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arc therapy planning using AutoPlanning
based multicriteria optimization for
nasopharyngeal carcinoma
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Abstract

Background: A new strategy for making the appropriate choice of the representative optimization parameters in
planning processes and accurate selection criteria during Pareto surface navigation for general multicriteria optimization
(MCO) was recommended in the study. The purpose was to combine both benefits of AutoPlanning optimization and
MCO (APMCO) for achieving an individual volumetric-modulated arc therapy (VMAT) plan according to the clinically
achieved patient-specific tradeoff among conflicting priorities. The preclinical investigation of this optimization approach
for nasopharyngeal carcinoma (NPC) radiotherapy was performed and compared to general MCO VMAT.

Methods: A total of 60 NPC patients with various stages were enrolled in this study. General MCO and APMCO plans
were generated for each patient on the treatment planning system. The differences between two planning schemes
were evaluated and compared.

Results: All plans were capable of achieving the prescription requirement. The planning target volume coverage and
conformation number were remarkably similar between general MCO and APMCO plans. There were no significant
differences in most of organs at risk (OARs) sparing. However, in APMCO plans, relatively remarkable decreases were
observed in the mean dose (Dean) 10 the glottic larynx and pharyngeal constrictor muscles. The reductions of average
Dinean to the two OARs were 10.5% (p < 0.0001) and 8.4% (p < 0.0001), respectively. APMCO technique was found to
increase the planning time for an average of approximately 5 h and did not lead to a significant increase of monitor units
compared to general MCO.

Conclusions: The potential of the APMCO strategy is best realized with a clinical implementation that exploits individual
generation of Pareto surface representations without manual interaction. It also assists physicians to ensure navigation in
a more efficient and straightforward manner.
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Patient-specific tradeoff, Nasopharyngeal carcinoma
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Background

Volumetric-modulated arc therapy (VMAT) has experi-
enced a rapid and widespread clinical application due to
the similar or superior plan quality to the fixed field in-
tensity modulated radiation therapy [1-3]. However, a
challenging problem for VMAT is that the optimal treat-
ment plan generally depends on the planner’s devoted
time and experience [4] to translate the clinical goals
into optimization parameters accounting for the relation
among three competing priorities: planning target vol-
ume (PTV) coverage, PTV dose homogeneity, and spar-
ing of the adjacent organs at risk (OARs). More concern
seems to be attracted especially for the complicated head
and neck cancer, such as nasopharyngeal carcinoma
(NPC) where multiple PTV dose levels are defined close
to OARs. Recently, multicriteria optimization (MCO)
techniques have been introduced into VMAT planning
[5-9]. The rationale of multicriteria VMAT optimization
is to first efficiently explore a Pareto-optimal tradeoff be-
tween conflicting priorities in the fluence domain, and
second fine-tune the tradeoff with respect to deliverable
linear accelerator settings and final dose calculated.

In principle, MCO enables planners to determine a
best-possible compromise using an ideal Pareto surface.
Even with MCO, there remains a manual selection bias
owing to variations in the management of clinical trade-
offs. In general, the choice of optimization parameters in
planning processes [10-13] and selection criteria during
Pareto surface navigation [14, 15] may yield different tra-
deoffs in MCO. Different solutions may produce tradeoffs
among different choices. Without the patient-specific
choices, MCO planning also needs a manual trial-and-
error process similar to traditional inverse planning. In
many situations, subjectivity in which tradeoffs are made
results in suboptimal plans being delivered in the clinical
routine practice, resulting in worse patient outcomes. The
great concern and difficulty in MCO planning is how to
determine the representative optimization parameters and
accurate selection criteria for the optimal Pareto plan.
Because of the difficulty in lacking the accurate tradeoff
information, there are no guarantees on deriving the opti-
mality of solutions after the numerous continuing
searches. Although this problem has been addressed by a
number of research groups over the past 10 years [16-20],
there is still no good solution for automatically finding the
optimal choice.

Recently, AutoPlanning (AP) approach has been incor-
porated in clinical processes to improve plan quality and
efficiency [21, 22]. The concept is largely to capture the
steps that an experienced planner would take and then
simulate them for a new patient. AP employs an iterative
algorithm approach to reach and potentially surpass
clinical goals that planners defined. Individual
optimization goals, constraints and weights are
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automatically added and adjusted during AP. The
optimizer will run multiple times with adjustments being
made during and between optimization runs. Addition-
ally, AP adjusts the priority of clinical goals based on the
probability of being achieved. Although AP appears to
have difficulty in determining a Pareto-optimal com-
promise, it would be a fully automated planning process
to efficiently explore a patient-specific tradeoff.

The quality of plans generated by the MCO approach
was evaluated by comparison with benchmark plans
generated by the conventional manual approach [9, 15,
20]. MCO has proven to be an efficient approach, both
in terms of dosimetric quality and planning efficiency. A
notable difference to previous work is that we focused
on recommending a new strategy for making the appro-
priate choice of the representative optimization parame-
ters in planning processes and accurate selection criteria
during Pareto surface navigation for general MCO. The
purpose of this study was to combine both benefits of
AP optimization and MCO (APMCO) for achieving an
individual VMAT plan according to the clinically
achieved patient-specific tradeoff among conflicting pri-
orities. The preclinical investigation of this optimization
approach for NPC radiotherapy was performed and
compared to general MCO VMAT.

Methods

Patient selection and contouring

Considering a heterogeneous patient collective, a total of
60 NPC patients treated with VMAT between January
2016 and September 2017 were consecutively enrolled in
this study. All patients were immobilized in the supine
position with a head, neck and shoulder thermoplastic
mask. The patients’ characteristics are presented in
Table 1. None of the patients had received prior radio-
therapy, and all were free of distant metastases. Com-
puted tomography with a 3 mm slice thickness of the
head and neck region was obtained for each patient and
imported to the treatment planning system (TPS).

Table 1 Patient characteristics (N = 60)

Variables Number
Age, median years (range) 46(25-72)
Gender

Male 38(63.3%)
Female 22(36.7%)
AJCC stage

I 14(23.3%)
Il 15(25%)
Il 16(26.7%)
IVA-B 15(25%)

Abbreviation: AJCC American Joint of Cancer Committee in 2010
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According to the Radiation Therapy Oncology Group
(RTOG) protocols 0225 and 0615, the same attending
physician delineated the target area and OARs for all
patients. The target area included three clinical target
volumes (CTVs): CTVy, defined as 70 Gy radiation to
the nasopharyngeal gross tumor and lymphadenopathy;
CTVs94, defined as 59.4 Gy radiation to the high-risk
lymphatic regions; and CTVs,, defined as 54 Gy
radiation to the low-risk regions. The PTV provided a
3 mm margin around the CTV to compensate for the
variability of treatment set up and internal organ mo-
tion, except for the situation that the CTV was adjacent
to the brain stem, where the margin could be as small as
1 mm. The OARs included the brain stem, spinal cord,
parotid glands, optic nerves, chiasm, temporal lobes, oral
cavity, lenses, glottic larynx, submandibular glands and
pharyngeal constrictor muscles.

Dose prescription and treatment planning

The commonly used simultaneously integrated boost
technique was adopted at our institution. The dose pre-
scribed to PTV,, was 2.12 Gy per fraction, to PTVsg4
was 1.8 Gy per fraction and PT Vs, was 1.64 Gy per frac-
tion in 33 fractions, respectively. We adopted the Varian
Trilogy linear accelerator (Varian Medical Systems, Palo
Alto, CA, USA) to compare general MCO VMAT to
APMCO VMAT, and 6MV photon beams were applied
to all plans. The treatment goals were that 100% of the
prescribed dose would cover 95% of the PTV received
three dose levels, and the maximum dose would not ex-
ceed 110%. The dose-volume constraints to critical
OARs from the RTOG protocols 0225 and 0615 are de-
scribed in Table 2. According to the International Com-
mission on Radiation Units and Measurements report
83, the near minimum dose (Dogy) was the dose to 98%
of the structure, the near maximum dose (Dyy,) was de-
fined to be the dose to 2% of the structure and the mean

Table 2 The dose-volume constraints to critical OARs used in

VMAT optimization

OAR Dose constraint
Brain stem Dog < 54 Gy
Spinal cord Dyg, <45 Gy

Parotid glands Diean < 26 Gy or at least 50%

of one side will receive <30Gy
Do, < 54 Gy

Do, < 60 Gy

Dinean <40 Gy

Dao, < 10 Gy

Drean <45 Gy

Dinean < 39 Gy

Drnean < 50 Gy

Abbreviations: D,y dose to 2% of the structure, D,eqn, Mmean dose

Optic nerves, Chiasm
Temporal lobes

Oral cavity (excluding PTV's)
Lens

Glottic larynx
Submandibular glands

Pharyngeal constrictor muscles
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dose (Dpean) Was the mean dose to the structure.
Regarding the OARs, D,y to the brain stem, the spinal
cord, the optic nerves and the chiasm was set as 54 Gy,
45 Gy, 54 Gy, and 54 Gy, respectively. In addition, at
least one of the parotid glands should receive a Dyean of
no more than 26 Gy, or at least 50% of one gland should
receive < 30 Gy.

The VMAT plans, described earlier [23], were gener-
ated using two complete arcs plus one partial arc (mov-
ing from gantry angle of 240° to 120° in the clockwise
direction). The collimator angle was set at 20° for all
plans to minimize the cumulative effects of interleaf
transmission and the tongue-and-groove effect. The 3°
was set as a spacing unit in this study for the comprom-
ise between the number of optimizable multileaf colli-
mator leaf positions and calculation time. The same
Trilogy linear accelerator data was commissioned in the
Pinnacle TPS (Version 9.10, Philips Radiation Oncology
Systems, Fitchburg, WI) and RayStation TPS (Version 3.
0, RaySearch Laboratories AB, Stockholm, Sweden). The
dose differences between the two systems were verified
within 1.5% during the commission process [24].

Description of AP

A new optimizer, AP, was introduced in Pinnacle TPS.
The AP module simplifies the planning process through
the use of templates (derived regions of interest, place-
ment of points of interest, prescriptions, beam geom-
etries, settings, and optimization options and prioritized
optimization goals), and automatic optimization tuning
algorithm (called the AP engine). A single selection cre-
ates a new plan based on the templates and runs the AP
engine. The AP engine maps the prioritized optimization
goals defined in the templates to optimization objectives.
Multiple optimization loops are performed that itera-
tively adjust the optimization parameters to meet the
goals and further drive down OAR sparing with minimal
compromise to the PTV coverage. It is achieved by using
parameters specific to driving down OAR dose to the
point that it significantly affects PTV coverage and sep-
arate parameters to achieve the planning goals. PTV
conformity and uniformity is automatically controlled by
particular system-generated structures. It is similar to
the process defined in the study by Xhaferllari et al. [21].
OAR dose is controlled by normal tissue structures. All
the optimization parameters (dose and weight) are ad-
justed using a proprietary approach. In brief, the AP
software is analogous to experienced planners drawing
new structures and adjusting parameters to make inverse
plans more clinically desirable.

Description of MCO and clinical workflow
MCO has been commercialized in RayStation TPS. The
whole workflow of general MCO VMAT and APMCO
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VMAT treatment is schematically presented in Fig. 1.
There are mainly three stages in general MCO planning
process: in the first stage, the TPS generates Pareto-
optimal plans according to the typical dose-volume con-
straints input as the optimization parameters for the
multicriterial planning problem and stores them in a
database. In the planning process, no sufficient quantita-
tive judgments are used to reduce adverse effects that
can jeopardize survival advantages other than a set of
dose-volume constraints. The most common constraints
have typically been determined using the population-
based constraints such as RTOG protocol recommenda-
tions. In the second stage, the physician interactively ex-
plores the Pareto surface and decides for the best-possible
compromise for the patient, depending on the individual
experience. In the last stage, the deliverable plan is final-
ized by multileaf collimator sequencing and final dose cal-
culation. The Pareto surface approximation is calculated
by optimizing various weighted sums of the objective cost
functions. For N functions at least N + 1 plans in the Pa-
reto database are calculated [10], and the maximum plan
number is given by the TPS with 4 N (default usage for
the remarkable performance in this study).
The overall workflow of APMCO VMAT is quite similar
general. The major differences were the
optimization parameters and selection criteria. For

in
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general MCO, the optimization parameters and selec-
tion criteria were directly from the population-based
dose constraints. For APMCO, the population-based
dose constraints as the initial optimization parameters
were input to Pinnacle for AP optimization. After AP
progress, the individual AP dose-volume histograms
(DVHs) as the representative optimization parameters
were used as the input for MCO in RayStation.
During final plan selection in the navigation step,
APMCO can make the physician who is confronted
with the full range of alternative choices ensure navi-
gation in a more efficient and straightforward manner
according to the accurate selection criteria obtained
from AP instead of the individual experience.

Dose comparisons

Plan comparisons were performed between general
MCO and APMCO plans. In order to minimize the
influence of the inter-operator variation, the same
planner and physician adopting the same plan criteria
were engaged in this study. DVHs were calculated for
all plans. For PTVs, Dggy and D,gwere compared.
The conformity of the PTV dose was evaluated by
the conformation number (CN) according to the
following eq. (1):

Patient selection

!

Template arc beam arrangement

The population-based dose constraints
as the optimization parameters input to
RayStation for MCO

l

|
|
|
|
|
|
Pareto plan database generated |
|
|
|
|
|
|

l

According to the selection criteria obtained from

the population-based dose constraints, the
physician navigates to select the desired plan

buuued 0oy 1es/ou89

depending on the individual experience

Obtain the deliverable
MCO plan

Fig. 1 The workflow of general MCO VMAT and APMCO VMAT treatment

The population-based dose constraints as the
initial optimization parameters input to
Pinnacle for AP optimization

!

Obtain individual DVHs from AP

!

AP DVHs as the representative
optimization parameters input to
RayStation for MCO

I

Pareto plan database generated

l

According to the accurate selection criteria obtained
from AP, the physician can ensure navigation in a
more efficient and straightforward manner

Burued OoNdY

Obtain the deliverable
MCO plan




Wang et al. Radiation Oncology (2018) 13:94

PTV2 ref

CN=_— -
Vpry X Viet

(1)
where PTV ¢ represented the volume receiving the pre-
scription dose in PTV, Vpry stood for the volume of the
PTV, and V. was the volume that received the pre-
scribed dose. For OARs, Dy, was applied to evaluate the
dose to serial organs, such as the brain stem, spinal cord,
optic nerves, chiasm and temporal lobes, and D ,cq, to
parallel organs, such as the parotid glands, oral cavity
(excluding PTV’s), glottic larynx, submandibular glands
and pharyngeal constrictor muscles. For parotid glands,
the percent volume of each parotid that received 30 Gy
(V30) was also evaluated and compared. The plan differ-
ence was facilitated by defining the relative OAR dose
deduction () according to the following eq. (2):

5 PGenerainico-Parmco

x 100, (2)
PGenemlMCO
where P refers to the dose (Gy).

The number of monitor units (MUs) for all plans and
planning time including the time spent for optimization
and dose calculation until the final plan was produced
were also reported.

Statistical analysis

Statistical analysis was performed to compare the dosi-
metric differences between general MCO and APMCO
plans. The normal distribution of variables was firstly
checked with the Kolmogorov-Smirnov test. Paired t-
tests were used to compare the different parameters. A
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p-value < 0.05 was considered statistically significant. All
statistical analyses were performed with IBM-SPSS sta-
tistics, version 19 (SPSS Inc., Chicago, IL).

Results

PTV coverage and CN

The dose distributions for one representative NPC pa-
tient on coronal planes of general MCO and APMCO
plans are shown in Fig. 2a—b, respectively. Table 3 pre-
sents the detailed statistical analysis of PTVs, which are
averaged over 60 patients. All plans were capable of
achieving the prescription requirement. There were al-
most no statistically significant differences between gen-
eral MCO and APMCO plans in terms of PTV,, PTVsg,
4 PTVz, coverage and CN. It clearly showed that the
PTV dose distributions were essentially equivalent be-
tween the two plan types.

OARs sparing

Figure 2c displays the dose differences between Fig. 2a,
and Fig. 2b. Fig. 3 shows the mean DVHs of all struc-
tures. The distributions of all DVH metrics were suffi-
ciently similar to normal distributions. The major dose
differences occurred in the glottic larynx and pharyngeal
constrictor muscles. Table 3 also summarizes the dosi-
metric parameters from the investigated techniques of
OARs. There were no significant differences in most of
OARs sparing. However, in APMCO plans, relatively re-
markable decreases were observed in Dy, to the glottic
larynx and pharyngeal constrictor muscles. The
reductions of average D e, to the two OARs were 10.5%

-

dose difference between (a) and (b)

Fig. 2 The coronal dose distributions for a general MCO VMAT and b APMCO VMAT are shown for one representative patient. c displays the
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Table 3 Summary of the dosimetric parameters from the investigated techniques of PTVs, OARs and MUs
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[tem Parameter General MCO-VMAT APMCO-VMAT p value
PTV,o Do, (Gy) 69.5 + 0.3 694 + 0.5 066
Dag, (GY) 74.7 £ 09 749 £ 09 0.1
CN 06 £ 0.1 06 £0.1 0.50
PTVsou Dosss (Gy) 58.1 + 0.7 583+ 0.7 0.09
Dag (GY) 740 £ 06 741 £ 06 0.29
CN 05+00 05£0.1 0.89
PTVss Dosss (Gy) 532+ 09 530+ 08 031
Do (Gy) 60.0 + 09 60.1 £ 09 0.64
CN 02 +00 02+00 0.15
Brainstem Dao, (Gy) 51.1+21 509 +23 0.59
Spincal cord Dag (GY) 421+18 418+19 0.31
Left optic nerve Daos (Gy) 46.2 + 6.8 463+ 70 0.74
Right optic nerve Dsos (Gy) 457 +74 452 +75 013
Chiasm Dag, (GY) 418 +87 415+ 94 0.67
Left len Daos (Gy) 6.1+10 6.1+ 1.1 0.77
Right len Dses, (Gy) 6.1+ 10 6.1+ 1.1 093
Left parotid gland V30 (%) 421 £56 427 £ 25 0.17
Drnean (GY) 318+ 17 312+ 40 041
Right parotid gland V3o (%) 425+ 27 427 £29 0.24
Drnean (GY) 312 +39 319+ 17 0.16
Left temporal lobe Dags (Gy) 632 +63 635+67 034
Right temporal lobe Daos (GY) 645 + 57 649 + 57 0.36
Oral cavity (excluding PTV's) Dinean (GY) 399 +27 39.7 £ 3.1 0.35
Glottic larynx Dinean (GY) 509 + 33 456 +33 <0.0001
Submandibular glands Dinean (GY) 551+18 549 + 2.1 0.55
Pharyngeal constrictor muscles Dinean (GY) 538+ 14 493+ 14 <0.0001
MU 505.6 + 40.5 5105 + 343 0.09

Abbreviations: PTV planning target volume, Dggy; dose to 98% of the structure, Dq, dose to 2% of the structure, CN conformation number, V3, volume (%) of receiving

30 GY, Dmean mean dose, MU monitor unit
Data are shown as mean values with one standard deviation

(p <0.0001) and 8.4% (p < 0.0001), respectively. Figure 4
illustrates the effect of APMCO implementation on
glottic larynx and pharyngeal constrictor muscles dose.
The results suggested that APMCO technique could
more effectively protect the glottic larynx and
pharyngeal constrictor muscles.

Planning efficiency and MUs

Multiple PTVs and OARs that needed to be balanced in
NPC treatment resulted in a time-consuming process.
An average of approximately 5 h was required to create
each MCO plan. APMCO technique significantly in-
creased the planning time. Additional average of ap-
proximately 5 h was required to create each AP plan.
The mean number of MUs for APMCO plans was 505.6
compared to 510.5 for general MCO ones (p>0.05)

(Table 3). The use of APMCO did not lead to a signifi-
cant increase of MUs.

Discussion

In this study, a new optimization approach was devel-
oped for VMAT planning. We demonstrated the feasibil-
ity of implementing APMCO to assist VMAT. NPC
chosen for the analysis represented an ideal platform for
this study. Besides its relatively high incidence in South-
east Asia and China, there are multiple PTVs and a great
deal of individual radiosensitive OARs that need to be
balanced, testing APMCO performance in a demanding
clinical scenario. Our results showed that APMCO plans
maintained similar PTV coverage and CN, and similar
or superior OARs sparing to general MCO ones. As
more agents are tested in combination with radiation in
attempts to improve the efficacy of chemoradiation, it is
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highly desirable to explore new strategies for NPC pa-
tients that will decrease radiation-specific adverse ef-
fects. The quantitative analysis of normal tissue effects
in the clinic project [25] reviewed several dose-response
studies for laryngeal edema, vocal dysfunction and
dysphagia. It found that the probability of these adverse
effects increased significantly with the dose to the glottic
larynx and pharyngeal constrictor muscles. In our study,
the relevantly improved sparing of the two OARs was
achieved after implementing APMCO without com-
promising PTV coverage, homogeneity, and sparing of
the rest of OARs. It was suggested that the dose reduc-
tion in these two tissues did not result from the redistribu-
tion of the dose to PTVs and other OARs, but rather from
the utilization of APMCO. Furthermore, additional reduc-
tion of potential treatment adverse effects may offer the
opportunity to effectively improve the quality of life.

In the planning process, the idea underlying the MCO
formulation is that each anatomical structure is assigned
one or several parameters. Therefore, even with MCO

the optimization results depend heavily on the
optimization parameters. This is an open question as to
which sets of choices best achieve the appropriate bal-
ance of dose distribution. Craft et al. [10] demonstrated
that the resulting generation of the Pareto surface was
sensitive to the used parameters particularly for some
parallel OARs, where D,y and D,,.., were not corre-
lated. Therefore, a key challenge in MCO is to define the
patient-specific parameters that will directly affect the
Pareto surface generation. Various solutions have been
proposed to assist planners to efficiently balance clinical
tradeoffs and decide the clinically achievable plans, such
as knowledge-based planning (KBP) [26—37] and AP [21,
22]. KBP has proven to be an efficient tool for signifi-
cantly improving planning efficiency and stability. More
importantly, adoption of KBP led to varying degrees of
improved OARs sparing for head and neck cancer pa-
tients, such as parotid glands, oral cavity, glottic larynx
and cochlea [32, 33]. A key pre-requisite of KBP is to
compile a sufficiently large number of high quality plans
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Fig. 4 The box plot depicting the effect of APMCO implementation
on glottic larynx and pharyngeal constrictor muscles dose. & means
the relative OAR mean dose deduction. The center line inside box is
the median value. The box represents the interquartile range (IQR)
from 25% quartile to 75% quartile. The cross indicates the outlier
which is defined as the points more than 1.5 times IQR away from
the box edge. The solid lines connect the box with the most extreme
values which are not outlier

to build a DVH estimation model. One disadvantage is
the range of patient geometries in the model, which still
may not represent the full diversity of NPC cases due to
individual differences. The estimations and statements
about the accuracy of the model may be compromised
to a certain extent when applying the model to those pa-
tients whose geometry falls outside the range of the con-
stituent plans in the model. Another disadvantage is that
the performance of KBP mainly depends on the quality
of model. Suboptimal plans in the model may degrade
results with the KBP approach. Furthermore, the pre-
dicted goals are directly applied to TPS’s optimizer, and
no further adjustments are made during optimization.
Unlike KBP, AP relies on the optimization algorithm it-
self to iteratively adjust planners’ pre-set, PTVs/OARs
DVH objectives during optimization to meet or exceed
coverage/sparing goals. In APMCO, planners are free to
use the valuable knowledge from AP and to adjust
quickly and efficiently the allowable minimum dose to
the OARs with confidence that the dose to the target
and other tissues will remain uncompromised, thus
greatly reducing the time-consuming iteration loops.

A wide range of mathematically optimal alternatives
are available during navigation. As a result, it suggests a
paradigm shift in the decision making process during
which the physician gets an insight of the solution space
by navigating through alternative compromises. Voet et
al. [38] used the prioritized optimization, resulting in
one treatment plan only, and not requiring manual
Pareto surface navigation. The in-house-developed

Page 8 of 10

algorithm is promising but not yet commercially avail-
able. Just as our experience in using MCO, navigating to
the clinically optimal plan from the Pareto surface plan
database is equally critical to achieving high quality
plans. It involves higher-level information which is often
non-technical, qualitative and experience-driven. The
OARs sparing in MCO plans also reflects the ability of
physicians to prioritize a lot of different structures dur-
ing the final plan selection in the navigation step. For ex-
ample, the routine clinical practice is that under-dosing
to PTVs and critical OARs placed in high priority level
will be focused on and unspecified tissues tend to be less
important. Appreciable variation exists in the navigation
step, depending on the experience of individual physi-
cians. Due to lacking in the knowledge of such a wide
variety of tradeoff solutions, the decision making for
how to cope with the problem is rather demanding espe-
cially for physicians who have few experiences during
navigation. Although physicians can choose a scalarized
objective and find the resulting solution, there are no
guarantees that they can derive the optimal solution
every time even when experienced ones are involved.
However, once the individual and accurate tradeoff in-
formation is obtained from AP, no matter whether physi-
cians are experienced or not can ensure navigation in a
more efficient and straightforward manner.

The Pareto surface plan database is very large-
dimensional since NPC has multiple PTVs and many indi-
vidual OARs to consider. Reducing the dimensionality of
the database is a very important consideration. Kierkels et
al. [39] demonstrated that the application of clinically vali-
dated multivariable normal tissue complication probability
(NTCP) models (including multiple dose parameters and
prognostic clinical factors) in the planning process facili-
tated the dose distributions and corresponding NTCP-
estimates in head and neck cancer patients. It may be
more appropriate, especially in a multicriteria setting, to
reduce the number of currently used tradeoff objectives to
a few NTCP-based objectives, simplifying the navigation
process. This is a promising area and definitely more com-
putationally faster objective-reduction techniques are
needed for the purpose.

One important limitation for MCO is that the Pareto
surface generation step is computationally costly.
Clinical constraints of time and effort also should be
kept a close eye on. To our knowledge, the time expense
of computing a modest number of fluence-based plans
can exceed 5 h for complicated NPC cases. Furthermore,
APMCO VMAT required additional average of 5 h com-
pared to general MCO VMAT. The search for AP plans
is not in a time-efficient manner since the optimizer will
run multiple times with adjustments of optimization pa-
rameters. This situation becomes especially challenging
in triple-arc VMAT plans. The clinically infeasible
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planning time seems to severely limit the usability.
Special caution should be taken when APMCO is ap-
plied in the clinical practice. Fortunately, most of the
planning time is not “active planning” time which does
not require active manual intervention. Improvements
in computer architecture, e.g. by calculation on the
graphics processing unit, or generation of plans in paral-
lel over multiple workstations might drastically reduce
the planning time. For early-stage NPC cases, VMAT
plans generated using only one arc may greatly reduce
the planning time and seem to be well tolerable. An-
other limitation is that AP optimization and MCO are
entirely two separate processes. An ideal procedure is to
incorporate simultaneously AP into the MCO frame-
work. APMCO should be more usable in practice in the
future. The last limitation is that we just focused on
recommending a new strategy for MCO in this study.
Further studies are therefore needed to go into the
mathematical details of the optimization algorithm. In
principal, the new optimization approach can also be
used for other site tumors such as thorax, abdomen, etc.

Conclusion

A new strategy for making the appropriate choice of the
representative optimization parameters in planning pro-
cesses and accurate selection criteria during Pareto surface
navigation for general MCO was recommended. The
APMCO approach combines both benefits of AP
optimization and MCO for achieving an individual VMAT
plan according to the patient-specific tradeoff among con-
flicting priorities at a cost of increased planning time
which does not require active manual intervention. The
potential of the APMCO strategy is best realized with a
clinical implementation that exploits individual generation
of Pareto surface representations without manual inter-
action. It also assists physicians to ensure navigation in a
more efficient and straightforward manner.

Abbreviations

AP: AutoPlanning; APMCO: AP optimization and MCO; CN: Conformation number;
CTV: Clinical target volumes; Do, Near maximum dose; Dggy,: Near minimum
dose; Dinean: Mean dose; DVH: Dose-volume histogram; KBP: Knowledge-based
planning; MCO: Multicriteria optimization; MU: Monitor unit; NPC: Nasopharyngeal
carcinoma; NTCP: Normal tissue complication probability; OAR: Organ at risk;

PTV: Planning target volume; RTOG: Radiation Therapy Oncology Group;

TPS: Treatment planning system; Vso: The percent of volume that received 30Gy;
VMAT: Volumetric-modulated arc therapy; &: The relative dose deduction

Availability of data and materials
The datasets used and/or analysed during the current study are available
from the corresponding author on reasonable request.

Authors’ contributions

JW, ZC and WL planned for treatment cases, performed the analysis and
drafted the manuscript. WL, WQ and XW contributed to the data analysis
and provided support with study design. JW and WH designed the study.
All' authors read and approved the final manuscript.

Page 9 of 10

Ethics approval and consent to participate
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Received: 27 February 2018 Accepted: 1 May 2018
Published online: 16 May 2018

References

1. Yu CX, Tang G. Intensity-modulated arc therapy: principles, technologies
and clinical implementation. Phys Med Biol. 2011;56:R31-54.

2. Verbakel WF, Cuijpers JP, Hoffmans D, Bieker M, Slotman BJ, Senan S.
Volumetric intensity-modulated arc therapy vs. conventional IMRT in head-
and-neck cancer: a comparative planning and dosimetric study. Int J Radiat
Oncol Biol Phys. 2009;74:252-9.

3. Yoo S, Wu QJ, Lee WR, Yin FF. Radiotherapy treatment plans with RapidArc
for prostate Cancer involving seminal vesicles and lymph nodes. Int J Radiat
Oncol Biol Phys. 2010,76:935-42.

4. Bohsung J, Gillis S, Arrans R, Bakai A, De Wagter C, Kndos T, et al. IMRT
treatment planning: a comparative inter-system and inter-Centre planning
exercise of the ESTRO QUASIMODO group. Radiother Oncol. 2005;76:354-61.

5. Pardo-montero J, Fenwick JD. An approach to multiobjective optimization
of rotational therapy. Med Phys. 2009;36:3292-303.

6. Pardo-Montero J, Fenwick JD. An approach to multiobjective optimization of
rotational therapy. Il. Pareto optimal surfaces and linear combinations of
modulated blocked arcs for a prostate geometry. Med Phys. 2010;37:2606-16.

7. Craft D, McQuaid D, Wala J, Chen W, Salari E, Bortfeld T. Multicriteria VMAT
optimization. Med Phys. 2012;39:686-96.

8. Bokrantz R. Multicriteria optimization for volumetric-modulated arc therapy
by decomposition into a fluence-based relaxation and a segment weight-
based restriction. Med Phys. 2012;39:6712-25.

9. Ghandour S, Matzinger O, Pachoud M. Volumetric-modulated arc therapy
planning using multicriteria optimization for localized prostate cancer. J
Appl Clin Med Phys. 2015;16:5410.

10.  Craft D, Halabi T, Bortfeld T. Exploration of tradeoffs in intensity-modulated
radiotherapy. Phys Med Biol. 2005;50:5857-68.

11. Breedveld S, Storchi PR, Keijzer M, Heemink AW, Heijmen BJ. A novel approach
to multi-criteria inverse planning for IMRT. Phys Med Biol. 2007;52:6339-53.

12. Thieke C, Kifer KH, Monz M, Scherrer A, Alonso F, Oelfke U, et al. A new
concept for interactive radiotherapy planning with multicriteria
optimization: first clinical evaluation. Radiother Oncol. 2007;85:292-8.

13. Holdsworth C, Kim M, Liao J, Phillips M. The use of a multiobjective
evolutionary algorithm to increase flexibility in the search for better IMRT
plans. Med Phys. 2012;39:2261-74.

14. Monz M, Kifer KH, Bortfeld TR, Thieke C. Pareto navigation: algorithmic
foundation of interactive multi-criteria IMRT planning. Phys Med Biol. 2008;
53:985-98.

15. Craft DL, Hong TS, Shih HA, Bortfeld TR. Improved planning time and plan
quality through multicriteria optimization for intensity-modulated
radiotherapy. Int J Radiat Oncol Biol Phys. 2012,82:83-90.

16.  Lahanas M, Schreibmann E, Baltas D. Multiobjective inverse planning for
intensity modulated radiotherapy with constraint-free gradient-based
optimization algorithms. Phys Med Biol. 2003;48:2843-71.

17. Craft DL, Halabi TF, Shih HA, Bortfeld TR. Approximating convex pareto
surfaces in multiobjective radiotherapy planning. Med Phys. 2006;33:3399-407.

18.  Craft D, Halabi T, Shih HA, Bortfeld T. An approach for practical
multiobjective IMRT treatment planning. Int J Radiat Oncol Biol Phys. 2007;
69:1600-7.

19.  Jee KW, McShan DL, Fraass BA. Lexicographic ordering: intuitive multicriteria
optimization for IMRT. Phys Med Biol. 2007,52:1845-61.

20. Hong TS, Craft DL, Carlsson F, Bortfeld TR. Multicriteria optimization in
intensity-modulated radiation therapy treatment planning for locally advanced
Cancer of the pancreatic head. Int J Radiat Oncol Biol Phys. 2008;72:1208-14.

21, Xhaferllari |, Wong E, Bzdusek K, Lock M, Chen J. Automated IMRT planning
with regional optimization using planning scripts. J Appl Clin Med Phys.
2013;14:4052.



Wang et al. Radiation Oncology (2018) 13:94

22.

23.

24.

25.

26.

27.

28.

29.

30.

31

32.

33.

34.

35.

36.

37.

38.

39.

Krayenbuehl J, Norton |, Studer G, Guckenberger M. Evaluation of an
automated knowledge based treatment planning system for head and
neck. Radiat Oncol. 2015;10:226.

Kan MW, Wong W, Leung LH, Yu PK, So RW, Cheng AC. A comprehensive
dosimetric evaluation of using RapidArc volumetric-modulated arc therapy
for the treatment of early-stage nasopharyngeal carcinoma. J Appl Clin Med
Phys. 2012,13:3887.

Hu W, Wang J, Li G, Peng J, Lu S, Zhang Z. Investigation of plan quality
between RapidArc and IMRT for gastric cancer based on a novel beam angle
and multicriteria optimization technique. Radiother Oncol. 2014;111:144-7.
Rancati T, Schwarz M, Allen AM, Feng F, Popovtzer A, Mittal B, et al. Radiation
dose-volume effects in the larynx and pharynx. Int J Radiat Oncol biol Phys.
2010;76 Suppl 3:564-9.nt J Radiat Oncol Biol Phys 2010;76:564-569.
Chanyavanich V, Das SK, Lee WR, Lo JY. Knowledge based IMRT treatment
planning for prostate cancer. Med Phys. 2011,38:2515-22.

Good D, Lo J, Lee WR, Wu QJ, Yin FF, Das SK. A knowledge-based approach
to improving and homogenizing intensity modulated radiation therapy
planning quality among treatment centers: an example application to
prostate cancer planning. Int J Radiat Oncol Biol Phys. 2013,87:176-81.
Fogliata A, Wang PM, Belosi F, Clivio A, Nicolini G, Vanetti E, et al.
Assessment of a model based optimization engine for volumetric
modulated arc therapy for patients with advanced hepatocellular cancer.
Radiat Oncol. 2014;9:236.

Fogliata A, Belosi F, Clivio A, Navarria P, Nicolini G, Scorsetti M, et al. On the
pre-clinical validation of a commercial model-based optimisation engine:
application to volumetric modulated arc therapy for patients with lung or
prostate cancer. Radiother Oncol. 2014;113:385-91.

Schmidt M, Lo JY, Grzetic S, Lutzky C, Brizel DM, Das SK. Semiautomated
head-and-neck IMRT planning using dose warping and scaling to robustly
adapt plans in a knowledge database containing potentially suboptimal
plans. Med Phys. 201542:4428-34.

Fogliata A, Nicolini G, Clivio A, Vanetti E, Laksar S, Tozzi A. A broad scope
knowledge based model for optimization of VMAT in esophageal cancer:
validation and assessment of plan quality among different treatment
centers. Radiat Oncol. 2015;10:220.

Chang ATY, Hung AWM, Cheung FWK, Lee MCH, Chan OSH, Philips H, et al.
Comparison of planning quality and efficiency between conventional and
knowledge-based algorithms in nasopharyngeal Cancer patients using intensity
modulated radiation therapy. Int J Radiat Oncol Biol Phys. 2016,95:981-90.
Fogliata A, Reggiori G, Stravato A, Lobefalo F, Franzese C, Franceschini D, et
al. RapidPlan head and neck model: the objectives and possible clinical
benefit. Radiat Oncol. 2017;12:73.

Powis R, Bird A, Brennan M, Hinks S, Newman H, Reed K, et al. Clinical
implementation of a knowledge based planning tool for prostate VMAT.
Radiat Oncol. 2017;12:81.

Wang J, Hu W, Yang Z, Chen X, Wu Z, Yu X, et al. Is it possible for
knowledge-based planning to improve intensity modulated radiation
therapy plan quality for planners with different planning experiences in left-
sided breast cancer patients? Radiat Oncol. 2017;12:85.

Ueda Y, Fukunaga JI, Kamima T, Adachi Y, Nakamatsu K, Monzen H. Evaluation
of multiple institutions' models for knowledge-based planning of volumetric
modulated arc therapy (VMAT) for prostate cancer. Radiat Oncol. 2018;13:46.
Wall PDH, Carver RL, Fontenot JD. An improved distance-to-dose correlation
for predicting bladder and rectum dose-volumes in knowledge-based VMAT
planning for prostate cancer. Phys Med Biol. 2018;63:015035.

Voet PW, Dirkx ML, Breedveld S, Fransen D, Levendag PC, Heijmen BJ.
Toward fully automated multicriterial plan generation: a prospective clinical
study. Int J Radiat Oncol Biol Phys. 2013;85:866-72.

Kierkels RG, Korevaar EW, Steenbakkers RJ, Janssen T, van't Veld AA,
Langendijk JA, et al. Direct use of multivariable normal tissue complication
probability models in treatment plan optimisation for individualised head
and neck cancer radiotherapy produces clinically acceptable treatment
plans. Radiother Oncol. 2014;112:430-6.

Page 10 of 10

Ready to submit your research? Choose BMC and benefit from:

o fast, convenient online submission

o thorough peer review by experienced researchers in your field

 rapid publication on acceptance

o support for research data, including large and complex data types

e gold Open Access which fosters wider collaboration and increased citations
e maximum visibility for your research: over 100M website views per year

K BMC

At BMC, research is always in progress.

Learn more biomedcentral.com/submissions




	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Patient selection and contouring
	Dose prescription and treatment planning
	Description of AP
	Description of MCO and clinical workflow
	Dose comparisons
	Statistical analysis

	Results
	PTV coverage and CN
	OARs sparing
	Planning efficiency and MUs

	Discussion
	Conclusion
	Abbreviations
	Authors’ contributions
	Ethics approval and consent to participate
	Competing interests
	Publisher’s Note
	References

