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Abstract

Background: The purpose of this work is to benchmark RapidPlan against clinical plans for liver Intensity-modulated
radiotherapy (IMRT) treatment of patients with special anatomical characteristics, and to investigate the prediction
capability of the general model (Model-G) versus our specific model (Model-S).

Methods: A library consisting of 60 liver cancer patients with IMRT planning was used to set up two models (Model-S,
Model-G), using the RapidPlan knowledge-based planning system. Model-S consisted of 30 patients with special
anatomical characteristics where the distance from planning target volume (PTV) to the right kidney was less
than three centimeters and Model-G was configurated using all 60 patients in this library. Knowledge-based IMRT
plans were created for the evaluation group formed of 13 patients similar to those included in Model-S by Model-G,
Model-S and manually (M), named RPG-plans, RPS-plans and M-plans, respectively. The differences in the dose-volume
histograms (DVHs) were compared, not only between RP-plans and their respective M-plans, but also between RPG-plans
and RPS-plans.

Results: For all 13 patients, RapidPlan could automatically produce clinically acceptable plans. Comparing RP-plans to
M-plans, RP-plans improved V95% of PTV and had greater dose sparing in the right kidney. For the normal liver, RPG-plans
delivered similar doses, while RPS-plans delivered a higher dose than M-plans. With respect to RapidPlan models, RPS-plans
had better conformity index (CI) values and delivered lower doses to the right kidney V20Gy and maximizing point doses to
spinal cord, while delivering higher doses to the normal liver.

Conclusion: The study shows that RapidPlan can create high-quality plans, and our specific model can improve the CI of
PTV, resulting in more sparing of OAR in IMRT for individual liver cancer patients.
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Background
Liver cancer is the fifth most common type of cancer
and the third leading cause of cancer-related death
worldwide. Consequently, liver cancer is an issue that
needs to be urgently addressed [1]. Intensity-modulated
radiotherapy (IMRT), based on computerized treatment
plan optimization, permits the delivery of higher therapeutic

doses to the target volume, while reducing the impact on
adjacent normal tissue [2]. However, each step in the clinical
workflow, from contouring to delivery, contains variability
and uncertainties that ultimately translate into inconsisten-
cies and inefficiency [3, 4].
A variety of solutions were studied, to reduce the vari-

ability present the back and forth between plan creation
and approval [5–10]. Among these methods, knowledge-
based planning is the most commonly used. It can predict
achievable planning target volume (PTV) and DVHs for
organs-at-risk (OARs) for prospective patients, utilizing
models built using a library consisting of previous plans
[11–19]. Chanyavanich et al. [18] used an algorithm based
on mutual information to identify similar patients, and
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then generate new plans for the target cases. Zhu et al.
[20] developed an evaluation tool for quantification,
that generates DVHs based on organ volumes, as well as
distance-to-target histograms (DTH), using a machine
learning approach. Wu et al. [16] predicted DVHs of
target cases by establishing the overlap volume histogram
(OVH). Based on that, Varian developed the Geometry-
based Expected Dose (GED) algorithm and build a
commercially available knowledge-based planning solution
(RapidPlan, Varian Medical Systems, Palo Alto, CA), which
semi-automates the treatment planning process. It uses a
library of previous plans to build a model that can achieve
OAR DVHs prediction range for a new patient, and subse-
quently guides the volumetric modulated arc therapy
(VMAT) or IMRT optimization process using the Eclipse
treatment planning system, along the inferior boundary of
the DVH-prediction range. Previous work suggested that
RapidPlan achieved clinically acceptable plans for different
treatment sites [21–27]. To verify whether a model is
suboptimal, Hussein et al. [24] suggested that there should
be an insignificant effect on resulting plan quality when
removing dosimetric outliers from the model training set.
Similarly, Delaney et al. [28] found that statistical outliers
removed from or added to models (5-10 outliers) had only
a marginal impact on plan results. In a study by Tol et al.
[27], a model created using 30 plans generated plans that
were similar to those in a model based on 60 plans, when
their plans were selected arbitrarily from all of 90 plans.
In this study, two models were developed, one general

model and one specific model. All the studies mentioned
above are based on the general model, which suits a
wide variety of patient cases. However, the prediction
ability of specific models tailored for specific patient
cases, with specific anatomical features, has not been
investigated. The aim of this study was (1) to evaluate
the accuracy of RapidPlan prediction capability in
IMRT (Eclipse, Varian) plans for individual liver cancer
patients by using model libraries consisting of different
total number of plans, with different similarity; and (2)
to investigate the prediction capability of the general
model vs. our specific model.

Methods
Clinical plans
Liver cancer patients were treated with IMRT from 2015
to 2016, planned based on the Eclipse treatment planning
system. For all patients, the IMRT plans were created
using 5 non-uniformly distributed coplanar fields (0°, 200°,
240°, 280°, 320°) with the same photon beam setting of
DVO, including number and beams energy. The pre-
scribed dose was set as 50 Gy in 25 fractions. All plans
were normalized to a mean dose of PTV (and isodose
95% was set to the prescribed dose) in order to make
plan comparisons valid. OARs planning goals included

maximizing point doses to the spinal cord and their
planned at-risk volumes (3-mm expansion) below their
tolerance dose levels, while lowering the endpoint dose to
normal liver tissue and right kidney as much as possible.
The PTV dose-volume constraints and OARs dose
constraints are shown in Table 1. All clinical plans were
manually optimized by an expert liver dosimetrist and
each IMRT plan met the clinical protocol. Patients
exhibited high variability in tumor position and size, as
well as OAR exposure. All optimization and dose calcu-
lations were performed the dose volume optimization
(DVO) version 13.5.35 and the anisotropic analytical
algorithm (AAA) version 13.5.35 with a calculation grid
of 2.5 mm. IMRT planning in Eclipse creates highly
conformal dose distributions for liver cancer by con-
tinuously optimizing the beam intensity modulation to
satisfy the institutional optimization protocol. Eclipse
IMRT planning combines intensity modulation and inverse
planning to accomplish this goal [27].

Model library and DVH estimation model configuration
The model library consisted of 60 liver cancer patients
treated as above. From this library, all 60 patients were
selected for Model-G. The average target volume was
147.2 ± 83.6 cm3 (range: 15.7-298.3 cm3). No other specific
criteria were applied. For Model-S, 30 patients were
selected, with the distance from PTV to the right kidney of
less than 3 cm. The average target volume was 155.69 ±
77.5 cm3 (range: 30.4-306 cm3). Table 2 shows the volumes
of the PTV, liver, L-PTV (normal liver) and right kidney,
included in the two models.
RapidPlan was used to create a knowledge-based model

that predicts achievable ranges of DVHs for individual
OARs of prospective patients. The model libraries contain
all planning CTs, structure sets, and dose distributions of
previously treated patients. The model configuration

Table 1 Dose-volume endpoint evaluation

Structures Acceptable criteria

PTV V95% > 95%

D98% > 47.50 Gy

D2% < 55.02 Gy

Normal liver Dmean < 23 Gy

V30Gy < 28%

V40Gy < 24%

Spinal cord Dmax < 40 Gy

Right kidney Dmean < 18 Gy

V5Gy < 70%

V10Gy < 55%

V15Gy < 35%

Abbreviations: PTV planning target volume, Dmean the mean dose for the normal
liver or right kidney, Dmax the maximum dose for the spinal cord, VxGy volume
receiving at least XGy, DY% dose delivered to at least Y% of the volume
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should conceptually consist of multiple kinds of PTV
and OAR geometries and alterations in OAR dosimetry,
resulting exclusively from geometric alterations.
During the training, the system analyzed the patient

anatomy and DVHs in the plans using principal compo-
nent analysis (PCA), and created the final mathematical
DVH estimation model. Then, the results of the model
training were verified using statistical presentations of
the training set. Regression, residual and DVH-plots help
in estimating the quality of the model and finding potential
outlier values that differ from the average in the training
set [25]. The outliers must be processed, and after that,
the plan data are re-extracted and the model is retrained
iteratively until the results are acceptable.
An OAR is designated as an outlier when one or more

of these metrics lie outside the range of values found in
the model. Using this strategy, 14 of 60 patients in
Model-G and 6 of 30 patients in Model-S were identified
as containing 1 outlier OAR. RapidPlan requires each
OAR to be present in at least 20 plans included in the
model. We removed statistical outliers from the training
set, rather than deleting the whole plan. Table 3 shows
the number of structures included in the two models.

Evaluation group
An evaluation group consisting of 13 previous patients,
treated in 2016, was used to test the RapidPlan results.
Patients in the evaluation group were not included in
the RapidPlan model libraries. The evaluation group was
similar to that included in Model-S, where the distance
from the right kidney to PTV was less than 3 cm. In the

evaluation group, the average target volume was 163.1 ±
73.9 cm3 (range: 24-287.5 cm3). OARs typically included
the liver, L-PTV (normal liver), the spinal-cord and
their planned at-risk volumes (3-mm expansion). The
volumes of the PTV, liver, L-PTV and right kidney,
included in the evaluation group, are shown in Table 2.
The two models were used to generate optimization

objectives and automatically optimize treatments for
patients in the evaluation group, using the Eclipse treatment
planning system. The PTV and OAR objectives are shown
in Table 4. Optimization and dose calculation were per-
formed using the Photon Optimization (PO) version 13.5.35
and AAA version 13.5.35. Knowledge-based IMRT plans
were created for the evaluation group by Model-G and
Model-S, named RPG-plans and RPS-plans, respectively,
collectively termed RP-plans. Furthermore, these plans were
manually optimized by an expert liver physicist, defined as
M-plans.

Evaluating the performance of RapidPlan
Comparisons of the differences in the DVHs, not only
between RP-plans and their respective M-plans, but also
between RPG-plans and RPS-plans were performed.
RapidPlan results were compared based on target dose
coverage and normal tissue sparing. The target dose
coverage includes: (1) the homogeneity index (HI)

Table 2 Size of PTV and OAR of patients in Model-G, Model-S and the evaluation group

Volume

Group (cm3) PTV Liver L-PTV Kidney-R

Model-G Mean 149.2 ± 83 1580.1 ± 501.3 1452.8 ± 480 172.7 ± 36.4

Range 15.7-298.3 779.2-2992.2 733.1-2905.9 114.7-280

Model-S Mean 158.9 ± 78 1539.6 ± 441.7 1430.8 ± 422.4 176.4 ± 37.6

Range 30.4-306 779.2-2773.6 733.1-2712.1 115-280

EG Mean 163.1 ± 73.9 1550.3 ± 542.5 1354.0 ± 434.9 184.4 ± 44.1

Range 24-287.5 822-2896 689.3-2265 122.6-292

Abbreviations: L-PTV normal liver structures, Kidney-R right kidney structures, EG evaluation group
Data were averaged over their respective patients. The range shows the smallest and largest volume deviations

Table 3 Number of structures included in Model-G and Model-S

Group PTV B-P Liver L-PTV Kidney-R SC SC-0.3

Model-G 59 57 58 58 53 50 52

Model-S 28 28 28 29 25 27 23

Abbreviations: B-P body-PTV, L-PTV normal liver structures, Kidney-R right kidney
structures, SC spinal cord, SC-0.3 spinal cord’s planning at-risk volumes
(3-mm expansion)

Table 4 The PTV and OAR optimization objectives for
evaluation group

Structures Type Volume [%] Dose Priority

PTV Upper 0.0 5500 cGy 500

Upper 2.0 5400 cGy 500

Lower 100 5000 cGy 500

Lower 98 5050 cGy 500

Spinal cord Upper 0.0 3500 cGy 150

Right kidney Line Generated Generated 100

Normal liver Line Generated Generated 100

Abbreviations: PTV planning target volume
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calculated for PTV using [HI = ((D2% - D98%)/Dp) ×
100%], where Dp = prescribed dose; a lower HI value
indicates that the dose coverage is more homogeneous
[19]; (2) the conformity index (CI) proposed by Nakamura
et al. [29]: CI = TV × PIV/TVPIV

2 , where TV = target
volume, PIV = prescribed isodose volume, and TVPIV =
target volume receiving the prescribed dose. The dose
coverage and conformity are better when the value of
CI is closer to 1. The normal tissue sparing is based on
statistical average doses to normal liver (Dmean, V30Gy

V30Gy, V40Gy), spinal-cord (Dmax), and right kidney
(Dmean, V5Gy, V10Gy, V15Gy). Paired t-tests were performed
to determine significant differences (p < 0.05) between

RP-plans and their respective M-plans. The target and
normal tissue constraints shown in Table 1 were used to
compare all patients in the evaluation group.

Results
All knowledge-based plans were deemed to conform
with the liver IMRT clinical protocol used at our institu-
tion, regarding dose-volume constraints. Table 5 and Fig. 1
summarize the RapidPlan results for the evaluation group,
averaged over all patients, whereas Fig. 2 shows results for
individual patients.
The comparison of RP-plans to M-plans revealed that

RP-plans significantly improved V95% of PTV (RPG-plans

Table 5 Dosimetric comparison of M-plans, RPG-plans and RPS-plans; data shown are the average of their respective parameters for
the 13 patients

Structures M-plans RPG-plans RPS-plans P

PTV V95% [%] 97.9 ± 1.1 98.4 ± 0.8 98.5 ± 0.6 i: < 0.05, ii: < 0.05

[95.3-99.4] [96.6-99.4] [97.4-99.4] iii: NS

PTV D98% [Gy] 50 ± 0.5 50.2 ± 0.5 50.2 ± 0.3 i: NS, ii: NS

[48.8-50.8] [49.8-50.9] [49.7-50.6] iii: NS

PTV D2% [Gy] 54.8 ± 0.3 54.7 ± 0.2 54.8 ± 0.2 i: NS, ii: NS

[54-55.1] [54.4-55] [54.4-55.1] iii: NS

PTV HI (%) 9.4 ± 1.4 9.1 ± 1.2 9.1 ± 0.9 i: NS, ii: NS

[8.4-12.8] [7.8-11.7] [7.4-10.9] iii: NS

PTV CI 1.113 ± 0.037 1.117 ± 0.039 1.102 ± 0.05 i: NS, ii: NS

[1.06-1.191] [1.037-1.207] [1.069-1.177] iii: < 0.05

Normal liver Dmean [Gy] 10.8 ± 4 10.8 ± 4 11.1 ± 4.2 i: NS, ii: < 0.05

[3.7-18.6] [3.7-18.6] [3.1-18.7] iii: < 0.05

Normal liver V20Gy [%] 20.1 ± 11.1 20.1 ± 10.3 22.6 ± 12.3 i: NS, ii: < 0.05

[4.1-46.3] [3.8-43.4] [2.6-46.2] iii: < 0.05

Normal liver V30Gy [%] 8.6 ± 5 9.2 ± 5.9 10.1 ± 6.7 i: NS, ii: < 0.05

[1.1-19.4] [0.9-21.2] [0.9-22.8] iii: NS

Normal liver V40Gy [%] 2.6 ± 1.8 2.3 ± 2 2 ± 1.4 i: NS, ii: < 0.05

[0.1-6.3] [0.0-5.7] [0.0-4.5] iii: NS

Spinal cord Dmax [Gy] 19.6 ± 8.4 20.7 ± 8.2 19.0 ± 7.6 i: NS, ii: NS

[6.2-39.5] [7.5-39.3] [7.7-34.4] iii: < 0.01

Right kidney Dmean [Gy] 4.5 ± 2.8 3.9 ± 2.4 3.8 ± 2.3 i: < 0.01, ii: < 0.01

[0.4-8.7] [0.4-7.3] [0.4-7.9] iii: NS

Right kidney V5Gy [%] 22.3 ± 20.4 21.5 ± 18.8 21.5 ± 18.6 i: < 0.01, ii: < 0.01

[0.1-63.4] [0.2-62.3] [0.2-63.4] iii: NS

Right kidney V10Gy [%] 16.9 ± 13.5 13.8 ± 10.3 13.3 ± 10 i: < 0.05, ii: < 0.05

[0.0-41] [0.0-28] [0.0-33.7] iii: NS

Right kidney V15Gy [%] 10.7 ± 6.7 8.1 ± 5.9 7.6 ± 5.9 i: < 0.01, ii: < 0.05

[0.0-18.7] [0.0-18.3] [0.0-16.6] iii: NS

Right kidney V20Gy [%] 6.0 ± 4.5 5.6 ± 4.6 4.5 ± 4.0 i: NS, ii: NS

[0.0-12.8] [0.0-13.7] [0.0-12.7] iii: < 0.05

Abbreviations: HI homogeneity index, CI conformity index, RPG-plans RapidPlan plans using Model-G, RPS-plans RapidPlan plans using Model-S, NS not significant, i
M-plans vs. RPG-plans, ii M-plans vs. RPS-plans, iii RPG-plans vs. RPS-plans. P ≤ .05 indicates a statistically significant change
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vs. RPS-plans vs. M-plans: 98.4% vs. 98.4% vs. 97.9%). The
D98%, D2%, HI and CI values of PTV were improved,
although most differences were not significant. For the
OAR, RP-plans had significantly more sparing of the right
kidney (Dmean: RPG-plans vs. RPS-plans vs. M-plans,
3.9 Gy vs. 3.8 Gy vs. 4.5 Gy). For the normal liver, RPG-
plans delivered similar doses, while RPS-plans delivered
higher doses than those delivered by M-plans (Dmean:
RPG-plans vs. RPS-plans vs. M-plans, 10.8 Gy vs. 11.1 Gy
vs. 10.8 Gy). No difference was found between RP-plans
and M-plans in the maximum dose to the spinal cord.
With respect to RapidPlan models, there are different.

For the PTV coverage, the V95%, D98%, D2%, and HI
values were very similar, but RPS-plans had better CI
values (1.117 vs. 1.102, p < 0.05). For OAR doses paring,
RPS-plans delivered a lower dose than the maximizing
point doses to spinal cord (19.0 Gy vs. 20.7 Gy). Regarding
the dose sparing for the right kidney, RPS-plans were
better than RPG-plans, especially with V20Gy (4.5% vs.
5.6%, p < 0.05), although others were very similar. Figure 1
shows the advantages of RPS-plans in the DVH curves
for the right kidney and spinal cord. For normal liver,
RPS-plans delivered a higher dose (Dmean: 10.8 Gy vs.
11.1 Gy, p < 0.05; V20Gy: 20.1% vs. 22.6%, p < 0.05),
although all RPS-plans were deemed conform with the
liver IMRT clinical protocol. However, for certain indi-
vidual patients, such as patient 11 (Fig. 2), RPG-plans
are better for normal liver sparing.

Discussion
Fogliata et al. [21] tested RapidPlan for the optimization
of RapidArc plans, and generated clinically acceptable
plans for hepatocellular cancer radiotherapy. This shows
that the model is reliable when no special selection criteria
are applied to generate the training, i.e. including all cases,
for which the only requirement is to be clinically acceptable.
However, liver cancer has high variability in tumor size and
position, and the general model (Model-G) may have
limited accuracy for special patients. Thus, a specific model

(Model-S) was established in this study, using plans with
specific anatomical features for individual patients. For
Model-G, Jol et al. [27] demonstrated that 30 plans were
sufficient for building a general model. However, in this
study, Model-G consisted of 60 patients, to ensure the
variety of the data, whereas Model-S consisted of 30
patients, to guarantee high similarity in the geometry of
the region of interest. The scope of the minimum rea-
sonable sample size will be addressed in further studies.
Nevertheless, Jim et al. [27] observed that more OAR
outliers did not necessarily translate into a worse OAR
dose. Hussein et al. [24] showed that there were insig-
nificant effects on resulting plan quality when removing
dosimetric outliers from the model training set.
In this study, we evaluated the prediction capability of

two models (Model-G & Model-S) in knowledge-based
IMRT planning for individual liver cancer patients. Pooled
results show that, generally, RapidPlan can improve
planning quality and efficiency for liver IMRT, and the
prediction ability of the two models with different
configurations have a remarkable difference. RP-plans
significantly improved the target coverage and the sparing of
the right kidney compared to the M-plans. The advantages
of some RP-plans compared to the M-plans may be due to
challenges in performing an interactive planning of plans
that contain many OARs optimally and consistently in a
limited number of iterations. Comparison of the two models
revealed that Model-S improved the CI and delivered lower
dose to the right kidney (V20Gy) and spinal cord, while
Model-G delivered lower dose to normal liver tissue. This
indicates that the RP-plans are sensitive to the configuration
of the model library and the anatomical characteristics of
the patient that knowledge-based planning is performed on.
The degree of similarity of the cases that make up the model
library has a significant effect on the predictive capability of
the model.
The selection criteria for establishing the specific model

in this study was that the distance from PTV to the right
kidney should measure less than 3 cm. We expected to

Fig. 1 Average DVHs for the M-plans (solid lines), RPG-plans (dashed lines), RPS-plans (dotted lines) for the evaluation group
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Fig. 2 Histograms show the dosimetric values of respective parameters for the RP-plans and the M-plans of all patients in the evaluation group
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better protect the right kidney, while improving the target
coverage, and the experimental results show that Model-S
achieved substantial gains compared to Model-G. The
pooled data (Table 5 and Fig. 2) shows that RPS-plans
slightly improved the right kidney sparing. However, for
certain individual patients, RPS-plans had a significant
advantage when compared to RPG-plans. For example, in
patient 3 (Fig. 1), high variability in right kidney sparing
was obtained, RPS-plans decreased V10Gy, V15Gy, V20Gy

and Dmean to the right kidney compared to RPG-plans.
In patient 11 (Fig. 2), RPG-plans are better for normal
liver sparing. From an anatomical point of view, the rea-
son may be that the PTV was small (24 cm3), and located
in the inferior segment of the left side of the liver. In
addition, it is encouraging that RPS-plans significantly
reduced the maximum dose of the spinal cord compared
to RPG-plans. This may be due to the fact that the spinal
cord has a relatively fixed geometry, adjacent to the
kidneys. Therefore, the specific model has great potential
in clinical applications for individual patients and we will
focus on this.
Some of the findings indicate the different tradeoffs in

knowledge-based planning results. According to the
pooled results of dosimetry, Model-G is better than the
Model-S for normal liver sparing. The following factors
may contribute to this: (1) the large size of the liver, only
considering the cases with short distance between PTV and
the right kidney may not meet the requirements for livers
located far away from right kidney; (2) Model-G consisted
of more cases, which increases geometric heterogeneity. It
is conceivable that further improvements could be made
and/or some complex tradeoffs should be addressed.
Therefore, some parameters may be adjusted during the
optimization process. It is worth noting that a review of
plans used for RapidPlan models is still required.
RapidPlan results depend on a variety of factors and

the following two are foremost, the geometry of the
region of interest and the quality of the plans contained in
the model libraries. To ensure the unity of the variables,
we built a specific model, which only considers the
geometric distance from the PTV to the right kidney,
with no restrictions on the other OAR. In addition, one
limitation of the study is the small sample size of the
evaluation group (n = 13). Our study can provide some
guidance for clinical applications. Future research will
focus on providing optimal allocation of model libraries
for individual patients.

Conclusion
This study shows that RapidPlan can create high quality
plans and significantly improve the planning efficiency of
IMRT for individual liver cancer patients. Furthermore,
these findings demonstrate that the specific model can
result in more sparing of OAR, while increasing the

conformity index of PTV for liver cancer. Although more
systematic studies are needed before a broad clinical applica-
tion of the proposed methodology, this specific model might
be considered as a way to improve the planning quality. Fur-
ther studies are needed to determine the optimal compos-
ition of model libraries, including the relationship between
model composition and dosimetry of subsequent plans.
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