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Abstract

Background: In volumetric modulated arc therapy (VMAT), gantry angles, dose rate and the MLC positions vary
with the radiation delivery. The quality assurance (QA) system should be able to catch the planning and machine
errors. The aim of this study was to investigate the sensitivity of three VMAT QA systems to machine errors.

Methods: Several types of potential linac machine errors unique to VMAT delivery were simulated in sinusoidal
function of gantry angle, including gantry angle itself, MLC position and linac output. Two commercial QA systems,
ArcCheck and Delta®, and an in-house developed EPID technique were compared in this study. Fifteen full arcs
from head and neck plans were selected and modified to include five magnitudes of each type of error, resulting in
measurements and y analyses of 240 arcs on each system. Both qualitative and quantitative comparisons were
performed using receiver operating characteristic (ROC), y pass rate gradient, and overlap histogram methods.

Results: In ROC analysis, the area under curve (AUC) represents the sensitivity and increases with the error magnitude.
Using the criteria of 2 %/2 mm/2° (angle to agreement, ATA, only for EPID) and keeping AUC > 0.95, the minimum
error detectable of ArcCheck, Delta* and EPID are (2, 3, 3)° in gantry angle and (4, 2, 3) mm in MLC positions for the
head and neck plans. No system is sensitive to the simulated output error, the AUC values were all below
0.70 even with 5 % output error. The y gradient for gantry angle, MLC position and output errors are

(=5.1, =26, =3.6)%/°, (=2.6, —=7.1, —=3.3)%/mm and (=0.2, =0.2, —0.3)%/% for ArcCheck, Delta* and EPID,
respectively. Therefore, these two analyses are consistent and support the same conclusion. The ATA
parameter in EPID technique can be adjusted to tune its sensitivity.

Conclusions: We found that ArcCheck is more sensitive to gantry angle error and Delta® is more sensitive to MLC
position error. All three systems are not sensitive to the simulated output error. With additional analysis parameter, the
EPID technique can be tuned to have optimal sensitivity and is able to perform QA for full field size with
highest resolution. In addition, ROC analysis avoids the choice of y pass rate threshold and is more robust
compared with other analysis methods.
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Background

Volumetric modulated arc therapy (VMAT) requires the
precise synchronization of linac gantry rotation with
MLC motion and radiation delivery [1]. The most
significant feature of VMAT that distinguishes from in-
tensity modulated radiation therapy (IMRT) is the gantry
rotation modulation during delivery. The mechanical
gantry rotation, which naturally has various gravitational
effects on linac components, may trigger extra ma-
chine errors that are unique to VMAT delivery. The
potential machine errors related to gantry rotation
should be the focus of the investigation on VMAT
quality assurance (QA).

Commercial systems such as ArcCheck (Sun Nuclear,
Melbourne, FL) [2-6] and Delta* systems (ScandiDos
AB, Uppsala, Sweden) [3, 6, 7], are currently widely used
for VMAT QA. When evaluating different VMAT QA, a
natural question to be raised is: which one is more sensi-
tive to the rotation related error during VMAT delivery?
To be more specific, what is the minimum detectable
error by each system?

Numerous publications have covered this topic previ-
ously [8—12]. Hauri et al. investigated the y pass rate
change after introducing errors on gantry angle during
VMAT delivery using Delta* [8], where the intentional
error was of sinusoidal form to simulate the gravitational
effect. They evaluated the change of gamma pass rate
with 2° and 10° errors. For the sensitivity to MLC errors,
Heilemann et al. [9] investigated Delta* system and
Coleman et al. [11] on ArcCheck system, respectively.
The simulated errors included open, closed and shifted
MLC bank errors, resulting in an enlarged, narrowed
and shifted field during delivery. The error was of con-
stant magnitude during the entire delivery. To determine
the sensitivity, an extra pass rate threshold value was
required in the analysis. Other machine errors on colli-
mator rotation [6], setup error [13] and planning error
[14] were also investigated by different investigators.
However, the studied errors were of limited magnitude
thus inadequate to fully quantify the sensitivity.

These studies provided insightful perspectives on this
topic. However, a complete understanding cannot be ob-
tained from any single publication, and the questions
raised earlier are not answered thoroughly. In addition,
most simulated errors are of constant magnitude which
remains the same during gantry rotation. The machine
errors that vary with gantry rotation should deserve
more attention for VMAT QA due to the gravitation
effect. Another concern is the need for extra pass rate
threshold during the previous sensitivity analyses, which
can be subjective to institutional bias. This can under-
mine the credibility of these studies.

In this study, we investigate the machine error sensi-
tivity of three QA systems: ArcCheck, Delta* and an in-
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house developed electronic portal image device (EPID)
based technique [15]. Three types of errors unique to
the VMAT delivery (gantry angles, MLC positions, and
linac output) with various magnitudes were investigated.
These errors are all of dynamic nature, ie., they vary
with the gantry angle. Furthermore, the results were
analyzed with several independent and complementary
techniques.

Methods

In this section, we first briefly describe the QA systems
studied, then present the methods to simulate machine
errors and to perform sensitivity analysis.

QA systems

Two commercial systems (ArcCheck and Delta) and an
in-house built EPID based system were included in this
study. Figure 1 compares the detectors layouts in these
systems.

ArcCheck system

The ArcCheck system contains 1386 n-Si diodes placed
on a cylindrical surface of 21 ¢cm diameter inside a ring-
shaped PMMA phantom. The detectors, 1 c¢cm apart,
form 21 helical continuous rings with 66 detectors on
each ring. The 3D dose matrix computed by the plan-
ning system is imported and unfolded in SNC software
into a 2D dose plane covering all detectors. The system
acquires data at every 50 ms during treatment delivery,
which are converted and accumulated to composite dose
for subsequent analysis.

Delta® system

The Delta® system consists of 1069 p-type diodes on two
near orthogonal planes embedded in a cylinder PMMA
phantom, 40 c¢cm in length and 22 cm in diameter. The
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Fig. 1 Comparison of detector layout of three QA systems
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detectors have 0.5 cm spacing in the central 6 x 6 cm?
region and 1 c¢m in the outer region. Measurements
were synchronized to beam pulse and a 3D dose distri-
bution was obtained through interpolating the measured
data on the two planes. The QA analysis is performed
using the calculated and the composite measured 3D
dose distribution on the phantom.

EPID technique

This technique utilizes EPID in cine mode [15], and the
flowchart is shown in Fig. 2. The VMAT plan is deliv-
ered on a TrueBeam linac (Varian Medical Systems, Palo
Alto, CA) and the acquired images are converted to
portal dose (PD) after calibration and profile correction.
The monitor unit (MU) and gantry information in each
image header, and the control point (CP) information in
the DICOM plan were used to compute a predicted PD
using an in-house portal dose image prediction (PDIP)
algorithm. Previous study showed that the gantry angle
measured by the EPID was not accurate in Clinac 21EX
[16], so it could not be used for VMAT QA without the
use of an external phantom. In our previous publication
[15], it was demonstrated that the gantry angles
recorded on TrueBeam is accurate within 0.3° due to the
use of dedicated micro-controllers in the EPID system,
therefore external phantom and alignment are not
necessary for the EPID QA technique on Truebeam
linacs. A 3D PD is obtained by stacking up all 2D frames
of PD, with the 3rd axis representing gantry angle.
Global 3D y analysis is performed using the measured
and predicted 3D PD matrix. In addition to the thresh-
old, dose difference (DD) and distance-to-agreement
(DTA) criterion parameters, the y analysis of EPID tech-
nique requires an extra criterion: angle-to-agreement
(ATA). For EPID vy analysis, the DTA and ATA
criteria confine the search range within and between
each PD plane. Therefore, the combination of DTA in
2D and ATA on the 3rd axis forms the 3D analysis
space. Detailed description of ATA can be found in
Reference [15].

Page 3 of 10

Improvement made in this study over previous publi-
cation [15] are the following. We independently imple-
mented a calculation engine of Varian’s PDIP algorithm,
which significantly improved QA workflow efficiency.
Also, the VMAT plan is now delivered directly in DICOM
format in clinical mode on Truebeam version 2.0 or
higher, without the need of a research mode license as in
the previous work. All software programs were written in
the MATLAB environment (MathWorks, Natick, MA)
except that 3D y analysis was implemented using C/C++
for calculation efficiency. The acquired portal dose image
has an area of 40 x 30 cm® or 40 x 40 cm” depending
on the panel versions and a resolution 0.39 x 0.39 mm?,
which was down-sampled to 0.78 x 0.78 mm?® in QA
analysis.

Machine error simulation
In IMRT delivery, both dose rate and MLC leaf positions
are modulated to deliver a desired fluence. The main
feature distinguishing VMAT from IMRT is the add-
itional modulation in gantry rotation. Therefore, gantry
angle and machine characteristics as a function of gantry
angle should be checked during dynamic delivery.
Another consideration on error simulation is that the
simulated errors at gantry angle of 0° and 180° should be
zero or small enough to escape the routine linac QA.
Otherwise, the standard machine QAs usually performed
at these angles could detect these errors.

In this study, the error simulation function (esf) is
modeled in the sinusoidal form of the MU index of each
CP (MUY) normalized by the total MU (MUy):

0

MU
esf = sin Lx2m),i=1,2,3 --N (1)
MUt

where N is the total number of CPs. The esf simulates
the potential error triggered by the gravitational effect
during treatment. This form satisfies the criteria men-
tioned earlier, i.e, the maximum deviation occurs at
gantry of 90° and 270° and no deviation at 0° and 1807,

~
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Fig. 2 Flowchart of EPID technique
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therefore such errors are undetectable by the conven-
tional static QAs. The form is illustrated in Fig. 3.

Three types of errors are simulated: the gantry angle
itself (a difference between expected and actual gantry
angle during VMAT delivery), MLC position shift and
output (MU) error as a function of gantry angle. The
modification function of gantry angle, MLC position and
MU of each CP are:

X = X)-Magy x esf (2)

where X can be gantry angle A, or MLC position P, or
linac output M. Subscript i indicates the CP index. X7
is the value in the original plan, and X; is the modified
value. Mayg is the error magnitude, ranging from 1°-5°
in gantry angle, 1-5 mm in leaf position and 1-5 % in
linac output. Using equation (2), the gantry angle is
modified to lag behind the planned angle from 0° to 180°
and to exceed from 180° to 360° the whole MLC bank is
shifted towards the gravitational direction without chan-
ging the gap between; and the output error is negative
from 0° to 180° while positive from 180° — 360°. While it
is intuitive to attribute the sinusoidal form of error in
gantry angle and MLC leaf position to the gravitational
effect, the same form for linac output is purely specula-
tive. A constant scaling error may be more likely; how-
ever, the analysis of the errors in such forms is rather
straightforward and does not require the measurement
to be performed on modified plans. We presented the
analysis for both types of errors in the results.

In summary, the choice of sinusoidal function is due
to the following considerations: 1. It could be interpreted
as a function of gantry angle, which distinguishes VMAT
form IMRT; 2. It has minimal magnitude at the usually
checked positions; 3. It simulates the gravitational effect
possible to trigger MLC and gantry errors. 4. It is of
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Fig. 3 VMAT error simulation function vs. control points and gantry angles
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periodic form, and the accumulation over a whole period
is zero; which is more difficult to be detected thus suit-
able for sensitivity analysis.

The procedure of machine error simulation is shown
in Fig. 4. Using the calculated dose (CD) and measured
dose (MD) of original plan, the QA procedure (QA;) is
performed as reference. The machine error is simulated
by performing the QA procedure (QA,) using the mea-
sured dose distribution (MD,) of the modified plan and
originally calculated dose distribution (CD). Note that:
for EPID technique, the CD used in QA; and QA, are
calculated based on the delivery information of MD;
and MD,, respectively.

Sensitivity analysis

Several approaches were taken to analyze the sensitivity
qualitatively and quantitatively between the y pass rates
from QA; and QA,, which include the overlap histo-
gram, the gradient of average y pass rates, and receiver
operator characteristic (ROC) analysis.

Overlap of y pass rate histograms

The overlap between the y pass rates histograms of QA;
and QA, can be used to evaluate sensitivity qualitatively.
With the introduction of intended errors, y pass rates
are supposed to decrease, resulting in QA; histogram
centering at higher value and QA, histogram at lower
value. Intuitively, one can conclude that the less overlap
between these two histograms, the more sensitive the
system is. At one extreme, non-overlap indicates that
modified plans can be totally separated from the original
plans, thus the system is 100 % sensitive; another ex-
treme is the total superposition, which suggests the
modified plans are indistinguishable from original plans
and the system is totally insensitive.

Gradient of y pass rates vs error magnitude

For each type of error, the average y pass rates from the
cohort of plans are expected to decrease with the in-
creasing error magnitude. A linear regression can be
performed through least square fitting. The gradient or
derivative, 9, approximated by the slope of the linear
function, is interpreted as the average decrease of y pass
rate per unit error. The steeper the line is, or the higher
value the absolute gradient 9 is, indicating the more sen-
sitive the system is. One could use higher order (e.g.,
quadratic) function to fit the average y pass rate vs the
error magnitude, but it is found that the first order
(linear) form is adequate for the purpose of comparison
in this study.

ROC analysis
The receiver operator characteristic (ROC) analysis is a
commonly used tool to quantitatively analyze the sensitivity
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Fig. 4 Flowchart of machine error simulation

[17]. The area under the ROC curve (AUC) can be used as
an evaluation index. With an arbitrary threshold value set,
the plans with y pass rate greater than this threshold are
categorized as “pass”, and the rest as “fail”. The ratio of
number of “passed” original plans to the total original plans
is defined as the true positive rate (TPR). Likewise, the ratio
of number of “passed” modified plans to the total modified
plans is the false positive rate (FPR). By continuously vary-
ing the threshold value, a set of corresponding TPR-FPR
pairs are obtained, and they form the ROC curve. It is gen-
erally agreed that the higher value of AUC, the more sensi-
tive the system is to the underlying variables.

Summary

Compared with other approaches, the advantage of ROC
analysis is its independence from the arbitrarily chosen
decision criteria (y pass rate threshold, in this study),
which is typically dependent on the institution. There-
fore, the ROC analysis can be considered essentially free
of the institutional bias. The sensitivity evaluation is
simplified to the comparison of AUC values. For a com-
monly accepted AUC threshold value, one can derive
the minimum detectable error magnitude. In this study,
this AUC value was chosen to be 0.95. For histogram
overlap analysis and gradient analysis, the DD, DTA and
relative threshold dose value of all three systems are set
to 2 %, 2 mm and 5 %. The ATA of EPID technique is
set to 2°. For ROC analysis, the ATA is adjusted from 1°
to 3° to test its impact on error sensitivity.

Plan data

Fifteen full arcs from head & neck treatment plans were
selected for the study. They were optimized for a Varian
TrueBeam Linac with a Millennium 120 MLC on Eclipse
treatment planning system (TPS, V11, Varian Medical
System, Palo Alto, CA) using 6MV photon. The dose in
the QA phantoms was calculated using the anisotropic
analytical algorithm (AAA) with a grid size of 2.5 x 2.5 x
2.5 mm®. For ArcCheck the central plug was inserted
during the measurement. Five magnitudes were simu-
lated for each type of error, resulting in 15 modified
plans in addition to the original plan. In total, the

measurement and calculation of 240 plans were
performed on each QA systems. The source to imager
distance (SID) in EPID technique, and the source to axis
distance (SAD) for both Delta* and ArcCheck are
100 cm. All measurements for each arc were performed
with the same setup, and the pass rates of original plans
were all greater than 90 %, indicating that the setup er-
rors were negligible. Furthermore, since the original and
modified plans were delivered in the same setup condi-
tion, these minor setup errors were cancelled out when
comparing the pass rates of QA, to QAj, and should not
affect the results of sensitivity analysis.

Results

In the following, we first present the sample results of
sensitivity with different analysis techniques, then the
results for each type of machine errors in detail.

Sample sensitivity analysis

The original plans and the modified plans with 2°
gantry error are used to demonstrate the analysis
techniques. Figure 5(a) shows the y pass rate histo-
grams of QA; and QA,. Comparing the overlap re-
gions, we can see that ArcCheck has the least
overlap, so we can assert qualitatively that ArcCheck
system is more sensitive than the EPID method,
which in turn is better than Delta®. Figure 5(b) dem-
onstrates the ROC analysis with the AUC values also
listed. The markers indicate the TPR-FPR pairs. The
top left point (0, 1) represents the ideal case in which
all original plans pass and all modified plans fail. The
bottom left point (0, 0) and top right point (1, 1) rep-
resent “conservative” and “radical” decision making:
by applying a too high or too low threshold, no plan
or all plans pass. The diagonal line represents random
guessing. Intuitively, the system is sensitive if its ROC
curve is above the diagonal line. The sensitivity could
also be compared quantitative: higher AUC value sug-
gests higher sensitivity. From this, we can draw the
same conclusion that ArcCheck is most sensitive and
Delta® is least sensitive.
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Gantry angle sensitivity

Figure 6 shows the ROC analyses of the three systems:
(a) to (c) are the ROC curves for 1° to 3° gantry error,
(d) displays the AUC values as a function of error mag-
nitude. The AUC values of ArcCheck, Delta* and EPID
are greater than 0.95 when gantry angle error exceeds 2°,
3° and 3° respectively. In general, ArcCheck outperforms
EPID which in turn is more sensitive than Delta®. By set-
ting ATA differently, the EPID sensitivity can be tuned
to match ArcCheck or Delta* system. Figure 7 shows the

average Yy pass rate as a function of error magnitude.
The gradient 0 from linear fit is also shown, supporting
same conclusions.

MLC position sensitivity

Figure 8 shows results of sensitivity to MLC leaf position
error. Figure 8(a) compares the average y pass rate as a
function of error magnitude. Using the AUC threshold
of 0.95, the minimum detectable MLC error is 4, 2 and
3 mm for ArcCheck, Delta* and EPID. Unlike the gantry

a 1 ._r b b 1+ v =
o 4
® 0.8 Oy 008
2 L7 g
© L x
20.6 ol i 6 BB 2 0.6
7] i 7} P-- y
£04 e € 0.4 .
o) 4 —#~ | -®ArcCheck AUC=0.78 [} [ 2K $ L |~ ArcCheck AUC=1.00
== %" |-e-Delta4 AUC=0.60 2 ° .~ |-e-Delta4 AUC=0.80
= 0.2 = ’ —4—-EPID ATA=1°AUC=0.82 0.2 el -+ EPID ATA=1°AUC=0.99
paddg -7-EPID ATA=2°AUC=0.64 ,/" -7-EPID ATA=2°AUC=0.92
(;:Ej: 4 9~ EPID ATA=3°AUC=0.58 . ¢-EPID ATA=3°AUC=0.76 |
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
False Positive Rate False Positive Rate
(o 1 * d 1 .
o 0.8} 0.9
5 ¢
4 © 4
E 0.6 " 0.8,
a 0.4 et AroGheck AUG=1.00 0.7 . -=-ArcCheck
[} ~* | -#=ArcChecl =1. £ -
g -e-Delta4 AUC=0.97 Y/ _‘_Eslltg‘tﬂ A=1°
0.2 el —4-EPID ATA=1°AUC=1.00 | 0.6% - ol
-9-EPID ATA=2°AUC=1.00 -v-EPID ATA=2
e o-EPID ATA=3°AUC=0.97 i | ¢-EPID ATA=3°
0 0.2 0.4 0.6 0.8 1 1 2 3 4 5
False Positive Rate Gantry angle error magnitude (°)
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angle error, now Delta* is the most sensitive system with
the largest absolute 0, ArcCheck is the least, and EPID is
in the middle. This is supported by the AUC curves
plots in Fig. 8(b). Similarly, three ATA settings were
used in EPID technique. However, they were not as
effective as previous section, probably because that ATA
could only be directly specified to gantry angle axis.

Output error

The result for linac output error is shown in Fig. 9.
While there is still the decrease of y pass rate in Fig. 9(a),
the slope is not as steep as in the cases for gantry angle
and MLC position. Similarly, the increase of the AUC
values in Fig. 9(b) is also much shallower. Therefore, it
is not clear which system outperforms the others in
detecting this type of errors, even though all shows some
sensitivity.

The insensitivity may be caused by two factors. First,
the esf in Eq. (1) is for a whole sinusoidal period, with
positive values at one half period and negative in the
other half. They may cancel out each other in the
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analysis of the full arc. Second, the error magnitude may
be too small to be detectable.

To verify these two hypotheses, two experiments were
further performed with EPID techniques. In the first
experiment, y analysis was performed only for the posi-
tive half arc. In the second one, a constant error (1-5 %)
was applied for all CPs in the arc. The average y pass
rates are plotted in Fig. 10. The gradient 9 is -0.2 %/%
for half period simulation and -2.6 % for constant error.
This confirmed that the insensitivity to output error in
our sinusoidal form was not caused by the cancellation
between positive and negative errors. Instead, the mag-
nitude of simulated output error was too small to be
detectable.

ROC analysis using different criteria

The sensitivity analyses were also performed using dif-
ferent y analysis criteria (2 %/3 mm, 3 %/2 mm and 3 %/
3 mm) on gantry angle and MLC position errors. For
each type of error, 5 error magnitudes were combined,
and the resulting AUC values were listed in Table 1. The
same trend as previous analyses was observed.

Discussions

In this study the potential machine errors were simu-
lated based on the unique VMAT characteristic. The
main difference from IMRT is the added gantry rotation,
which is the reason why we investigated the gantry-
angle related machine errors caused by the gantry
inertial during rotation. The introduced MLC positional
errors could be interpreted as the discrepancy caused by
the gravitational force which can be reasonably assumed
to be sinusoidal form. Since the gantry angles and dose
outputs are usually checked daily at static angles such as
0°or 180°, but not dynamically, possible errors related to
gantry angle and output during VMAT delivery must be
in some form of periodical functions, and sinusoidal is a
reasonable choice. There may be other forms of periodical

MLC position error magnitude (mm)
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functions that can be used. We believe the conclusion
should not change with the choice of the functions.

The results presented here agree with the previous
publications. Take Delta* for example, Hauri et al. [8]
reported that using 3 %/3 mm criteria, the average y de-
crease of 2° sinusoidal gantry angle error is 0.1 %. The
average decrease in our experiments is 0.6 % under the
same criteria. Heilemann et al. [9] reported the average
Y pass rate decreased 3.7 and 7.9 % with 2 mm sinus-
oidal MLC shift for head-and-neck and prostate plans
using the criteria of 2 %/2 mm. In our study, the de-
crease was 7.9 %. Combining the results from the two
studies, we can also come to the same conclusion that
Delta* is more sensitive to MLC shift than gantry angle
error. This example also demonstrates that although
many publications can be referred on this subject, a
comprehensive understanding could not be obtained
from any single publication.

Besides error sensitivity, the impact of machine errors
on dose distribution is also an important aspect of
VMAT QA investigation. Betzel et al. [18] simulated the

95
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Fig. 10 Sensitivity to output error for half arc and constant
magnitude using gradient technique

machine errors in both IMRT and VMAT plans and
compared the 3D patient dose distributions after feeding
back the modified plans to the treatment planning sys-
tem. They found that the VMAT plans is less susceptible
than IMRT plans on the gantry angle error than the
MLC error, which was supported by their Delta* ana-
lysis. We want to point out that their analyses were
performed on the target volumes, which were mostly
deep-seated and close to isocenter. Their analysis was
also similar to how Delta* system works, i.e., on the 3D
dose matrices (even though most of the Delta* dose
values were interpolated rather than directly measured).
Therefore, the method was naturally less sensitive to the
small gantry angle rotation errors. On the other hand,
the ArcCheck has the detectors at a radius of 10.5 cm
from the isocenter and its analysis is 2D in nature for
the detector plane unfolded, which is sensitive to gantry
angle rotations. In fact, its sensitivity should be propor-
tional to the radial distance of the detectors to the
isocenter. Therefore, their results are consistent with our
findings, and further support the rationale of our study.
It also shows that the two aspects of QA investigation
are complementary and one study cannot replace the
other. For this study, the focus is sensitivity comparison,
and we plan to investigate the impact on dose distribu-
tion next.

Although y analysis is widely used in clinical prac-
tice, recent publications have raised concerns on
whether it is capable of catching planning or ma-
chine errors [14, 19, 20]. It was demonstrated that
even with intentional errors, the pass rate may still
be higher than 90 % [14, 19]. In this study, we simu-
lated machine errors with varying magnitudes, and
the sensitivity was investigated with y gradient and
ROC analysis. The sensitivity comparison was simpli-
fied to compare a single index. And more import-
antly, without the necessity of determining y pass
rate threshold in ROC technique, the analysis is free
of subjective bias.



Liang et al. Radiation Oncology (2016) 11:146

Table 1 ROC analyses using different y criteria
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Error type QA system 2 %/2 mm 2 %/3 mm 3 9%/2 mm 3 9%/3 mm

Angle error ArcCheck 0.956 0.943 0.955 0.948
Delta4 0.874 0.809 0.844 0.799
EPID 1° 0.963 0.971 0.969 0.987
EPID 2° 0913 0.930 0916 0.946
EPID 3° 0.864 0.880 0.870 0.907

MLC error ArcCheck 0811 0.833 0.829 0.840
Delta4 0.951 0.923 0.946 0916
EPID 1° 0.920 0.908 0.928 0918
EPID 2° 0.905 0.891 0911 0.907
EPID 3° 0.897 0.887 0.908 0.907

AUC values of each system under different criteria are listed

In addition, the y analysis criteria (DTA, DD, ATA and
dose threshold) directly affect the pass rate, these pa-
rameters may not have the same meaning in the three
systems studied. For example, the DTA for ArcCheck
stipulates the search range on the unfolded 2D plane.
For Delta®, it is the distance of the interpolated 3D dos-
imetry matrix, while for EPID, it is the distance within
each 2D PD plane. In this study, the goal is to evaluate
each system’s sensitivity, the pass rates were compared
with and without intentional errors (QA; and QA,).
Therefore, the effects of analysis criteria, as well as other
factors like CP spacing, were cancelled out. Therefore,
using the commonly used criteria (DTA: 2—3 mm, DD:
2-3 %, ATA: 1-3°, and dose threshold 5 %), the same
sensitivity trend was observed.

We attribute the different sensitivity for these three
systems to their different detector layout and the QA
analysis performed. As shown in Fig. 1, the diode detec-
tors of ArcCheck are embedded on a cylindrical surface,
and only the dose on that 2D plane is measured and
used in the y analysis. While the detectors of Delta® sys-
tem are embedded on two near-orthogonal planes, a 3D
dose matrix is generated for all points inside the phan-
tom through the interpolation and used in y analysis.
For the EPID technique, the PD is measured with fine
resolution in gantry angles. By stacking up the PD, a 3D
dose matrix is obtained with the 3rd axis representing
the gantry angle. Therefore, ArcCheck, Delta* and EPID
technique perform QA analysis on 2D, 3D and quasi-3D
matrices, respectively.

These differences directly affect their performances in
detecting machine errors. For example, gantry angle
error leads to greater variations to the points on the
cylinder surface than those in the inner region, while the
MLC position error affects all points along the beam
projection no matter on the surface or close to the iso-
center. This explains that the ArcCheck is more sensitive
to the gantry angle error and less sensitive to MLC

position error because all the detectors are on the outer
surface. If a hypothetical new version of ArcCheck is
built with the cylinder diameter doubled, its sensitivity
to gantry angle should also be doubled. For Delta®, only
those points close to the outer surface will be affected by
the gantry angle error greatly, but a large percentage of
the points will be affected by MLC position error.
Therefore Delta® is the least sensitive to gantry angle
error but most sensitive to MLC position error. If only
the points in the outer shell of the phantom are used in
the y analysis, then its sensitivity can be expected to be
similar to ArcCheck.

While errors of 5° or 5 mm are rare, they were in-
cluded here to investigate the sensitivity. Such an error
would be caught by the linac control software through
treatment interlock under normal machine tolerances,
but can potentially occur. We have shown that these QA
systems are capable to detect errors of smaller magni-
tude. The actual machine errors occurring are the sub-
ject of other QA tasks. Another equally important issue
is how these machine errors impact the treatment plans,
i.e., the clinical relevance of these potential errors. The
future work will include feeding back these modified
plans to the planning system and evaluating the clinical
consequences, which are likely treatment site specific.

One feature of EPID technique is the criteria on gantry
angle can be explicitly specified in the analysis. Further-
more, EPID has the highest detector resolution and
largest detector area so that field size up to 40 x 40 cm?
can be included in the QA. In comparison, the max-
imum field sizes detectable by ArcCheck and Delta* are
21 x 21 cm® and 22 x 20 cm? in the central region.

Conclusion

In summary, we compared three VMAT QA systems in
terms of sensitivity to machine errors in gantry angle,
MLC position and linac output. Based on the 0.95 cri-
teria on the AUC value, the minimum reliably detectable
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gantry angle error of ArcCheck, Delta* and EPID are 2°,
3° and 3°, respectively; and the minimum detectable
MLC leaf position errors are 4 mm, 2 mm and 3 mm,
respectively. ArcCheck is more sensitive to gantry angle
and Delta® is more sensitive to MLC position. The EPID
technique’s sensitivity can match both systems by adjust-
ing the extra angle-to-agreement parameters. In addition,
EPID can handle the largest field size with highest spatial
resolution and requires no extra phantom.
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