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Abstract

Background: Preclinical radiation biology has become increasingly sophisticated due to the implementation of
advanced small animal image guided radiation platforms into laboratory investigation. These small animal
radiotherapy devices enable state-of-the-art image guided therapy (IGRT) research to be performed by combining
high-resolution cone beam computed tomography (CBCT) imaging with an isocentric irradiation system. Such platforms
are capable of replicating modern clinical systems similar to those that integrate a linear accelerator with on-board CBCT

image guidance.

Methods: In this study, we present a dosimetric evaluation of the small animal radiotherapy research platform (SARRP,
Xstrahl Inc) focusing on small field dosimetry. Physical dosimetry was assessed using ion chamber for calibration and
radiochromic film, investigating the impact of beam focus size on the dose rate output as well as beam characteristics
(beam shape and penumbra). Two film analysis tools) have been used to assess the dose output using the 0.5 mm

diameter aperture.

Results: Good agreement (between 1.7-3%) was found between the measured physical doses and the data provided by
Xstrahl for all apertures used. Furthermore, all small field dosimetry data are in good agreement for both film reading
methods and with our Monte Carlo simulations for both focal spot sizes. Furthermore, the small focal spot has been
shown to produce a more homogenous beam with more stable penumbra over time.

Conclusions: FIImQA Pro is a suitable tool for small field dosimetry, with a sufficiently small sampling area (0.1 mm) to
ensure an accurate measurement. The electron beam focus should be chosen with care as this can potentially impact
on beam stability and reproducibility.
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Background

The development of advanced radiotherapy approaches in
radiation oncology has been driven largely by significant
achievements in engineering and physics [1]. However,
biologically driven strategies in clinical practice have been
far less substantial. This lack of progress is likely
explained by the differences between clinical practice,
animal models, and irradiation techniques used in the
laboratory [2].
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Whilst the insight gained using traditional radiobiological
irradiation techniques has been very important in under-
standing fundamental biology, it might not be entirely rele-
vant for modern radiotherapy delivery techniques ([3].
Therefore, the development of dedicated small animal
image guided irradiation devices has gained considerable at-
tention from radiobiology labs to translate clinical irradi-
ation technologies into preclinical settings. As in clinical
radiotherapy, small animal irradiation involves extensive
engineering challenges. To achieve clinically relevant data,
clinically relevant biological research and quality assurance
must be performed to ensure precision and accuracy.

To date, two commercially available small animal
image guided micro-irradiators exist: SARRP (Xstrahl
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Inc., Swanee, GA, USA) and XRAD225Cx (PXI North
Branford, CT, USA). Additionally, in-house small ani-
mal image guided systems have been developed [4, 5].
These irradiators add complexity to commissioning,
dosimetry, and traceability outside of the commer-
cially available devices. Commissioning procedures
have been previously described either for SARRP in a
bespoke water phantom [6], or for the XRAD225Cx
small-field irradiator with specific dosimetry tech-
niques such as ion chambers and Gafchromic film [7]
as well multi-institutional studies for both platforms
[8]. Both studies indicated EBT radiochromic film
dosimetry for small fields as challenging but also feas-
ible, and set the basis for preclinical dosimetry.
Preclinical dosimetry has gained considerable interest
and high throughput approaches have also been consid-
ered. A recent study focused on the automation of film
scanning, and analysis after irradiation in different beam
configurations [9] while comparing that with Monte
Carlo simulations of the specific source and beam
geometry. This study found similarities between the high
throughput scanning and the previously established film
scanning method. Also, the empirical beam model was
found to be a useful tool to predict film measurements
percentage depth dose and profiles with sufficient accur-
acy. Most of these studies only report the findings for
relatively large beam sizes (3 mm -10 mm) while the
main challenge in pre-clinical dosimetry is represented
by very small irradiation fields corresponding to specific
small animal anatomy [10]. Another recent study fo-
cused on developing an analytic source model for dose
calculations. The aim of this particular study was to
introduce and demonstrate the viability of a analytical
source model to further improve the collimator design
or the dose calculation algorithm [11]. However, while
comparing two models the study lacks validation from
physical measurements using classic dosimetry methods.
Dosimetry procedures for small animal image guided
micro-irradiators originate from the medical physics
codes of practice used by clinical radiotherapy depart-
ments. These practices normally incorporate specific
corrections for low energy beams and backscatter for
broad field exposures. However, the most important
difference between clinical and pre-clinical dosimetry
are the utilized field sizes: while dosimetry for stereotac-
tic small fields involves Gafchromic films and thermo-
luminescent detectors for areas under 0.8 x 0.8 cm? [11],
preclinical dosimetry employs even smaller fields.
Considering the increasing interest in the highly con-
formal high dose delivery in radiotherapy today, there is
little preclinical data provided on the small (<3 mm)
field dosimetry. While new techniques are being used to
introduce tumour tracking and respiratory gating to pre-
clinical research [12, 13], these will further add to the
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complexity of the small field irradiation making it a
challenging aspect for both clinical, and more so,
preclinical radiotherapy.

In radiobiology, very small and precise radiation beams
(soft X-ray and charged particles) have long been used
to deliver radiation to specific subcellular compartments
[14, 15]. However, as dosimetry, these tools mostly use
different particle counters to calculate the exact energy
delivered to the targeted cells.

The present paper shows the full commissioning of our
SARRP (220 kVp) [16], including physical, focusing on the
0.5 mm diameter apertures. The small size apertures are
intended to be used for a very precise beam delivery. The
present work aims to elucidate the specific technical as-
pects of the small beam use in preclinical radiobiology.
The beam characterisation and determination of the
absorbed dose has been performed according to the
AAPM TG-61 code of practice [17].

Methods

Dosimetry and therapeutic beam calibration
Measurements from a Farmer® ionisation chamber Type
30,012 (PTW Freiburg) with a sensitive volume of
0.6 cm®, at 2 cm in water were used to calibrate EBT
films. The irradiation time was determined based on the
output from the Farmer® ionization chamber readings.
EBT3 film calibration consisted of exposing single films
to 5 different doses ranging from 0 to 9 Gy (0.5, 1, 2, 5
and 9 Gy) in an identical setup to the ionization cham-
ber. Ionization chamber readings and a set of calibration
films were taken at the beginning of each day for broad
field calibration before the treatment beam was used.

A specifically designed solid water commissioning
phantom was used to determine the absorbed dose at
different depths as previously described [6]. All measure-
ments were performed by irradiating the commissioning
phantom on three independent occasions for each aper-
ture size (10x 10 mm, 5x5 mm, 3x3 mm, 3x9 mm
and circular apertures with 1 and 0.5 mm diameter), and
each Source to Surface Distance (SSD) (31, 34 and
38 cm). As previously shown, the optical density of the
film changes with time after radiation exposure [18].
Therefore a set of calibration films was exposed prior to
each set of measurements.

Full therapeutic dose characterization with EBT film

Film was handled according to the procedures described
in the (AAPM) Task Group 55 report, and cut at least
6 h before exposure to radiation [17]. Prior to irradi-
ation, films were loaded in the commissioning phantom,
consisting of 0.5 cm thick solid water slabs. Films were
positioned at depths ranging from 0 mm to 70 mm be-
tween solid water blocks as previously described [6].
When measuring the dose depth profiles, film thickness
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was also considered, with the top film exposed at a
depth of 0.15 mm, and the bottom film at a depth of
72.55 mm. One stack was irradiated for each aperture
size and at 3 different SSDs. Each experiment was per-
formed three times and the data presented as mean
values + standard error.

A large focal sport (5.5 mm) was employed for all
apertures, with a maximum tube potential (220 kVp)
and maximal tube current (13 mA). For 0.5 mm aper-
ture, a small focal spot was also employed (1 mm) for
the maximum tube potential and 3 mA. All film stacks
were exposed from 90 s — 15 min to minimize the noise
associated with the statistical errors due to low optical
density of the films. For large apertures, an exposure
time of 90 s was used, for 0.5 mm aperture with both
focal spots, 15 min exposure time was used, as 90 s
would not induce a quantifiable optical density change
for small beams.

Film analysis

Films were scanned using an EPSON V700 scanner set
to professional mode without colour correction. A scan-
ning resolution of 400 dpi was used for each of the colli-
mators except for the 0.5 mm collimator which was
scanned at a resolution of 600 dpi, with pixel sizes of
0.063 mm and 0.042 mm respectively. With all films, a
non-irradiated film was also scanned to allow correction
for background in the absence of radiation. All films
were cut at least 6 h before exposure, and scanned at
least 24 h after irradiation [18].

The exposed films were analyzed using Matlab codes
previously described [6] and FilmQA Pro (Ashland Sci-
entific) software. This uses multi-channel dosimetry to
effectively separate out non-dose dependent abnormal-
ities from the radiochromic film images. The process
was shown to improve the integrity of the dose informa-
tion by removing disturbances in the scanned images
caused by non-homogeneity of the radiochromic film
and artifacts caused by the scanner [18].

Monte Carlo

To provide comparisons for the physical dosimetry, the
SARRP X-ray source and collimation system were simu-
lated in Geant4 v10.3.p02 [19]. These included simula-
tion of the full geometry of the X-ray source target
based on manufacturer specifications, and the physical
collimator setup including the primary and secondary
collimators, collimator support and final nozzle collima-
tor, as described elsewhere [6]. The initial primary parti-
cles were monoenergetic 220 keV electrons fired along
the central axis of the source towards the tungsten tar-
get. Beam divergence was modelled to produce appropri-
ate physical focal spot sizes on the target by giving each
electron a uniformly randomly sampled angular
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deviation from the primary beam direction, with the
maximum deviation set to correspond to the
manufacturer-reported spot diameter on the target.

These simulations made use of the Livermore low-
energy physics lists throughout the simulation volume,
with a 2 um production cut applied to all particles, and
100:1 bremsstrahlung splitting to improve computational
performance. To further reduce computation times asso-
ciated with X-ray generation in this scenario, calcula-
tions were carried out recording the X-ray phase space
in the final collimator support, just above the final ad-
justable collimator. This phase space was then used as
input into a second simulation to determine the result-
ing dose-depth distribution for different collimators and
different SDDs as appropriate. 1 x 10° primary particles
were simulated in both the X-ray phase space simula-
tions, and the subsequent dose deposition calculations.

Target energy deposition was recorded in three dimen-
sions throughout a 10 cm x 10 ¢m x 10 cm water phan-
tom, whose upper surface was placed at the appropriate
SSD from the electron beam spot on the target. Dose-
depth curves were then calculated by scoring the total
dose deposited in the central 0.25 mm radius section of
the water phantom along the beam path. Energy depos-
ition was also calculated across the whole area of the
source at the surface and at a depth of 7.2 cm for
comparison with experimental observations.

Results

Validation of manufacturer dosimetry

In order to determine the dose rate, as a function of depth,
Gafchromic films were evaluated against the calibration
curve obtained. The dose map for a set of films was ac-
quired along with a specific dose at a chosen point and a
beam profile for each aperture as shown in Additional file
1: Figure S1, Additional file 2: Figure S2, and Additional
file 3: Figure S3.

As previously observed [6] the output from the
0.5 mm apertures dependends on the beam spot-size
and fluence distribution. To further investigate this ef-
fect, the dose depth profiles were measured for the
0.5 mm diameter aperture for both a large and a small
focal spot. FIlmQA Pro measurements are presented in
Fig. 1a and b for bright and fine focus, respectively. As a
comparison, Xstrahl dosimetry data using methods pre-
viously described [6] is presented in Fig. 1c and d for the
same focal spot sizes.

The most important difference between the two focal
spots used are the sharp drop in dose rate: from
210 cGy/min when employing the bright focus at
220 kV and 13 mA, to 55 cGy/min for a small focus and
220 kV and 3 mA configuration. Concurrently, the effi-
ciency increases slightly from 16 cGy/min/mA to
18.3 cGy/min/mA for large and small focal spot
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respectively. Another observation is related to the sampling
area used when measuring the dose measurement. While
the Matlab codes (1c, 1d) measure the optical density over
an area of 2.5 mm?, FilmQA Pro uses a 0.5 mm radius sam-
pling as the smallest measured area (1a, 1b). While this
smaller error bars, it more accurately reflects the structure
of the X-ray beam, which is very important when measur-
ing the dose output from small radiation fields.

The dose depth profiles for the entire range of apertures
and the three different SSDs are presented in Additional file 1:
Figure S1. The data is in good agreement with the dosimetry
provided by the manufacturer (data not shown).

Focal spot choice

To quantify the beam shape and uniformity, beam pro-
files were generated for both focal spots involved using
the FilmQA Pro software.

The 0.5 mm aperture beam profiles are presented for
the three SSDs (31, 34, and 38 cm) for bright focus at
0.15 mm depth in Fig. 2, panels a, c and e, along both x
and y axis. The large focus beam profiles show a small
beam asymmetry along the x (black) and y (red) axes for
the entrance beams. As expected, this is intensified at a
depth of 72.25 mm as seen in b, d and f panels.

Beam profiles for the 0.5 mm aperture and a small focus
in the same conditions are shown in Fig. 3 with panels a, c,
and e show the entrance beam profile (Additional file 2).
Panels b, d and f show the beam profiles at a 72.25 mm
depth. Compared to Fig. 2, the beam symmetry is signifi-
cantly improved, especially for the 72.25 mm depth.

In addition to the measured profiles, Monte Carlo
modelled profiles are also presented for entrance doses
profiles in Figs. 2 and 3. There is a considerable level of
statistical uncertainty in these profiles due to the small
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volumes involved in scoring these profiles and the lim-
ited sampling of the primary photon space. Despite this,
it can be seen that the overall trend in beam profile is
well reproduced, producing reasonable estimates for
spot diameter and spread, including the increasing

heterogeneity and spread with the broad focus compared
to the fine focus, suggesting that this model broadly re-
flects the source of these trends in spot size. Some of
the remaining disagreement in these observations may
be due to the limited electron beam model, which only
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considers a simple radially symmetric source, rather than
a more detailed beam model [10].

In addition, these observations are confounded at the
greatest depths due to the limitations of the clinical film
scoring technique. As the beam spot at such depths is
faint and surrounded by an elevated background due to
scattering, the software algorithm has limited capability

to detect it. Instead, in many cases it only detects a sin-
gle central beam point with confidence, giving the ap-
pearance of increased beam sharpness. This is
particularly apparent when compared to the Monte
Carlo calculated profiles which present a much broader
and more complex beam shape at these depths, although
this comparison is further complicated due to the high
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level of statistical noise in these points (Fig. 2). These
observations highlight the need for the use of appropri-
ate measurement techniques.

Beam penumbra, calculated as the distance from the
point of 50% of the maximum dose to the last reading
on the film was also measured for both focal spot sizes
and presented in Fig. 4. The data is presented for the en-
tire depth of the phantom, and, for panels a and b, after
3 independent measurements. The difference between
the error bars between the four panels is again due to
the sampling size during the measurements. The high
variation in the beam shape and penumbrae observed
when using the broad and fine focus is also shown in
Fig. 4 as a result of both film reading methods: Fig. 4a
and b are FilmQA Pro readings for 3 independent re-
peats, while Fig. 4c and d are Matlab measurements.
While FilmQA Pro is a tool used in clinic, previous stud-
ies report on using this software for preclinical dosim-
etry [20]. However, no studies have used this approach
for small field dosimetry. Since this was a measurement
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performed over different runs, the large error bars for
the large beam focus emphasize the poor beam stability
over time.

A good agreement was found between measured data
and the Monte Carlo simulations carried out for both
large and small focal spots, within experimental uncer-
tainties (Fig. 5). Further testing and validation of Monte
Carlo models of SARRP dosimetry may prove to be a
useful tool in SARRP planning and verification.

Discussion

The discipline of translational preclinical radiotherapy
has been enabled through the emergence of small animal
image guided micro-irradiation platforms. These systems
have significant potential to improve the impact of tran-
sitional radiobiology studies [21].

However, as with clinical treatments, irradiation of
small animals should also be subject to strict quality as-
surance protocols ensuring robust dosimetry, and dose
verification standards are followed. Strict dosimetry
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protocols will provide to be vital for animal welfare and
further minimize the number of animals required for a
study to ensure a good power is obtained from the
study. Based on the power calculations for a study with
two experimental arms, a 20% variation in radiation re-
sponse and a typical dose uncertainty of 10% in small
animal IGRT. This leads to a sample size of 23 animals
required to reduce the dose uncertainty to 1% (consider-
ing 80% power with a 5% significance level for 2-tailed t-
test). In this context, a modest 5% reduction in dose un-
certainty would significantly decrease the sample size to
only 10 animals.

Previous work has described a standard procedure for
small field dosimetry on SARRP [6], and served as a
basis of the current study, and initial commissioning on
our system. In the current study, doses in air and a solid
water phantom were measured and cross calibrated with
EBT3 films. This study also states the need for an alter-
native strategy for the use of 0.5 mm aperture, as using
the standard therapeutic beam parameters leads to a
suboptimal beam quality.

While the use of small beams in pre-clinical scenario
have several challenges including organ movement and
dosimetry, the increased use of stereotactic radiosurgery
clinically demands a greater input from pre-clinical tests.
This is a potentially new avenue for future preclinical
studies. Small field depth dose profiles for different elec-
tron beam focus sizes show dramatic differences for the
0.5 mm diameter aperture for all SSDs. While a bright

focus (the recommended therapeutic setup for SARRP)
will ensure a lower delivery time for all a 0.5 mm aper-
ture, it is significantly smaller than the beam spot, caus-
ing significant beam heterogeneities, particularly at
greater depths. These are challenging to include in plan-
ning and may potentially lead to very large errors in de-
livery. This is highlighted in the independent beam
penumbra measurements shown in Fig 4. Here, the
broad focus measurements showed variation between
different days and corresponding large uncertainties,
while the small spot size proved much more stable.

Beam penumbra becomes increasingly important when
employing a very small field. Since a high uncertainty in
the field edges are associated with inaccuracies in beam
positioning as well as dose delivery. The width of the
penumbra regions are largely dependent on the scatter-
ing from the collimator system in this case. These
observations indicate the small focus configuration more
suitable for pre-clinical small field irradiations. Measure-
ment of these effects must be handled with care,
however, as the low spot intensity and increasing pen-
umbra may cause tools optimised for alternative applica-
tions such as the larger fields used clinically to fail to
produce meaningful results.

Precise small animal irradiators (such as the SARRP used
in this study) are a technology that can revolutionize the
field of radiobiology. Their multi-disciplinary relevance to
radiobiology has the potential to offer numerous avenues of
preclinical investigation [3]. However, this potential impact
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of technology may be limited due to poorly defined dosim-
etry standards. It is essential that dosimetry and QA
techniques are well specified and implemented across dif-
ferent sites. These practices will help improve reproducibil-
ity and allow accurate comparison of radiobiological data
from different investigators. In this way, uncertainty in dose
can be removed as a confounding factor in preclinical
radiobiology investigations and small animal image guided
micro-irradiators can be used to their fullest potential.

This study highlights that, when preclinical stereotac-
tic irradiation fields are used, a practical compromise
needs to be considered when deciding the treatment
beam configuration used. While a small focus will in-
volve a significantly smaller dose rate and therefore a
higher overall treatment delivery time, it also ensures a
more stable and homogenous beam. For the 0.5 mm
aperture a large focal spot size will deliver 210 cGy/min,
however the beam heterogeneity, penumbra and poor
stability will potentially affect the statistical power of the
study.

Conclusions

The technological evolution from simple, broad field
irradiation configurations, to more sophisticated dose
deliveries for preclinical radiobiology experiments has
introduced new dosimetry challenges for preclinical re-
search. Robust QA and dosimetry techniques are a key
part of using novel treatment platforms using very small
irradiation fields. This study establishes FilmQA Pro as a
suitable tool to perform small field measurements, with
a higher accuracy of the measurements. Furthermore,
the electron beam focus should be chosen with care as
this can impact on beam stability and reproducibility.
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Additional file 1: Figure S1. Profiles for Dose Deposition for the entire
range of therapeutic apertures for broad focus irradiation. Data was
obtained using FilmQA Pro for 3 independent exposures for a) 31 cm
SSD, b) 34 cm SSD and ¢) 38 cm SSD. Data is shown as average from 3
independent repeats + standard error. (PDF 314 kb)

Additional file 2: Figure S2. Beam uniformity profile across the
irradiated area for full set of therapeutic apertures. Beam profiles are
presented for three different SSD at a depth of 0.15 mm in the phantom.
Apertures sizes are: a) 5x 5 mm, b) 3 X3 mm, ¢) 3x9mm along x axis, d)
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irradiated area for full set of therapeutic apertures. Beam profiles are
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Apertures sizes are: a) 5x 5 mm, b) 3 x 3 mm, ¢) 3x9mm along x axis, d)
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(PDF 326 kb)
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