsen et al. [48] proposed a DIR with
penalty term that minimizes the volume of the missing
structure for cervical MR images with and without
applicator. Vasquez Osorio et al. [49] validated a structure-
wise registration with vector field integration to map the
largely deformed anatomies between EBRT and BT. How-
ever, the EBRT-BT DIR needs to be treated prudently, and
these novel methods need comprehensive validations before
they can be confidently applied in a clinical setting. Adding
EBRT to BT without deformation is therefore a reasonable
approximation without knowing the uncertainties brought
by the EBRT-BT DIR.
The choice of prediction models and feature selection

strategies may also affect the predictive performance.
We used the SVM-SFS scheme because it is the most
common method to construct a predictive model with
simultaneously feature selection. Though satisfactory
performances have been achieved, other predictive models
(e.g., random forest classifier) or feature selection methods
(e.g., clonal selection algorithm) can provide even better
predictive accuracy [50, 51].
For screening of the representative feature Fsta, the

unadjusted p-values were used for statistical analysis,
however, the current findings will probably change if
the p-values were corrected for multiple testing. In fact,
p-value adjustment is restrictive to application with
many tests and applying it in the context of RSDM ana-
lysis is still controversial [18, 52]. Since the physical length
of the rectum was reserved on the RSDM in this study,
the resolutions of the RSDMs were essentially patient
specific. Multiple testing might not be applicable for this
scenario where the resolution of the RSDM is fixed for
each patient. Even though p-values corrections have been
reported in other similar investigations using RSDM for
rectal toxicity studies, however, the adjusted p-values did
not demonstrate clear trends across regions on the RSDM
where only limited and isolated regions of significance
were found after applying multiple testing correction in
RSDM analysis [18, 52, 53]. Furthermore, reporting the
raw p-values is an exploratory study of finding predictive
factors correlated to rectal toxicity without the risk of
missing important factors which might be discarded if
found to be insignificant after p-value adjustment [18].
One limitation of current study is that the patient cohort

was small. Thus, the number of extracted features was
larger than the patient sample size. To reduce the chance
of getting over-fitting, a statistical analysis was performed
to screen out the significant features before feeding into
the predictive model. This guarantees a more robust

feature ranking in the subsequent feature selection step in
SVM-SFS. But note that a more effective way to observe
overfitting is to separate the patient cohort into three
datasets, i.e., one for training, one for validation and
hyper-parameter tuning and one for testing. However, it
was impossible to effectively separate our samples into
three datasets, and cross validation was therefore our
secondary option for model performance observation in a
small patient cohort. But overfitting might also occur in
the cross-validation space attributed to other factors such
as the quantity of features considered, the selection of
model hyper-parameters, etc., therefore, larger patient data
is a key for evaluating model stability and generalization
capability.
Another limitation of the study is that our study is

purely on dosimetric parameter without consider clinical
factors. Multivariable modeling of radiotherapy outcomes
has been conducted by El Napa et al. [54]. We will further
include clinical factors in our near future studies.

Conclusions
In summary, we have proposed and validated a rectum
toxicity prediction method based on an accurate point
registration and machine learning for cervical cancer
radiotherapy. The extensive experimental results have
demonstrated the feasibility of the proposed scheme for
rectal toxicity prediction, rendering it a potential tool for
clinical OARs dose control and complication prediction.
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