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The alfa and beta of tumours: a review of
parameters of the linear-quadratic model,
derived from clinical radiotherapy studies
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Abstract

Background: Prediction of radiobiological response is a major challenge in radiotherapy. Of several radiobiological
models, the linear-quadratic (LQ) model has been best validated by experimental and clinical data. Clinically, the LQ
model is mainly used to estimate equivalent radiotherapy schedules (e.g. calculate the equivalent dose in 2 Gy
fractions, EQD2), but increasingly also to predict tumour control probability (TCP) and normal tissue complication
probability (NTCP) using logistic models. The selection of accurate LQ parameters α, β and α/β is pivotal for a
reliable estimate of radiation response. The aim of this review is to provide an overview of published values for the
LQ parameters of human tumours as a guideline for radiation oncologists and radiation researchers to select
appropriate radiobiological parameter values for LQ modelling in clinical radiotherapy.

Methods and materials: We performed a systematic literature search and found sixty-four clinical studies reporting
α, β and α/β for tumours. Tumour site, histology, stage, number of patients, type of LQ model, radiation type, TCP
model, clinical endpoint and radiobiological parameter estimates were extracted. Next, we stratified by tumour site
and by tumour histology. Study heterogeneity was expressed by the I2 statistic, i.e. the percentage of variance in
reported values not explained by chance.

Results: A large heterogeneity in LQ parameters was found within and between studies (I2 > 75%). For the same
tumour site, differences in histology partially explain differences in the LQ parameters: epithelial tumours have
higher α/β values than adenocarcinomas. For tumour sites with different histologies, such as in oesophageal cancer,
the α/β estimates correlate well with histology. However, many other factors contribute to the study heterogeneity
of LQ parameters, e.g. tumour stage, type of LQ model, TCP model and clinical endpoint (i.e. survival, tumour
control and biochemical control).

Conclusions: The value of LQ parameters for tumours as published in clinical radiotherapy studies depends on
many clinical and methodological factors. Therefore, for clinical use of the LQ model, LQ parameters for tumour
should be selected carefully, based on tumour site, histology and the applied LQ model. To account for
uncertainties in LQ parameter estimates, exploring a range of values is recommended.
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Background
Prediction of biological response after irradiation has
been a challenge since the discovery of X-rays and ra-
dium. In the early days of radiotherapy it became clear
that the biological effect of irradiation was not only de-
termined by the total dose, but also by the characteris-
tics of the treatment schedule such as fraction dose,
dose rate and overall treatment time [1]. Many models
have been proposed to predict radiobiological response.
The linear-quadratic (LQ) model has been best validated
by experimental and clinical data, and its conceptual
simplicity added to its present popularity in radiotherapy
practice, for instance to address clinical problems such
as compensation for missed treatment days, comparison
of different treatment schemes, and the design of novel
treatment schedules in clinical trials [2–4].
The basic LQ model describes the surviving fraction

SF of clonogenic or stem cells as a function of radiation
dose D,

SF Dð Þ ¼ e−α∙D−β∙D
2 ð1Þ

The main parameters of this model, α and β, represent
the intrinsic radiosensitivity of the irradiated cells: cells
with a higher α and β are more sensitive to radiation.
The ratio of the two parameters, α/β, is a measure of the
fractionation sensitivity of the cells: cells with a higher
α/β, are less sensitive to the sparing effect of fraction-
ation. Several extensions to the basic LQ model have
been developed, particularly to account for incomplete
repair [5] and repopulation [6]. The LQ model has
shown its clinical usefulness in predicting the sparing
effect of fractionated radiotherapy, and in comparing the
equivalent total dose of different fractionation schedules.
The estimation of radiotherapeutic outcome, and thera-
peutic window strongly depends on a reliable estimation
of LQ parameters α, β and α/β.
The radiation sensitivity parameters α and β can be

measured in vitro in tumour cell lines, but artificial cell
line cultures may not be representative for clinical radio-
biological calculations. Under some model assump-
tions, α and β can be derived from clinical radiotherapy
data, i.e. from the tumour control probability (TCP), by
fitting the TCP for different radiotherapy schedules to a
logistic- or Poisson-like TCP model. Alternatively, the
α/β ratio can be inferred from two or more iso-effective
fractionation schedules, as originally described by
Thames et al. [7].
Many studies have estimated these radiobiological LQ

parameters from clinical data for different tumour sites
[5, 8–70]. There are a few publications wherein aggre-
gate data for α/β have been presented in tables for differ-
ent tumour sites [4, 51], but these reviews did only
report values for a limited number of sites, did only
include one single study per tumour site and did not re-
port separate α and β values. Reviews and meta-analyses
of multiple fractionation trials have also been published,
but only for prostate [59] and breast cancer [33]. There-
fore, we wish to give a more comprehensive overview of
published LQ parameters for all tumour sites and all
histologies.
Several issues arise when collecting radiobiological pa-

rameters of human tumours from the literature. Some
studies have published LQ parameters as a main object-
ive, but reported radiobiological parameters are often
hidden in a paper wherein the assessment of a radiobio-
logical parameter had not been the primary goal of a
clinical study. Next, different literature values may be re-
ported for the same tumour site, even for the same study
population (e.g. [19, 22, 38, 70]), making it difficult to
know which value is appropriate for the situation of
interest.
Another important challenge is study heterogeneity,

which is the variation in LQ parameter values that can-
not be explained by chance, i.e. a variation that is larger
than expected by the reported variance and/or confi-
dence intervals. Study heterogeneity should not be con-
fused with intratumour and intertumour heterogeneity,
which are well known and can be dealt with by explicit
modelling of such heterogeneity (e.g. [71–73]). The pres-
ence of study heterogeneity indicates that studies are not
estimating a single outcome (e.g. α/β value), but that
each study estimates a value which is only valid for the
specific method and patient cohort of that specific study.
Study heterogeneity is a well-known pitfall of literature
reviews; the Cochrane Institute recommends to quantify
study heterogeneity and explore its origin, rather than to
perform a meta-analysis [74].
Thus, the aim of this review is to give an overview of

published values for the LQ parameters α, β and α/β of
human tumours, to quantify study heterogeneity of these
values, and to identify possible causes of study hetero-
geneity. Thereby, we wish to provide a guideline for ra-
diation oncologists and radiation researchers to select
appropriate radiobiological parameter values for LQ
modelling in clinical radiotherapy.
Methods
Search & inclusion criteria
Relevant studies were identified from the Medline
database using PubMed with combinations of the
search terms “dose-response relationship, radiation”,
“dose fractionation”, “linear”, “quadratic”, “alpha”,
“beta” and “humans” (see Additional file 1: Appendix
S1 for the full search strategy). The search includes
studies indexed until January 24, 2017 and was limited
to articles in English.
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Studies on patients with any tumour were eligible, re-
gardless of tumour site or histology. Intervention needed
to have included radiotherapy with photons; no limita-
tions were imposed on the radiation type (external beam
irradiation, brachytherapy), radiation technique (3D con-
formal, IMRT, etc.) or adjuvant treatments. Studies
needed to have estimated values for α, β or α/β. No limi-
tation was imposed on the clinical endpoint (e.g. local
control, survival, biochemical control) on which these
estimates were based. Studies wherein multiple ana-
lyses were performed, and different studies which
analysed the same clinical data set (but using differ-
ent methods or different subsets of the clinical data
set), were included as separate analyses. We excluded
studies wherein either α, β or a/β were fixed in the
fitting procedure.
Clinical variables that were extracted were tumour site,

histology, stage, radiation type (external beam radiother-
apy and/or brachytherapy), and number of patients.
Methodological variables that were extracted were the
type of LQ model (e.g. basic or accounting for repopula-
tion), TCP model (e.g. Poisson or logistic) and clinical
endpoint used to derive the radiobiological parameters
(see Additional file 1: Table S5). Finally, the LQ param-
eter estimates were extracted, including their confidence
intervals and/or variances, when reported. Studies not
reporting confidence intervals or variances were still in-
cluded, but marked as such in the relevant tables. This
was deemed justified since we aim for a review of LQ
parameter estimates as complete as possible and for
some tumor categories these studies not reporting
confidence intervals or variances represented the only
available data.

Statistical analysis
Separate overviews were made for α, β and α/β. Two dif-
ferent stratifications were made, by tumour site and by
histology. For each stratum containing at least two radio-
biological parameter estimates, study heterogeneity was
quantified for each of the three parameters (α, β and α/β)
using the I2 statistic, as recommended by the Cochrane
Institute [74]. The I2 statistic represents the percentage of
variance in reported LQ parameters that is not explained
by chance and which is therefore due to clinical or
methodological differences between studies [75].
Categorization is not strict, but I2 values of 25, 50 and

75% are usually considered as low, moderate and high
heterogeneity, respectively [75]. To calculate I2, the
variance of the reported outcome (α, β or a/β) is needed.
If a study reported the variance, this was directly used to
calculate I2. Otherwise, the variance was estimated from
the 95% confidence interval. Analyses in which neither
the variance, nor the confidence interval was reported
were not included in the calculation of I2.
It is debated whether the LQ model is still valid at
large fraction sizes [76–78]. If not, the inclusion of
patients treated with brachytherapy could lead to dif-
ferent radiobiological parameter estimates, as brachy-
therapy fraction sizes are typically large. To investigate
the possibility that heterogeneity in radiobiological
parameter estimates was (partly) caused by the inclu-
sion of data from patients treated with brachytherapy,
I2 was also calculated on the subset of studies that
only included data from patients treated with external
beam radiotherapy.

Results
The initial literature search yielded 1177 papers of
which eventually 64 satisfied our inclusion criteria
[5, 8–70] (for the PRISMA flow diagram, see Additional
file 1: Figure S2). These 64 papers reported 149 different
analyses of α/β based on 81 distinct sets of clinical data
(Fig. 1). For α and β, 72 different analyses were found
based on 39 distinct sets of clinical data (Figs. 2 and 3).
Similar figures for the stratification by tumour histology
may be found in the Additional file 1: Figure S3.1-S3.3.
Either variance or confidence interval was reported in

67, 42 and 110 analyses of α, β and α/β respectively, and
these analyses were used to quantify study heterogeneity
(I2). Study heterogeneity was substantial for all three
parameters (Figs. 1, 2, 3), particularly in those strata that
contain many analyses (head and neck and prostate tumour
sites; adenocarcinoma and squamous cell carcinoma
histologies). For example, I2 estimates of α/β for tumours of
the head & neck, prostate and skin were 87, 94 and 97%,
respectively. The α/β estimates for breast, bladder and
rectum cancer were an exception: heterogeneity within
those strata was extremely low. This is most likely due
to the fact that (almost) all studies included in those
strata were performed by the same author, excluding
heterogeneity due to methodological differences. I2

values were not substantially different when studies
including data from patients treated with brachytherapy
were excluded (Additional file 1: Table S6).
Despite study heterogeneity, a number of patterns

could be identified. Estimates of α/β for prostate tu-
mours, breast tumours, rhabdomyosarcoma and liposar-
coma generally indicated a high fractionation sensitivity
(mostly, α/β≈4 Gy), although only a single estimate was
available for the latter two. Estimates of α/β for head &
neck, cervix, bladder and liver tumours generally indi-
cated low fractionation sensitivity (mostly, α/β = 10 Gy
or α/β = − 10 Gy), with only limited data being available
for the latter three. Estimates of α/β for rectum,
oesophagus, central nervous system (CNS), skin and
lung tumours were very mixed. This is probably related
to the very different histologies that occur at these sites.
For the central nervous system, Henderson [16], Shrieve



Fig. 1 (See legend on next page.)
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Fig. 1 Overview of 149 reported estimates of a/β, stratified by tumour site. Within tumour sites, studies are sorted by histology, and then by date
of publication. TCC: transitional cell carcinoma; AD: adenocarcinoma; US: unspecified; CNOS: carcinoma, not otherwise specified; SCC: squamous
cell carcinoma; CHO: chordoma; GLI: glioma; MEN: meningioma; VS: vestibular schwannoma; LS: liposarcoma; HCC/CC: Hepatocellular carcinoma &
Cholangiocarcinoma; NSCLC: Non small cell lung carcinoma; RHA: Rhabdomyosarcoma; B/SCC: Basal-cell carcinoma & Squamous cell carcinoma;
MEL: melanoma. *Included data of patients treated with brachytherapy as part of the treatment. N.B. [56] Withers 1995 reported a 95% confidence
interval consisting of two segments, (− 8,-4.4) and (13.7,8)
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[43] and Vernimmen [58] studied benign histologies
(chordoma, meningioma and vestibular schwannoma),
and all reported low α/β estimates (≈4 Gy). Qi [32],
Jones [18] and Barazzuol [8] studied various types of gli-
oma, and generally found intermediate α/β values (typic-
ally 5–10 Gy). Similarly in skin, estimates for melanoma
(Overgaard [25, 26], Bentzen [30], Thames [53] were low
(< 3 Gy, with one exception), while estimates for mixed
basal-cell and squamous cell skin tumours were high
Fig. 2 Overview of 72 reported estimates of a, stratified by tumour site. Wi
publication. TCC: transitional cell carcinoma; AD: adenocarcinoma; US: unsp
Hepatocellular carcinoma & Cholangiocarcinoma; MEL: melanoma. *Include
(≈10 Gy). For lung, the α/β estimates were based on co-
horts with mixed histologies, and different histological
composition of those cohorts may explain the differ-
ences between those two studies.
Estimates for α were mostly in the range of 0.02–0.2 Gy− 1,

and no striking differences were found between
tumour sites. The value of α appeared somewhat
higher for rectal cancer, but this may be the result of
the specific methods applied in that study; Suwinski
thin tumour sites, studies are sorted by histology, and then by date of
ecified; SCC: squamous cell carcinoma; GLI: glioma; HCC/CC:
d data of patients treated with brachytherapy as part of the treatment



Fig. 3 Overview of 72 reported estimates of β, stratified by tumour site. Within tumour sites, studies are sorted by histology, and then by date of
publication. TCC: transitional cell carcinoma; AD: adenocarcinoma; US: unspecified; SCC: squamous cell carcinoma; GLI: glioma; HCC/CC:
Hepatocellular carcinoma & Cholangiocarcinoma; MEL: melanoma. *Included data of patients treated with brachytherapy as part of the treatment
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[48] investigated a group of patients who also had
surgery, and included a term accounting for the
tumour control probability through surgery alone. An
educated guess was made for this tumour control
probability, and any change in that estimate may have
substantially affected the value of α (and β) that was
found. Estimates of β vary from 0.001–0.06 Gy− 2 and
appear to be somewhat higher for breast and prostate
tumours, which corresponds with the lower α/β
values found for these sites.
The main clinical characteristics (number of patients,

tumour stage, radiation type (external beam radiotherapy
and/or brachytherapy), site and histology) and methodo-
logical characteristics, (type of LQ model, type of TCP
model and clinical endpoint) of the included analyses
can be found in the Additional file 1: Table S4. In most
cases either the basic LQ model, or an LQ model with a
correction for repopulation was used. Less frequently,
also a term was included to account for repair of sub-
lethal damage, which is relevant only for protracted ir-
radiation. The type of LQ model can substantially affect
the radiobiological parameters. This was clearly demon-
strated by Suwinski et al. [48], who fitted the same rectal
cancer data both with and without a time factor to ac-
count for repopulation. The estimated α/β value without
time factor was 5.1 Gy (i.e. relatively sensitive to frac-
tionation), but introduction of a time factor increased
the same LQ parameter to 11.1 Gy (i.e. relatively insensi-
tive to fractionation).
Poissonian or logistic TCP models were the most com-

monly used models to relate the cell survival fraction
predicted by the LQ model to a clinical outcome param-
eter (e.g. local tumour control). Less common was the
use of a Cox proportional hazards model. In analyses in
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which the individual α and β were not estimated, α/β
was often estimated based on two (or more) iso-
effective treatment schedules, in which case an expli-
cit TCP model is not needed. A short description of
the most-used LQ and TCP models is given in the
Additional file 1: Table S5.

Discussion
The LQ model is increasingly being used to predict con-
trol probability (TCP) and normal tissue complication
probability (NTCP) using logistic models, for instance
for radiobiological treatment planning [79–81]. In this
study we summarized published values for the LQ pa-
rameters α, β and α/β of human tumours, for as many
tumour sites and tumour histologies as possible. This
overview shows a large study heterogeneity in reported
values of LQ parameters, which indicates substantial
clinical and methodological differences between studies.
Despite study heterogeneity, some relevant patterns
could be identified.
Commonly, α/β values are categorized by tumour site

[4, 82], implicitly assuming that tumour site is the most
important factor determining radiobiological behaviour.
The rationale for categorization by tumour site is that
clinical radioresponsiveness would predominantly be de-
termined by the tumour environment (e.g. hypoxia).
However, Fertil and Malaise [83] already showed in 1985
that radiosensitivity is (at least partly) intrinsic to the
histology of the tumour. Our data support that both
tumour site and histology independently determine
radioresponsiveness. The first idea, that tumour site is
important, is supported by the fact that prostate tu-
mours seem to have even lower α/β (±1–2 Gy) than
breast tumours (±2–4.5 Gy), even though both are
adenocarcinoma. The second idea, that tumour histology
is an independent important factor, is supported by the
observation that similar histologies show consistently
similar α/β values, regardless of tumour site. Adenocar-
cinomas, both in prostate and breast cancer, overall
display a high fractionation sensitivity (low α/β, see
Additional file 1: Figure S3.1). On the other hand, epi-
thelial histologies such as squamous cell carcinoma,
transitional cell carcinoma, basal cell carcinoma and non
small cell lung carcinoma all exhibit low fractionation
sensitivity (high α/β). Finally, some tumour sites (e.g.
skin and central nervous system tumours) exhibit very
mixed fractionation sensitivities that correlate well with
the different histologies occurring at those sites. In sum-
mary, both site and histology are important factors for
α/β. Therefore, it has been suggested that for tumour
sites at which multiple histologies occur (e.g. squamous-
cell carcinoma and adenocarcinoma in oesophageal can-
cer), LQ parameters should be reported separately for
each histology [14], which enables estimation of separate
α/β values for each histology. This finding may be rele-
vant for LQ calculations in radiotherapy practice, for in-
stance in a patient with cancer of unknown origin, or for
a patient with a tumour in a site with more histologies
(i.e. lung, oesophagus, cervix uteri), for whom we rec-
ommend to choose an α/β based on the tumour
histology.
Apart from tumour site and histology, the type of LQ

model used in an analysis may affect the values esti-
mated for α, β and a/β and thus partially explains study
heterogeneity. For example, in the study by Suwinski
et al. [48] a higher α/β was reported when a time factor
was included (α/β = 11.1 Gy) than without time factor
(α/β = 5.1 Gy). This can be explained by the fact that
high dose-per-fraction treatment schedules are often
shorter than low dose-per-fraction schedules. Therefore,
when using a time factor to account for repopulation,
part of the efficacy of a high-dose-per fraction schedule
is attributed to a shortened overall treatment time, and
not to the higher fraction dose. Then, the inclusion of a
time factor will result in a higher estimate for α/β. An-
other example is that the estimates for α and β are
higher when intratumour heterogeneity is accounted for
in the LQ model [20]. This is because these values repre-
sent the mean radiosensitivity, while the tumour control
is mostly determined by the most radioresistant (i.e. low
α and β) tumour cells within the tumour.
Due to statistical variation, some studies find small,

negative β estimates. As a result, large, negative values
are calculated for α/β (e.g. [65]). This is merely a statis-
tical effect: regardless of the sign, a small absolute value
β (and correspondingly large absolute value of α/β) indi-
cates that the tumour has a very low sensitivity to the ef-
fects of fractionation. Although from radiobiological
point of view negative values of the α/β ratio are not
realistic, it is not advised to constrain negative values in
radiobiological analyses. When parameters are con-
strained, aggregate estimates do not converge to the true
value. Furthermore, constraining parameters in e.g. max-
imum likelihood regression results in inaccurate esti-
mates of the confidence intervals. Withers et al. [65]
suggested to use β/α instead of α/β [65], since β/α has
better balanced statistical properties. While statistical
variation could still result in negative β/α estimates,
these now have a more intuitive interpretation: all tu-
mours with β/α close to zero have a low fractionation
sensitivity, while tumours with a large β/α are sensitive
to fractionation. Nevertheless, the α/β-ratio remained
the standard LQ parameter for fractionation sensitivity.
Prior to this study, Qi et al. [33] did a meta-analysis

on breast cancer, and Vogelius et al. [59] on prostate
cancer. Vogelius et al. [59] determined α/β based on five
prostate cancer studies (including 1965 patients), and
showed that within their data no heterogeneity was
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present (I2 = 0%). Qi et al. [33] determined both α/β and α
based on seven aggregated studies (including 8269
patients). They did not calculate study heterogeneity, but
all data required for heterogeneity calculation were
reported. For α/β, no heterogeneity was present (I2 = 0%),
while for α heterogeneity was substantial (I2 = 58%). For
the majority of tumour sites in our study, study
heterogeneity in α/β was substantially higher than what
was found in these two studies. This difference is most
likely due to the specific design of these studies, which
excluded several potential sources of heterogeneity. For
example, Vogelius et al. only included studies in which
external radiotherapy was the primary treatment for
prostate cancer (i.e. no brachytherapy or prior
prostatectomy), thereby excluding these potential sources
of clinical heterogeneity. Furthermore, rather than
aggregating available radiobiological parameters, these
two meta-analyses used local control and biochemical
control of PSA from fractionation trials to derive LQ
parameters for each individual trial. As a result, the LQ
parameter estimates were derived using exactly the same
statistical analysis, excluding potential sources of meth-
odological heterogeneity. This approach is unfortunately
only feasible for those tumour sites where many fraction-
ation trials have been performed. Moreover, due to the
strict inclusion criteria of Vogelius et al., their results are
only applicable to a very specific patient group, whereas
our study aimed to present a complete overview of the
available data.
Qi et al. [33] and Vogelius et al. [59] previously re-

ported meta-analyses of LQ parameters for uniformly
treated patients with breast cancer and prostate cancer
respectively, both yielding relatively low α/β values for
tumour, and low study heterogeneities. Their results are
only applicable to two specific patient groups. We chose
to aggregate LQ parameter estimates for as many sites
and histologies as possible, at the cost of a higher study
heterogeneity. To select radiobiological parameters from
this overview, one should try to select parameters from a
study that matches the situation of interest (both clinic-
ally and methodologically) as close as possible (see
Additional file 1: Table S4). We recommend this elabor-
ate approach for the selection of LQ parameters in the
design of a radiobiological treatment planning system.
However, for LQ calculations in daily radiation prac-

tice, we recommend to use a range of plausible α/β
values rather than a single value. A plausible range can
be found in Figs. 1, 2, 3. For example, when selecting an
α/β for breast tumours, the radiobiological calculation
could be performed with α/β = 2 Gy, 3.5 Gy and 5 Gy re-
spectively. If a consistent conclusion can be drawn for
the whole range of plausible values (e.g. one schedule is
more effective than another, for all three α/β values), this
conclusion may be considered robust to the uncertainty
in the selection of appropriate parameters. This ap-
proach is valid irrespective of the estimated heterogen-
eity, although the range of plausible values is likely to be
larger for tumour sites with larger heterogeneity.

Conclusions
This review provides an overview of published values for
the LQ parameters of human tumours as a guideline for
radiation oncologists and radiation researchers to select
appropriate radiobiological parameter values for LQ
modelling in clinical radiotherapy. The estimation of LQ
parameters for tumours in published clinical radiother-
apy studies was subject to many clinical and methodo-
logical factors, which explain the wide range of reported
values. Therefore, for LQ calculations in radiotherapy
practice, the α/β ratio of tumour should be selected
carefully, based on tumour site, tumour histology and
the applied LQ model. To account for uncertainties in
LQ parameter values, it is recommended to explore a
range of plausible α/β values.

Additional file

Additional file 1: Appendix S1. Search strategy. Figure S2. PRISMA
flow chart. Figure S3. Forest plots of α, β and α/β, stratified by tumor
histology. Tables S4. Characteristics of included studies. Table S5.
Common LQ models and TCP models. Table S6. Heterogeneity with/
without studies including brachytherapy. (PDF 1223 kb)
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