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Abstract

Background: Predicting recurrence after stereotactic body radiotherapy (SBRT) in non-small cell lung cancer
(NSCLQ) patients is problematic, but critical for the decision of following treatment. This study aims to investigate
the association of imaging features derived from the first follow-up computed tomography (CT) on lung cancer
patient outcomes following SBRT, and identify patients at high risk of recurrence.

Methods: Fifty nine biopsy-proven non-small cell lung cancer patients were qualified for this study. The first
follow-up CTs were performed about 3 months after SBRT (median time: 91 days). Imaging features included
34 manually scored radiological features (semantics) describing the lesion, lung and thorax and 219 quantitative imaging
features (radiomics) extracted automatically after delineation of the lesion. Cox proportional hazard models and Harrel's
C-index were used to explore predictors of overall survival (OS), recurrence-free survival (RFS), and loco-regional
recurrence-free survival (LR-RFS). Five-fold cross validation was performed on the final prognostic model.

Results: The median follow-up time was 42 months. The model for OS contained Eastern Cooperative Oncology
Group (ECOG) performance status (HR = 3.13, 95% Cl: 1.17-841), vascular involvement (HR = 321, 95% Cl: 1.29-8.03),
lymphadenopathy (HR = 3.59, 95% Cl: 1.58-8.16) and the 1st principle component of radiomic features (HR = 1.24,

95% Cl: 1.02-1.51). The model for RFS contained vascular involvement (HR = 3.06, 95% Cl: 1.40-6.70), vessel attachment
(HR =346, 95% Cl: 1.65-7.25), pleural retraction (HR = 3.24, 95% Cl: 141-742), lymphadenopathy (HR = 641, 95% Cl:
2.58-15.90) and relative enhancement (HR = 1.40, 95% Cl: 1.00-1.96). The model for LR-RFS contained vascular
involvement (HR = 4.96, 95% Cl: 2.23-11.03), lymphadenopathy (HR = 2.64, 95% Cl: 1.19-5.82), circularity (F13, HR = 1.60,
95% Cl: 1.10-2.32) and 3D Laws feature (F92, HR = 1.96, 95% Cl: 1.35-2.83). Five-fold cross-validated the areas under the
receiver operating characteristic curves (AUC) of these three models were all above 0.8.

Conclusions: Our analysis reveals disease progression could be prognosticated as early as 3 months after SBRT using CT
imaging features, and these features would be helpful in clinical decision-making.
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Introduction

Stereotactic body radiotherapy (SBRT) is a guideline-
recommended treatment of choice for patients with
early stage non-small cell lung cancer (NSCLC) who
are inoperable or do not accept the risk of surgery
[1]. SBRT delivers high doses of radiation in five or
fewer fractions to the targeted area with high local
control and sparing normal tissues. There have been
a few studies showing improved overall survival in
patients treated with SBRT [2] and it has replaced
conventionally fractionated radiotherapy as standard
of care in treatment of stage I disease.

One of the most serious complications of SBRT is
radiation induced lung injury (RILI). Acute radiation
pneumonitis is generally seen in approximately 10%
of patients and fibrosis in most of the cases [3],
which makes the follow-up response assessment espe-
cially difficult. Although most mass-like consolida-
tions in RILI decrease in size with time, there are
also RILI cases with transient size increases.
Conversely, patients with recurrence may show tem-
porary size decreases [4]. It has been shown in several
studies that size alone is not a reliable criterion until
12 months or more after SBRT [4, 5]. Early predic-
tion of recurrence is critical as alternative treatments
such as salvage surgery or systemic therapy may be
still available for many of these patients. Several studies
have focused on finding early imaging markers to predict
disease progression. Studies on pre-treatment positron
emission tomography - computed tomography (PET-CT)
still remain controversial about the predictive power of
maximum standardized uptake value (SUVmax) [6-14]. A
recent study on post-treatment PET showed that future
local recurrence could be predicted 3 months after SBRT
[15]. However, CT is the standard modality for imaging
follow-up for SBRT patients, and FDG-PET is generally
only performed when recurrence is suspected. Previous
studies have identified a few CT image features related to
recurrence [5, 16], such as sequentially enlarging mass-
like lesion, opacity enlargement after 12 months, filling-in
of air bronchograms, bulging margins, disappearance of
the linear margin, development of ipsilateral pleural effu-
sion, or subsequent lymph node enlargement. The study
conducted by Huang et al. [17] showed these features
were prognostic in univariate analysis, though the best
one was still opacity enlargement after 12 months. An-
other study [18] found that density increase, filling-in of
air bronchograms or new mass or effusion were not reli-
able features.

Obviously, the above features are not sufficient to
predict recurrence, and more reliable features are needed.
Recently, “radiomic” approaches have been shown to bet-
ter describe a given region of interest and furthermore,
these radiomic features are also predictive of patient
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outcome [19]. Mattonen et al. [20] demonstrated that tex-
ture measures of the ground glass opacity (GGO) appear-
ance following SBRT could predict recurrence in
individual patients within 5 months of SBRT treatment.
The study showed appropriate use of radiomic descriptors
for outcome prediction, although the definition of the
GGO area was relatively subjective. Additionally, radio-
mics focuses only on the delineated area. As such, an
evaluation of the lung field may provide more information
about recurrence, and a general evaluation of the patient's
status may provide more information about the health,
possibly related to outcome. In this study, we systemically
scored the radiological features related to the lesion, the
lung and the thorax, and extracted the radiomic features
of the solid tumor. We then built a model by combining
these features to prognosticate recurrence.

Patients and methods

Patients

This retrospective study was approved by our institutional
review board (#105996) and informed consent was waived.
We identified 59 patients that were treated with SBRT be-
tween January 2009 and July 2013. Inclusion criteria
allowed patients with primary lung cancers confirmed by
biopsy and without prior lung radiation or prior lung
tumor history, TNM stage < IIA (node negative), and
contrast-enhanced CT images with both mediastinum and
lung window settings. The slice thickness was required to
be <3 mm. Patients excluded were those with more than
one lung tumor or other concurrent tumors in other sites,
those that received other treatment before SBRT, and
those whose tumors could not be identified after SBRT or
lacked data to confirm recurrence. Clinical information
collected at the time of treatment included age, gender,
clinical TNM stage, clinical T stage, smoking status, pack-
years smoking history, O, dependence or not, Eastern Co-
operative Oncology Group (ECOG) performance status
and Charlson comorbidity index (CCI).

A regimen of 50 Gy in 5 fractions was the standard treat-
ment option and was administered in 54 patients (91.5%),
while three patients (5.1%) received 48 Gy in 4 fractions
and another 2 patients were treated with 60 Gy in 8 or 5
fractions.

The heterogeneity corrected collapsed cone convo-
lution (CCC) algorithm was used for treatment plan-
ning. Either 3D conformal or volumetric arc therapy
(VMAT) techniques were used, with photon beam
energies ranging from 6 to 15 MV. The patients were
treated on a Trilogy or a True Beam medical linear
accelerator (Varian Medical Systems, Palo Alto, CA)
equipped with a 120-leaf Millennium multi-leaf colli-
mator (5-mm leaves in the central portion of the
field). Daily image guidance was provided by cone
beam computed tomography (CBCT), with alignment
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to the visible tumor on the planning CT scan. Dose
voxel size was kept at 2 mm.

Patient follow-up and outcomes

Follow-up evaluations were based on CT images and clin-
ical examination. They were performed every 3 months in
the first 2 years after SBRT, then every 4—6 months for the
following 3 years, and annually thereafter. An '*F-FDG-
PET/CT scan was recommended when recurrence or me-
tastasis was suspected.

Local recurrence was defined as progression of the ori-
ginal primary lesion or new tumors in the same lobe as
the primary tumor. Regional recurrence was defined as
hilar or mediastinal lymph node metastasis. Distant me-
tastasis was defined as tumors in other lobes of the lung
or outside the lung. Recurrence was confirmed by bi-
opsy, PET/CT, or CT images at follow-up. The recur-
rence date was recorded as the date of first CT or PET/
CT scan that showed signs of progression.

Three clinical end points were analyzed: overall
survival (OS), recurrence-free survival (RFS) and loco-r-
egional recurrence free survival (LR-RFS). OS was calcu-
lated from the start date of SBRT to the last follow-up
date (for censored cases) or date of death. RFS was cal-
culated from the start date of SBRT to the date of local,
regional or distant metastasis, or the date of death, or
censored at the last follow-up date. The LR-RFS time
was calculated from the start date of SBRT to the date
of local or regional recurrence, or the date of death, or
censored at the last follow-up date.

First follow-up CT scan protocol and image assessment
The first follow-up CT scan was performed 1 to 3 months
after SBRT (33-112 days, median time: 91 days) using one
of the following multi-detector CT scanners: Light Speed
pro 32 (GE Medical System), Sensation 16, Sensation 40, or
Sensation 64 (Siemens Healthcare, Germany). Examinations
were performed after intravenous administration of con-
trast material (1.3—1.5 ml per kilogram of body weight) at
the rate of 2 mL/s. Scanning parameters were as follows:
120 kVp with tube current adjusted automatically, and
2.5 mm or 3 mm reconstruction thickness.

CT images were reviewed by two radiologists using
both mediastinal (width, 350 HU; level, 40 HU) and lung
(width, 1500 HU; level, -600 HU) window settings. Both
of them were blind to clinical and histologic findings. A
total of 34 semantic features were developed. Some of
these features have been reported in our previous study
[21] and were found to be associated with epidermal
growth factor receptor mutation status in patients with
lung adenocarcinoma. In this study, more features were
evaluated, including features about the lesion, the lung
and the thorax (detailed descriptions in Additional file 1:
Table S1). Intra-class correlation coefficient (ICC) and
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(weighted) Kappa index were used to evaluate the con-
cordance between radiologists. Final score of these fea-
tures were based on the consensus between the two
radiologists (average value for continuous variables).

The radiomic features were extracted using the
Definiens Developer® (Munich Germany) image ana-
lysis software [22, 23]. At first, pre-processing was
done automatically to segment the lung, body and
background. In some cases, segmentations were edited
by the radiologist so as to include proper segmenta-
tion of juxtapleural lesions. Then, a click and grow
segmentation method developed by our group was
used to contour the lesion [24]. The delineated region
was checked and in some cases further corrected by a
radiologist. Finally, in these regions of interest, 219
three dimensional (3D) image features [25] were com-
puted that can be broadly categorized into first order
statistics (such as histogram features), second order
statistics (such as features based on the gray level co-
occurrence matrix) and higher order statistics (such
as wavelet decomposition).

Statistical analysis

Seven semantic features and one radiomic feature, in-
cluding distribution, fissure attachment, attenuation, cal-
cification, pleural effusion of non-tumor side, new/
enlarging nodules in primary tumor lobe, new/enlarging
nodules in non-tumor lobe and MacSpic_NumberOf
(F7), were excluded from further analysis because most
patients were in the same category. To address the issue
of collinearity, Pearson’s correlation analysis was per-
formed for the remaining 218 radiomic features to elim-
inate redundant features. This eliminated 52 features
that were highly dependent on one another (the absolute
value of Pearson’s correlation >0.95). Ultimately, this
methodology resulted in 27 semantic features and 166
radiomic features that were used for the analysis.

The statistical analyses were performed using SAS soft-
ware (version 9.4, Cary, NC) and the computed P - values
were two-sided. Cox proportional hazards models were
used to explore the association between clinical and im-
aging features with OS, RFS and LR-RFS. Clinical and se-
mantic features with p-value of <0.1 and radiomic features
with g-value (false discovery rate adjusted p value) of <0.1
in univariate model were incorporated into the initial
multivariate model. The final model was selected by either
stepwise selection or backward elimination method (if dif-
ferent models were built using these two methods, the
one with higher concordance would be selected). The haz-
ard ratio (HR) and 95% confidence interval (CI) were
calculated.

As part of our analysis, we utilized principle compo-
nent analysis (PCA) [26] to reduce the dimensionality
and explore abstractive patterns. The goal is to extract
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the important information from the data and to express
this information as a set of new orthogonal variables
called principal components, which are linear combina-
tions of the original variables; the first principle compo-
nent (PC1) describes the most variance in the data and
is considered the most descriptive. The second compo-
nent (PC2) is computed under the constraint of being
orthogonal to the first component. The other compo-
nents are computed likewise (PCn, n = 1, 2, 3 ...). The
values of these new variables can be interpreted geomet-
rically as the projections of the observations onto the
principal components.

The final multivariate prognostic model was built
by combining clinical with imaging features (seman-
tics and radiomics, including PC1 and PC2). Harrell’s
C-index [27] was computed to describe the perform-
ance of each prognostic model. The model with high-
est Harrell's C-index was selected as the best
prognostic model, and the risk scores of OS, RFS and
LR-RFS based on these models were developed ac-
cordingly. Patients were dichotomized into low and
high groups on the basis of their median risk score.
The Kaplan-Meier method was used to estimate sur-
vival curves.

Five-fold cross-validated area under receiver operating
characteristic curves (AUC) with 100 replications of each
model were computed after dichotomizing these patients
into short- and long-term survival group according to
their survival status at 24 months (Additional file 1:
Table S5). The follow-up time of three surviving patients
was less than 24 months in calculating OS, and therefore
they were excluded from validation analysis.

Results

The demographic information is provided in Table 1.
Among the 59 patients, 23 (39%) were females and 36
(61%) were males (median age, 73 years). The median
follow-up time was 42 months (range: 6.5-67.3 months).
At the end of this study, a total of 33 patients developed
recurrence or metastasis (Additional file 1: Table S2),
and 24 of them occurred within 2 years. The two-year
OS, regional failure and distant failure rate were 69.95%,
8.47% and 25.42%, respectively. The “local recurrence”
here was defined as intra-lobar, which is about 11.86%
and 8.47% of them was in-field failure.

Prognostic clinical features

As expected, T stage and ECOG performance status
were associated (P < 0.05) with OS and LR-RFS both in
univariate and multivariate analysis, while only T stage
(P =0.01, HR = 2.26, 95% CI: 1.19-4.30) was independ-
ently related with RFS.
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Table 1 Clinical and treatment characteristics of NSCLC patients
treated with SBRT

Clinical features Level n %
Gender Female 23 390
Male 36 61.0
Age, median (range) (years) 73 (48-91)
Age <67 16 27.1
68-80 28 475
>81 15 254
TNM stage IA 42 71.2
1B 16 271
IIA 1 17
T stage 1A or 1B 42 71.2
2A or 2B 17 288
Smoker? No 42 724
Yes 16 276
Pack-years smoking® median (range) 58 (15-200)
<40 14 250
41-79 27 482
>80 15 26.8
0, dependence No 45 79.0
Yes 12 211
ECOG Oor1 49 84.5
20r3 9 155
CCl, median (range) 6 (3-12)
ca <4 18 30.5
5-7 28 475
>8 13 220
Dose/Fx 7.5 1 1.7
10 54 91.5
12 4 6.8
Pathology adenocarcinoma 26 441
squamous cell carcinoma 21 356
NSCLC 10 169
large cell carcinoma 2 34

®The pack-years smoking history could not be found in 2 cases and in one
additional patient the smoking history was not noted

Prognostic semantic features
According to Viera’s criteria [28], the agreements between
two readers on scoring of categorical variables were sub-
stantial or almost perfect, and the Kappa value ranged
from 0.68-1.0 (Additional file 1: Table S3). The ICCs for
long and short axial diameter, relative enhancement were
0.95 (95% CL: 0.92-0.97), 0.92 (95% CL 0.87-0.95), and
0.71 (95% CI: 0.54—0.82), respectively.

In univariate analysis, long- and short-axis diam-
eter, border definition, vascular involvement, lymph-
adenopathy, pleural effusion of tumor side and
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relative enhancement were prognostic (P < 0.05) of
all three endpoints. Lobe location and pleural attach-
ment was associated with OS and RFS (P < 0.1);
Spiculation was prognostic for RFS and LR-RFS
(P < 0.05). Vessel attachment (P = 0.06), pleural
retraction (P = 0.05) and thickened adjacent bronch-
ovascular bundle (P = 0.03) were prognostic of RFS.
In multivariate analysis, vascular involvement and
lymphadenopathy at first follow-up scan (Fig. 1) remained
independently associated with shorter OS, RES and
LR-RFS. Vessel attachment, pleural retraction and relative
enhancement were additional independent indicators of
LR-RFS. It should be pointed out that the relative en-
hancement here was measured by using the artery on the
same slice as reference (Additional file 1: Table S1), as the
pre-contrast images were not available for these patients.

>
=~ -y
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Fig. 1 Examples of CT images showing typical semantic features (a - b:
vascular involvement; c: vessel attachment; d: pleural retraction: e:
benign lymphadenopathy, f: malignant lymphadenopathy)
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Prognostic radiomic features

In univariate analysis, 7 radiomic features were found to
be significantly prognostic of OS, 12 of RFS and 15 of
LR-RFS (Additional file 1: Table S4). However, in multi-
variate analysis, only circularity (F13) remained corre-
lated with OS (P < 0.00, HR = 2.09, 95% CI: 1.40-3.12).
Radius of smallest enclosing ellipse (F29, P = 0.00,
HR = 1.59, 95% CI: 1.18-2.15) and 3D Wavelet decom-
position P1 L2 C3 Layer 1 (F214, P = 0.02, HR = 1.49,
95% CI: 1.07-2.08) were independently prognostic of
RFS. Circularity (F13, P < 0.00, HR = 2.10, 95% CL
1.47-2.99) and 3D Laws features L5 L5 S5 Layer 1 (F92,
P = 0.00, HR = 1.92, 95% CIL: 1.34-2.75) were independ-
ently prognostic of LR-RFS.

Prognostic model and prognostic index

The final prognostic models (Table 2) were built by
combing the clinical and imaging features. The Harrell’s
C indexes of the imaging models were higher than those
of the clinical models (Table 3). The final prognostic
model of OS involved both clinical and imaging features,
and it was superior to clinical or imaging features alone.
While the best prognostic model for RFS and LR-RFS
included only imaging features. After 5-fold cross valid-
ation was performed, the AUC value of the OS, RFS and
LR-RFS models were 0.81, 0.80 and 0.80, respectively
(Table 2). The risk score of OS (OSRS), RFS (RFRS) and
LR-RFS (LRRS) were as follows:

OSRS = 0.21391 x (PC1 of OS—mean (PC1 of OS))
1114224 X Ifgeog 1 o ) + 11674

X I{vessel involvement=1} +1.27826
X I{lymphadenopathy:l}

RFRS = 1.11755 X Ijyascular involvement=1} + 1.24121
X I{vessel attachment=1} + 1.17506
X I{pleural retraction=1} +1.85753
X I{lymphadenopathyzl} + 0.33705

relative enhancement—mean
(relative enhancement)

/SD (relative enhancement)

LRRS = 0.46669 x (F13—mean (F13))/SD (F13)
+0.6715 x (F92—mean (F92))/SD (E92)

+1.60193 X I{vascular involvement=1} +0.96896
X I{lymphadenopathyzl}

I (; is the identity function.

The performance of each risk score is shown in Fig. 2.
In these figures, the patients were divided into two
groups, depending whether their index scores were
greater than the median score or less than/equal to the
median score. The resultant Kaplan-Meier plots for the
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Table 2 The features involved in prognostic models of OS, RFS and LR-RFS

Features Level p-value  Hazard Ratio validation
Point  95% Cl Logistic regression  5-fold cross validation
Lower  Upper  AUC (95% Cl) AUC (95% Cl)
0S ECOG (ref =0o0or 1) 20r3 002 3.13 1.17 841 0.88 (0.78-0.97) 0.81 (0.80-0.82)
Vascular involvement (ref = 0) 1 0.01 3.21 1.29 8.03
Lymphadenopathy (ref = 0) 1 0.00 359 1.58 8.16
pPC1® 0.04 124 1.02 1.51
RFS Vascular involvement (ref = 0) 1 0.01 3.06 1.40 6.70 0.86 (0.76-0.96) 0.80 (0.792-0.81)
Vascular attachment (ref = 0) 1 0.00 346 1.65 7.25
Pleural retraction (ref = 0) 1 0.01 324 141 742
Lymphadenopathy (ref = 0) 1 <00 6.41 2.58 15.90
Relative enhancement® 0.05 140 1.00 1.96
LR-RFS  F13 (9b_3D_Circularity)® 0.02 1.60 1.10 232 0.85 (0.74-0.95) 0.80 (0.78-0.81)
F92 (3D Laws features L5 L5 S5 Layer 1)? 0.00 1.96 135 283
Vascular involvement (ref = 0) 1 <00 496 223 11.03
Lymphadenopathy (ref = 0) 1 0.02 264 1.19 5.82

2 per 1standard deviation (SD) increase
ECOG, Eastern cooperative oncology group; PC1: the 1st principle component

two groups were highly statistically divergent in regard
to OS, RFS and LR-RFS.

Discussion
Based on a comprehensive analysis of CT images, we
found both semantic and radiomic features were signifi-
cantly associated with patient outcomes following SBRT.
As such, the analysis described has the potential to pre-
dict disease recurrence as early as 3 months post-SBRT,
and therefore it would be of great help for clinical deci-
sion making.

The Response Evaluation Criteria in Solid Tumor
(RECIST) guideline is developed for the assessment of
treatment outcome and it is mainly based on the

percentage change in tumor size. For example, tumor
shrinkage of more than 30% is considered to be par-
tial response. However, in our study, the percentage
of shrinkage was not an independent prognostic fac-
tor of survival and the actual tumor size after SBRT
was only significant in univariate analysis. Mattonen et al.
[20] reported that the overall accuracy of RECIST for pre-
dicting tumor recurrence at 2—5 months post-SBRT was
52.2% (i.e., equivalent to chance). This suggests that size-
related features are not suitable for early prediction of
SBRT outcome, and it may not be reliable until 12 months
after SBRT [4, 5]. Therefore, we should take caution
when using RECIST especially in the early days after
treatment.

Table 3 Harrell's C-index for prognostic models of OS, RFS and LR-RFS

Models Features Harrell's C index
Point 95% Cl
Lower Upper
0S Clinical features T-stage & ECOG? 0.64 0.54 074
Imaging features Vascular involvement, lymphadenopathy, F13° 0.76 0.67 0.84
Clinic & imaging features ECOG, vascular involvement, lymphadenopathy, PC1 0.78 0.71 0.86
RFS Clinical feature T-stage 061 0.54 0.68
Imaging features Vascular involvement, vascular attachment, pleural retraction, 0.77 0.70 0.84
lymphadenopathy, relative enhancement
Clinic & imaging features Vascular involvement, vascular attachment, pleural retraction, 0.77 0.70 0.84
lymphadenopathy, relative enhancement
LR-RFS Clinical features T-stage & ECOG? 062 0.54 0.70
Imaging features Vascular involvement, lymphadenopathy, F13° F92° 0.78 0.71 0.85
Clinic & imaging features Vascular involvement, lymphadenopathy, F13% F92° 0.78 071 0.85

9ECOG, Eastern cooperative oncology group; PC1: the 1st principle component; F13: 9b_3D_Circularity; F92: 3D Laws features L5 L5 S5 Layer 1
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Fig. 2 Kaplan-Meier Plots of overall survival (a), recurrence free survival

(b) and loco-regional recurrence free survival (c) according to the
prognostic risk scores

The T stage of the tumor before therapy was independ-
ently associated with OS, RFS and LR-RFS, which implies
that pre-treatment tumor size is predictive of ultimate
outcome. This is not surprising, given that T-stage (T1a
versus T1b versus T2b) relates to overall stage (IA, IB, or
ITA), which predicts various outcomes. Additionally, total
dose was not considered as prognostic factor in our ana-
lysis, as 91.5% of patients were treated with 50 Gy in 5
fractions. In the future, if we had more patients involved,
we would categorize the patients according to the dose/
fractions. It would be helpful to investigate the influence
of dose on outcomes.
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Blood supply is essential for tumor growth and metasta-
sis. Tumors gain access to blood supply either by invading
existing vessels or by generating new vessels via angiogen-
esis. Tumor cells could penetrate these vessels and escape
from the primary site to distant organs [29].
Consequently, vessel invasion has been felt by some to be
an unfavorable prognostic factor [30, 31], even in early
stage NSCLC [32]. One of the advantages of contrast-
enhanced follow-up images was optimal display of the
vascular structures, such as vessel involvement or attach-
ment. The degree of tumor enhancement has been dem-
onstrated [33] to be positively correlated with tumor
vascular density and vascular endothelial growth factor
(VEGEF) expression, and suggested to reflect the number
of small tumoral vessels [34]. Thus, high levels of en-
hancement after SBRT suggests highly vascularized tumor,
and is related with poor outcome. Similar findings have
also been reported in chemotherapy or chemoradiother-
apy patients [35]. Relative enhancement, together with
vascular involvement and vessel attachment, may just re-
flect angiogenesis and vessel invasion, respectively.

Previously identified high-risk CT features [16] were also
found to be prognostic in our analysis, such as pleural effu-
sion and poorly defined borders. Whereas most of these
features were significant in univariate analysis, only lymph
node enlargement was still significant in multivariate ana-
lysis. Wang et al. [36] also reported that lymphadenopathy
was significantly associated with an increased risk of death
in adenocarcinoma. Lymphadenopathy in CT images is
usually defined as lymph nodes larger than 10 mm in short
axis [37]. However, according to this criterion, the accuracy
of predicting malignancy was only about 63% [38].
Therefore, lymphadenopathy does not definitely mean
lymph node metastasis. Figure le and f both show enlarged
lymph nodes in the follow-up CT scans, but in one case the
lymph node biopsy was negative and in the other it was
positive. It would appear that lymphadenopathy secondary
to any cause is predictive of recurrence in our model, and
not necessarily specifically as a harbinger of regional lymph
node spread. Pleural retraction was another prognostic fac-
tor of RES. It is usually taken as a sign of malignancy, and
may be related to visceral pleural surface invasion [39]. It
should be noted that pleural retraction after SBRT can re-
sult from radiation fibrosis (Fig. 1d).

Radiomics analysis explores tumor heterogeneity and
provides large number of quantitative descriptors. In this
study, we extracted 219 features from the solid tumor of
each patient visible in the first post-SBRT CT scan, and
these features have been tested in our previous study [25].
Semantically or radiologically, the shape of a tumor is
defined as either round/oval or (somewhat) irregular.
While in radiomics tumor shape can be expressed by mul-
tiple continuous variables such as circularity (F13) and ra-
dius of smallest enclosing ellipse (F29) which describe
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how spherical or elliptical a tumor is, respectively. The
Laws features (F92) and wavelet decompositions (F214)
are higher order statistics obtained by applying filters to
the image. The “laws” features [40] were constructed from
a set of five one-dimensional filters, each designed to re-
flect a different type of structure in the image. Wavelet
features are kernel-based functions that decompose the
image (3D) into orthogonal components. These radiomic
features were either associated with worse OS, or RFS, or
LR-RES. It means that if the tumor is less spherical or el-
liptical, or if the tumor is more heterogeneous in shape
and/or density, it tended to progress. To date, the radiomic
and semantic features are complementary to each other,
and neither one of them could be replaced by the other.
Thus, combining them together is a better approach.

The results discussed above could have great clinical im-
port. One could utilize these various features to predict
which patients are at increased risk of recurrence and es-
calate their therapy accordingly to improve their ultimate
outcomes. For instance, if a patient were at increased risk
of loco-regional spread, then perhaps chemotherapy (or
some other systemic treatment) could be proactively pre-
scribed to improve outcomes.

There are several limitations for this study. First,
the sample size was small because of strict inclusion
and exclusion criteria; second, we only analyzed the
post-contrast post-SBRT CT images because of non-
availability of pre-contrast CT images at the same
time point for each patient; third, this was a preliminary
analysis and 5-fold cross validation was applied, and it
would be better to have an independent validation cohort
to confirm these findings. Nevertheless, this is a promising
proof of principle and a hypothesis generating study.

Conclusion

In this study, we showed that imaging features derived
from the CT images 3 months after SBRT could prognos-
ticate recurrence. The imaging feature-based models per-
formed better than those based on clinical variables alone.
Vascular involvement, vessel attachment and relative
tumor enhancement were vascular related risk factors.
Lymphadenopathy, pleural retraction and shape and tex-
ture related radiomic features, were also independent
prognostic factors of survival. These features could pro-
vide recurrence related information, and would be helpful
in clinical decision-making.
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