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Abstract

Background: Radiomics or computer – extracted texture features have been shown to achieve superior
performance than multiparametric MRI (mpMRI) signal intensities alone in targeting prostate cancer (PCa) lesions.
Radiomics along with deformable co-registration tools can be used to develop a framework to generate targeted
focal radiotherapy treatment plans.

Methods: The Rad-TRaP framework comprises three distinct modules. Firstly, a module for radiomics based
detection of PCa lesions on mpMRI via a feature enabled machine learning classifier. The second module comprises a
multi-modal deformable co-registration scheme to map tissue, organ, and delineated target volumes from MRI onto
CT. Finally, the third module involves generation of a radiomics based dose plan on MRI for brachytherapy and on CT
for EBRT using the target delineations transferred from the MRI to the CT.

Results: Rad-TRaP framework was evaluated using a retrospective cohort of 23 patient studies from two different
institutions. 11 patients from the first institution were used to train a radiomics classifier, which was used to detect
tumor regions in 12 patients from the second institution. The ground truth cancer delineations for training the
machine learning classifier were made by an experienced radiation oncologist using mpMRI, knowledge of biopsy
location and radiology reports. The detected tumor regions were used to generate treatment plans for brachytherapy
using mpMRI, and tumor regions mapped from MRI to CT to generate corresponding treatment plans for EBRT. For
each of EBRT and brachytherapy, 3 dose plans were generated - whole gland homogeneous (PWH) which is the
current clinical standard, radiomics based focal (PRF), and whole gland with a radiomics based focal boost (PWF).
Comparison of PRF against conventional PWH revealed that targeted focal brachytherapy would result in a marked
reduction in dosage to the OARs while ensuring that the prescribed dose is delivered to the lesions. PWF resulted in
only a marginal increase in dosage to the OARs compared to P

WH. A similar trend was observed in case of EBRT with
P
RF and P

WF compared to P
WH.

Conclusions: A radiotherapy planning framework to generate targeted focal treatment plans has been presented.
The focal treatment plans generated using the framework showed reduction in dosage to the organs at risk and a
boosted dose delivered to the cancerous lesions.
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Introduction
Radiation therapy (RT) is one of the principal treat-
ment modalities for localized prostate cancer and involves
delivering ionizing radiation dose to the prostate, in order
to destroy malignant cells. Although the specific treat-
ment option for prostate cancer depends on the stage and
grade of the tumor, RT is reported to be themost common
treatment modality in patients aged 65 to 74 years, and is
the second common treatment option after radical prosta-
tectomy in younger patients [1]. Primarily, there are two
main types of radiation therapy used in the treatment of
prostate cancer - external beam radiation therapy (EBRT)
and brachytherapy.
Prostate cancer patients are typically classified into dif-

ferent risk categories based on the prostate specific anti-
gen (PSA) level, Gleason Score (GS) and T stage (tumor
size) as low- (PSA ≤ 10 ng/ml, GS ≤ 6, T1 - T2a),
intermediate- (10 ng/ml < PSA ≤ 20 ng/ml, GS = 7,
T2b) and high-risk (PSA > 20 ng/ml, GS ≥ 8, T2c - T3a).
In current clinical practice, low-risk PCa patients who
are potential candidates for active surveillance but who
then choose to opt out, usually undergo radical whole
gland radiation therapy to ensure no cancer lesions are
missed, often resulting in radiation being delivered to
the surrounding healthy tissues. This typically results in
significant short-term and long-term side effects includ-
ing incontinence (in 5–20 % patients), sexual dysfunction
(30–70 %) and bowel toxicity (5–10 %) [2, 3]. Focal ther-
apies work by delivering a boosted radiation dose to the
cancer lesion, since prostate cancer is usually focal and
localized [4]. Recent studies have shown that prostate can-
cer focal therapy [5, 6] would result in dose minimization
to the bladder and rectum while focusing therapy to the
prostatic lesions, mitigating unintended side effects and
treatment complications.
On the other hand, patients categorized as intermediate

and high risk have a greater chance of disease progression
and recurrence and are typically prescribed aggressive
treatments. While enhancing dosage to the whole gland
would adversely affect the surrounding healthy structures,
however, introducing a focal boost to the index lesions
while delivering the prescribed dose to the whole gland
could potentially lead to a reduced risk of disease pro-
gression and recurrence. Therefore, focal radiotherapy, by
itself or in conjunction with whole gland radiotherapy, can
help in achieving better outcomes from prostate cancer
radiotherapy, while also resulting in minimum radiation
exposure to the adjoining structures.
Prior to therapy, a treatment plan (for either brachyther-

apy or EBRT) is generated which includes delineation of
the prostate and surrounding structures and allocation of
prescribed dosage. The prescribed dosage for brachyther-
apy and EBRT are pre-established numeric values accord-
ing to the guidelines set aside by the Radiation Therapy

Oncology Group (RTOG) [7]. EBRT planning requires
these delineations to be made on a pre-treatment CT scan
in order to define a planning target volume (PTV) which
accounts for the radiation dose constraints, spatial mar-
gins and target dose coverage. While CT is excellent for
visualizing bone structures, it does not offer very good soft
tissue detail that would ensure accurate organ and tissue
delineation. By comparison, MRI provides excellent soft
tissue detail and contrast [8] and is being widely used for
localizing PCa lesions. The PCa delineations on MRI can
be transferred to CT [9, 10] to assist in EBRT planning via
multi-modal registration.
In order to generate focal treatment plans, firstly an

accurate spatial delineation of cancer lesions is required.
Multi-parametric MRI has been shown to significantly
improve the accuracy for localization and staging of
prostate cancer as established by several research stud-
ies [8, 9, 11]. Nonetheless, inter-observer variability in
interpreting prostate mpMRI and existence of benign
confounders on imaging [12, 13] still limit accurate detec-
tion and diagnosis of CaP. Recent studies [11, 14–16]
have shown radiomics based classifiers can improve the
accuracy and reproducibility in localizing prostate can-
cer lesions on mpMRI (which includes T2w, diffusion
weighted (DWI) and dynamic contrast enhanced (DCE)).
Computer-extracted texture features or radiomic fea-

tures attempt to quantitatively characterize the appear-
ance of cancer regions to better localize cancer on MRI.
These radiomic features include, but not limited to, gradi-
ent based filter responses, co-occurrence features, Gabor
wavelet filter based features, Law’s energy descriptors. A
brief description of these features is provided in Table 2
in the “Methods” section. These features have been shown
in previous studies [11, 17, 18] to characterize the appear-
ance of prostate cancer in-vivo. Radiomics based classi-
fication of cancer involves training a machine learning
classifier with the computer-extracted texture features
which quantify the appearance of disease. This machine
learning classifier is then used to obtain a spatial pre-
diction map of cancer presence. The choice of imag-
ing modality, on which a treatment plan is developed,
depends on the therapy being planned. A brachtherapy
treatment plan can be generated using imaging modali-
ties such as MRI, Ultrasound imaging, CT, however, MRI
offers relatively higher soft tissue detail. The treatment
plans for EBRT are typically generated using CT.
The additional challenge for EBRT planning over and

above brachytherapy is the transference of the detected
cancer delineations from mpMRI to CT [19, 20]. The
prostate gland undergoes considerable deformation on
account of bladder and rectal filling, position of the
patient during imaging sessions, and the shape of the
surface on which the patient is resting during the scan.
Therefore, a simple rigid registration may be less than
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optimal for multimodal MRI-CT fusion. A number of
methods for deformable-registration of MRI and CT
[21–24] have been developed for accurate registration of
prostate between MRI and CT. Some of these approaches
included semi-automatic registration methods [25, 26]
which typically optimize the mutual information between
the fixed and moving images, spatially aligning the
prostate across the imaging modalities in order to obtain
a voxel-wise correspondence. However, these methods are
typically developed to align the large field of view (FOV)
MRI with the corresponding CT scan. The transference
of cancer delineations from the smaller FOV MRI to the
corresponding CT requires a large FOV MRI as an inter-
mediary. Therefore, a deformable registration of the small,
large FOVMRI and CT would ensure an accurate transfer
of cancer delineations.
Once the tumor boundaries are available on the imag-

ing modality (MRI or CT), the next challenge involves
generation of a focal treatment plan, which could
potentially result in reduced genito-urinary side effects
[4, 5, 27]. Banerjee et al. [28] have shown that a signifi-
cant reduction in dosage to the organs at risk (OARs) was
achieved using high-dose-rate focal brachytherapy, com-
pared to whole gland and hemi-gland treatment. However,
none of the previous studies on prostate cancer focal ther-
apy included radiomics based detection of cancer lesions
for therapy planning.

Overview of Rad-TRaP
A recent review onMRI guided prostate radiotherapy [29]
strongly emphasizes the role of MRI in target dose esca-
lation for improved outcomes and recommends future

integration of MRI scanners with radiation therapy deliv-
ery machines. In this paper, we present a radiomics based
decision support framework for radiation treatment plan-
ning (Rad-TRaP) for prostate cancer, which combines
radiomics based cancer identification and deformable reg-
istrationmethods forMRI-CT fusion. This framework has
been used to generate radiomics based focal (PRF), and
whole gland with a radiomics based focal boost (PWF)
plans using the prediction results of the machine learning
classifier. These plans are also compared with the whole
gland homogeneous plan (PWH) which is the current clini-
cal standard and involves uniform dose distribution to the
entire gland.
A computational pipeline of the Rad-TRaP framework is

illustrated in Fig. 1, essentially consisting of the following
three modules:

1. Radiomics based detection of cancerous lesions in
MRI using a texture feature enabled machine
learning classifier.

2. Transference of tissue, organ and delineated target
volumes from MRI on to CT via multi-modal
deformable co-registration.

3. Generation of focal and whole gland with focal boost
treatment plans based on radiomics-detected lesions
for brachytherapy and EBRT.

The specific insights gained in this study are, a) vali-
dation of the radiomics classifier for PCa detection using
multi-site data, b) transference of detected PCa regions
from the small FOV MRI to CT via a large FOV MRI
using deformable registration and c) integration of com-
putational tools for PCa detection and transference of

Fig. 1 An overview of the presented framework for radiomics assisted targeted treatment radiotherapy planning (Rad-TRaP) of prostate cancer.
Rad-TRaP consists of three modules - 1) voxel-wise cancer detection on MRI based on radiomic feature analysis, 2) transference of cancer
delineations to CT via deformable registration of MRI and CT, and 3) generation of targeted focal radiotherapy plans for brachytherapy and EBRT
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these detected PCa regions across modalities to achieve
targeted focal radiotherapy planning.
The rest of this paper is organized as follows. The retro-

spective datasets used and the pre-processing processing
steps are described in the “Methods” section. This is fol-
lowed by a description of the radiomic feature analysis
and the building of a machine learning classifier module,
a multi-modal deformable registration module and a dose
plan generation module. The “Experimental design” sub-
section describes evaluation of each of thesemodules. The
subsequent section presents the experimental results fol-
lowed by a discussion of the observations and directions
for future work. The concluding remarks are discussed in
the Conclusions Section.

Methods
Data description
This study utilized data collected retrospectively from
2 different institutions (see Table 1 for a summary of
the data description). The dataset D1 was collected from
University Hospitals Cleveland and comprised 12 patients
(aged 60 – 75 years) with biopsy confirmed low to inter-
mediate risk prostate cancer (median Gleason score, 7;
range, 6–8) and who had been scheduled to undergo
radiation therapy. All patients underwent a 3 Tesla(T)
mpMRI scan (including T2w, diffusion weighted (DWI)
and dynamic contrast enhanced sequences (DCE)) prior
to treatment followed by a brachytherapy seed implanta-
tion. A CT scan was acquired after the seed implantation.
One of the 12 patients underwent EBRT followed by
brachytherapy and so had two CT scans : one scan after
EBRT and the second scan after brachytherapy. There
were two T2w MRI scans acquired, one with a large field
of view (FOV) and the other with a small FOV. The large
FOV planning MRI contains anatomical landmarks use-
ful for co-registration with CT whereas the small FOV
diagnostic MRI has high resolution details of the prostate
anatomy useful for identifying cancer.
On all the MRI scans, annotations of the cancer vol-

ume, prostate capsule and the peripheral zone were
obtained, using the 3D Slicer™software, from the radiation

oncologist who based them on the radiology and biopsy
reports. For all future reference in this paper, the
term ‘annotation’ implies delineation of contours (lesion,
prostate capsule, prostate zones) on imaging. While regis-
tration with ex vivo whole-mount prostate histology spec-
imens would provide an ideal ground truth, the patients
used in this study underwent radiation therapy and there-
fore cancer annotations from the radiation oncologists
was used. Of the 12 patients, 2 patients were excluded
from the cohort: one who had cancer lesion in central
gland and another who had artifacts resulting from use of
an endo-rectal coil. The 10 patient studies from D1 had
tumors only in the peripheral zone, all imaged using a
surface coil.
The dataset D2 comprised 11 patients from Alpha 3T

MRI&Diagnostic Imaging Center, NewYork. This second
dataset was used for training a machine learning classifier
for predicting prostate cancer lesions on D1. The patients
from D2 were of age 45 years and above with a Gleason
score less than or equal to 7 (4+3 or 3+4). All of the
patients had a 3 Tesla multi-parametric MRI scan using
a surface coil, prior to treatment which were used for the
experiment. The MRI scans were annotated for prostate
cancer lesions by an experienced radiologist based on
radiology and biopsy reports, using 3D Slicer™software.
All patients in D2 had cancerous lesions in the peripheral
zone as well.

Pre-processing mpMRI
T2w MRI suffer from the issue of intensity related drift
artifacts, a problem that manifests in scans acquired
between patients and across scanners. These well docu-
mented [30] intensity artifacts cause the tissue specific
signal intensities to vary across scans, even those obtained
for the same patient on the same day and with repeat
scans on the same scanner. It can be seen that the image
intensity distributions, shown in Fig. 2d, from the prostate
regions on T2w MRI from different patients studies
(Fig. 2a-c) are misaligned. These varying signal distribu-
tions across scans were standardized on T2wMRI for both
D1 and D2 using the method of Nyul and Udupa [31].

Table 1 A description of the two retrospective imaging datasets employed in this work

Dataset Number of patients Imaging Resolution (pixels) Slice thickness (mm.)

D1 12 T2w (small FOV) 192 × 192 - 256 × 256 2.0-3.5

12 T2w (large FOV) 320 × 320 - 512 × 512 3.0-5.0

12 DWI 192 × 192 - 256 × 256 2.0-3.5

12 CT (post-brachytherapy) 512 × 512 3.0

1 CT (pre-EBRT) 512 × 512 3.0

D2 11 T2w 256 × 256 - 512 × 512 3.0-3.3

11 DWI 256 × 256 - 512 × 512 3.0-3.3

D2 was used in the training of radiomics based machine learning classifier. This classifier was used to obtain cancer delineations for D1
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Fig. 2 a, b, c show the original T2w MRI images for three patient studies from D1 and their intensity distributions within the prostate region are
shown in d. The corresponding images after intensity standardization are shown in e, f, g and the standardized intensity distributions are shown in h

Briefly this approach involves computing a piece-wise lin-
ear mapping between the image intensity distributions of
a template and each of the patient studies to align the dis-
tributions. This mapping is then applied to the original
images to obtain standardized images (Fig. 2e–g), in turn
ensuring that the image intensity distributions are aligned
across the various MRI studies (see Fig. 2h).

Computerized feature extraction and voxel-wise
classification
Prostate cancer appears as a hypo-intense region with
respect to the surrounding benign tissue on T2w MRI.
This corresponds to a region with low ADC value on

DWI MRI sequence. In this study, we extract radiomic
features that have been previously presented as effective
for automated cancer localization [18, 32, 33]. A total of
308 features are extracted (154 from T2w, 154 from ADC)
on a per-voxel basis. These features are summarized in
Table 2. DCE-MRI was not available for a number of stud-
ies and hence was not employed for radiomic analysis.
Additionally, the role of DCE-MRI has been downplayed
in the recent version of the Prostate Imaging - Report-
ing and Data System (PIRADS) [34]. It should also be
noted that since a majority of the tumors in D1 and
D2 were located in the peripheral zone, analysis was
performed only in the peripheral zone; the transition

Table 2 A brief description of the intensity and radiomic features and their significance in quantifying the appearance of prostate
cancer on MRI

Feature category Description Significance

Signal intensity T2w, ADC signal intensity Regions of low signal intensities are indicative of prostate
cancer lesions

First-order statistics Mean, standard deviation, median and range; first order differ-
entials computed using Sobel operators

Localize regions with significant intensity changes; Gradients
detect edges and quantify region boundaries

Co-occurrence features A co-occurrence matrix is a compilation of the different spatial
relationships of neighboring pixel intensities. Several metrics
of this matrix are computed to obtain useful features, such as
Haralick features

Distinguish homogeneous regions of low intensities of cancer
from hyper-intense normal regions

Gabor features A Gabor filter is a convolution of Gaussian function with a
Fourier transform at different orientations and frequencies

Gabor features quantify the appearance of cancer lesions at
multiple orientations and image scales

Texture energy Laws’ texture energy features are computed by convolution
of the image with local masks that are obtained from vec-
tors which capture local average, edge, spot, wave and ripple
patterns

Texture energy quantifies the variation of pixel intensities
within a fixed region of the image. Regions of image containing
cancer lesions typically contain lower texture energy



Shiradkar et al. Radiation Oncology  (2016) 11:148 Page 6 of 14

zone and central gland were not considered. We do
note though that the Rad-TRaP platform could certainly
accommodate analysis and targeting of transitional zonal
tumors as well.
Radiomic features were computed on a voxel-by-voxel

basis such that every voxel xi within the prostate is asso-
ciated with a 308 dimensional feature vector fi, for all
patient studies N , (i = 1 . . .N). Each voxel xi is assigned a
label li based on the expert radiologist annotation (malig-
nant or benign).
To ensure optimal classification performance and alle-

viate issues related to the curse of dimensionality, the
minimum redundancy maximum relevance (mRMR) fea-
ture selection scheme [35] was used to select the most
discriminating features for distinguishing cancer from
benign regions. The top ranked features were used to train
a quadratic discriminant analysis (QDA) classifier using
the cancer annotations as labels. This trained classifier
generates a voxel-wise likelihood prediction pi when pre-
sented with a test image as a input.The cancer likelihood
prediction map is smoothed to ensure better visualization
of the probabilities and remove noise. The mRMR fea-
ture selection scheme and the QDA classifier were chosen
since they resulted in the best classification performance
and have also been used in previous radiomics based
classification studies [11, 17, 18, 32]

Transference of detected lesions to CT via co-registration
of MRI and CT
The T2wMRI is usually acquired at different fields of view
(FOV), typically one at a large FOV and the other at a
smaller FOV. The cancer delineations generated from the
radiomcs based classifier described above are obtained on
the small FOV MRI which provides much greater detail
and resolution of the prostate. The registration scheme
employed in this work uses the large FOVMRI as an inter-
mediary to transfer the cancer delineations from the small
FOV MRI to CT. The large FOV planning MRI contains
anatomical landmarks useful for co-registration with CT,
whereas the small FOV diagnostic MRI has sufficiently
high anatomic detail of the prostate to enable the identi-
fication of cancer foci. The volumes of planning MRI and
CT were cropped to contain only the prostate so that a
meaningful registration could be executed. This approach
thus mitigates the possibility of misalignment of distant
internal anatomic structures that share a similar appear-
ance. The various steps involved in the co-registration of
CT and MRI are as follows.
Step 1: A 3D rigid registration is performed to learn

a transformation Tr between the large FOV planning
MRI (Mp) and CT (C). The large FOV MRI is required
to ensure visual similarities between the two modaili-
ties such as the bone structures, muscles on MRI and
CT, to drive this registration. The transformation Tr is

computed such that it best maximizes the normalized
mutual information (NMI) [36] between fixed C and the
moving Mp. This transformation Tr primarily brings the
bone structures between these two modalities into spa-
tial alignment. Tr is applied to Mp to obtain the trans-
formed MRI (Tr(Mp)). The various steps involved in the
co-registration of CT and MRI are as follows.
Step 2: A deformable registration is performed to learn

a B-spline transformation Td between Tr(Mp) from
the first step and the fixed C. This transformation Td
accounts for the deformation of the prostate in MRI with
respect to CT. It is computed by maximizing the NMI
between Tr(Mp) and C. This transformation Td applied
to Tr(Mp) results in the transformed MRI Td(Tr(Mp)).
For computing Td, voxels only within the prostate and
rectum region are used. This is to ensure that only the
prostate gets deformed while other structures remain
aligned from previous transformation Tr .
The transformations Tr and Td are applied on to

the predicted cancer regions PMR(pi ∈ PMR) on
MRI to obtain the cancer regions PCT on CT (where
Td(Tr(PMR)) = PCT ). This can be seen in the Fig. 1
where the predicted cancer regions (shown as a spa-
tial probability map) on MRI is transferred on to CT
using the transformations obtained from deformable co-
registration. The small and large FOV MRI are acquired
at the same time point and are therefore implicitly regis-
tered. With this, the predicted cancer regions PMR on
MRI are now transferred to CT to obtain PCT .

Dose plan generation based on predicted cancer labels
The probability scores (between 0 and 1, with 0 indicat-
ing least probability of cancer presence and 1 being the
highest) assigned by the machine learning classifier are
used to obtain a binary cancer volume onMRI (essentially
contours showing the cancer region) at a given opti-
mal threshold. This optimal threshold (between 0 and 1)
depends on various factors including PCa grade, size of
the lesion and spatial location, and therefore this thresh-
old was decided by the radiation oncologist in this study
as that at which the cancer contour best encompasses the
suspicious cancer region on mpMRI. The cancer contours
thus obtained will be used by the radiation oncologist
using standard commercial software tools to generated
whole gland homogeneous(PWH), radiomics based tar-
geted focal (PRF) and whole gland with radiomics focal
boost (PWF) dose plans.

Implementation details for treatment planning
For brachytherapy, the treatment plans are generated on
MRI using the cancer contours PMR derived from the
radiomic classifier predicted cancer probabilities. PMR

is considered as the Gross Target Volume (GTV). A focal
boost was delivered to a Planning Target Volume (PTV)
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with a 5 mm margin surrounding the GTV to generate
P
RF. This margin was cropped to exclude extra-prostatic

extension because the cancerous regions are confined
within the prostate capsule for early stage disease (stage
T1a-T2a), these are patients who are typically eligible
for brachytherapy. PWH is also generated on the same
patient for comparison. Additionally, PWF is generated for
enhancing dose to GTV with a 2 mm margin. For both,
P
RF and P

WF, the margins for GTV were constrained to
ensure that no or minimal dose spilled out of the prostate
capsule or into the urethra. MIM Symphony™[37] plan-
ning tool was used for generating the radiation treatment
plans for brachytherapy. The target prescription dose was
145 Gy and I-125 seeds model AgX100 (Theragenics Cor-
poration, Buford, GA) with an Air Kerma Strength of 0.5
U being used for all the treatment plans.
In case of EBRT, the RT plans were generated after

mapping the predicted cancer lesions from MRI onto CT
using the multi-modal deformable registration methods.
A whole gland homogeneous plan was generated with a
PTV following the RTOG 0924 protocol. It is ensured
that the PTV receives a prescribed dose of 79.2 Gy. A
focal dose plan targeting only the cancer lesions is gener-
ated with a boosted dose of 85.8 Gy. The dose plans for
EBRT were generated using the Varian Eclipse™treatment
planning software [38].

Experimental design
The modules of the Rad-TRaP framework are evaluated
based on the following experiments.

1. Evaluating performance of the radiomics based classifier
for voxel-wise cancer prediction
The probabilities pi of cancer presence generated by
the machine learning classifier are evaluated against the
ground truth labels li ( obtained from the annotations by
a radiologist) by generating the receiver operating char-
acteristics (ROC) curve and measuring the area under
the ROC curve (AUC). The ROC curve is generated by
varying the probability thresholds and computing the sen-
sitivity and specificity for each threshold in terms of the
overlap with ground truth lesion.

2. Evaluatingmulti-modal deformable registration for
transference of cancer predictions
The MRI-CT registration was evaluated in terms of
the Dice Similarity Co-efficient (DSC) between the
prostate contours on the two modalities Mp and C. The
prostate boundary was contoured by a radiologist on each
MRI and CT exam. While delineating the prostate on
MRI is straightforward, the lack of structural detail on
CT required the radiologist to use the appearance of
brachytherapy seeds on post-treatment CT to guide the
annotation.

3. Evaluating treatment plans in terms of differences between
dosimetric parameters
For brachytherapy, PRF and P

WF plans are generated and
compared against P

WH plan in terms of the number
of seeds and needles used, target coverage and normal
tissue sparing. The dosage to the rectum (D1cc.,D2cc)
and the bladder (D2cc) with the P

RF is expected to
be lower compared to P

WH. These parameters are
expected to be similar with the P

WF compared to the
P
WH.
For EBRT, the dosage to the prostate, bladder, rectum,

urethra, penile bulb and femoral heads are computed
for each of PRF, PWF and P

WH in terms of parameters
described for brachytherapy. Also, the differences in these
parameters between the P

RF, PWH and P
WF, PWH plans

are computed.

Results
Voxel-wise cancer prediction onMRI
The top performing radiomic features obtained from
the feature selection scheme for D2 are summarized
in Table 3. These features have also been reported by
previous studies [32, 33] to be effective in detecting
prostate cancer lesions on mpMRI. These features were
then used to train a machine learning classifier (QDA)
to identify probability of cancer presence. All predictions
and evaluations were done on a voxel-by-voxel basis. This
classifier was then used to obtain voxel-wise cancer pre-
dictions for D1. The AUC’s for each patient are listed
in Fig. 3. A representative result of the classifier prob-
ability map is shown in Fig. 4. The regions with high
probability of cancer presence are shown to be in agree-
ment with the cancer annotations obtained from an expert
radiologist.

Table 3 The 11 top performing features obtained from the
feature selection scheme from the learning set D2 that included
3T T2w, ADC MRI sequences

# mpMRI sequence feature

1 T2w Signal intensity

2 T2w Standard deviation of signal intensity

3 T2w Sobel gradient (x)

4 T2w Haralick correlation

5 T2w Laws energy (kernel = R5E5)

6 ADC Signal intensity

7 ADC Haralick energy

8 ADC Haralick correlation

9 ADC Haralick differential entropy

10 ADC Laws energy (kernel = L5W5)

11 ADC Laws energy (kernel = W5L5)
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Fig. 3 Quantitative results of the voxel-wise predictions using the radiomics trained machine learning classifier in terms of AUCs for individual
patients from D1. The classifier was trained on T2w, ADC MRI sequences and T2w alone to show that misalignment between T2w and ADC MRI
affects the performance of the classifier (patients 2, 5 and 6)

Transference of radiomics detected lesions via
co-registration of MRI and CT
The co-registration between MRI and CT was evaluated
in terms of dice similarity coefficient (DSC); results are
shown in Fig. 5. It should be noted that although the

multi-modal registration is relevant for generating the
EBRT treatment plans, the registration was evaluated
for all the 12 patient studies from D1. The brachyther-
apy seeds could have undergone slight displacement after
implantation and not all of them might lie entirely within

Fig. 4 Classification results for three patients from the test set D1, obtained from the radiomics based machine learning classifier trained on D2,
shown on a single representative image. The top row shows the T2w MRI image with the prostate capsule (red) and the ground truth lesion (yellow).
The bottom row shows the probability maps obtained from the classifier overlaid on the image; the colorbar indicates the range of probabilities of
cancer presence with red being the highest and blue being the lowest
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Fig. 5 Dice similarity coefficients (DSC) evaluating the co-registration of T2w MRI and CT on D1. The DSCs from deformable registration are typically
higher than those from rigid registration

the prostate. As reported in [39], this is not an uncommon
scenario in brachytherapy seed implantation. To account
for this seed displacement, DSCs were computed only on
those slices containing prostate annotations both on CT
and the deformed MRI. A representative result for both
rigid and deformable registration is shown in Fig. 6. It can
be observed that the bone structures align very closely
with a rigid registration and the prostate gland requires an
additional deformable registration step in order to achieve
alignment.

Treatment plan generation using the predicted cancer
labels
1. Brachytherapy
A representative dose plan on a single image for different
patients is shown in Fig. 7 showing PWH , PWF with a focal
dose escalation to 150 % of prescribed dose and P

RF with
a dose escalation to the dominant prostatic lesion seen
on mpMRI alone. Table 4 shows the various dosimetric
parameters for each of PWH,PRF and P

WF.

The dosimetric parameters V100, V150 and V200 for the
prostate show a marked dose escalation to the cancer
delineations, defined by the radiomic classifier, without
excess dosage to the rest of the prostate. Specifically, tar-
geted therapy with P

RF resulted in a dose escalation to
the high risk regions, with a 43 % overall reduction in
prescribed dose to the whole gland. With P

RF, the PTV
received a comparable dose as P

WH in terms of V100,
but a significant dose escalation to the V150 and V200 at
98 % and 76 % respectively compared to P

WH. More sig-
nificantly, PRF showed a marked urethral sparing which
suggests reduced treatment related side effects. Also, the
low 2 cc bladder volumes indicate significantly reduced
dosage to the bladder. Another significant reduction is in
the number of seeds and needles used. This has immediate
benefits for the low-risk PCa patients who would benefit
from a reduction in the number of incisions and accompa-
nying radiation related toxicity. The dosage to the rectum,
however, was observed to be comparable to P

WH due to
close proximity of the rectum to the prostate, especially

Fig. 6 Qualitative results for multi-modal registration a rigid registration, b deformable registration. The high contrast structures from CT (blue shade)
are overlaid onto MRI. It can be observed that the bone structures are aligned with a rigid registration alone. A deformable registration around the
prostate region helps align the prostate (red contour on CT and green contour on MRI) after deformable registration. The prostate region is zoomed
in and shown in the inset
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Fig. 7 Different treatment plans for brachytherapy shown on a single slice of T2w MRI for 3 different patients (rows) - a PWH, b P
RF, and c PWF. Plans

in P
WH and P

WF cover the entire prostate (blue contour) and have a larger dosage (maroon colored contour shows V150) and number of needles
(green circles) compared to P

RF in which only the cancerous region (bright red contour within the prostate) is covered

considering the fact that only peripheral zone lesions were
considered in this study.
It can also be observed that P

WF resulted only in a
marginal excess in dosage to the OARs compared to the
P
WH plan. The dosage to the PTV in terms of V100, V150

and V200 is comparable to PWH. The V100 dosage from the
P
WF plan to the urethra is in excess of 0.07 % and to the

rectum is in excess of 0.27 % compared to P
WH showing

that a whole gland treatment with focal boost helps tar-
get the lesion aggressively while minimizing damage to
the surrounding structures that will result from enhancing
dosage to the whole gland.

2. EBRT
P
WH , PRF and P

WF are shown in Fig. 8 a, b and c respec-
tively. The prescribed dose is shown with a green contour
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Table 4 A summary of the average dosimetric parameters for PWH, PRF, PWF for brachytherapy

Parameter Whole gland homogeneous (PWH) Whole gland with a focal boost (PWF) Focal (PRF) (PWF − P
WH) (PRF − P

WH)

Number of needles 22.00 22.10 17.20 0.10 -4.80

Number of seeds 74.80 74.20 43.00 -0.60 -31.80

Prostate

D90 (Gy) 181.14 185.56 64.11 4.41 -117.03

V100 (%) 99.80 99.85 56.17 0.05 -43.63

V150 (%) 58.11 61.47 40.72 3.36 -17.38

V200 (%) 22.51 23.61 25.76 1.10 3.25

Urethra

D10 (Gy) 192.17 195.62 182.82 3.46 -9.34

V100 (%) 96.55 96.62 41.38 0.07 -55.1

Rectum

D1cc. (Gy) 119.81 121.77 116.79 1.96 -3.02

D2cc. (Gy) 102.00 102.85 92.40 0.85 -9.60

V100 (%) 1.14 1.41 1.63 0.27 0.49

Bladder

D2cc. (Gy) 105.20 102.07 46.96 -3.13 -58.24

PTV

D90 (Gy) 174.16 174.08 248.51 -0.09 74.35

V100 (%) 99.10 98.28 99.99 -0.82 0.90

V150 (%) 55.05 55.25 97.99 0.20 42.94

V200 (%) 21.67 21.64 76.21 -0.02 54.54

It can be observed that PRF resulted in a better coverage of the PTV, reduction in the unneeded dosage to prostate and surrounding regions, and a marked reduction in the
number of needles and seeds (highlighted in bold-face)

and the boosted dose (150 % of prescribed dose) with a
dark red contour. It can be clearly noted that the radiation
to the rectum and healthy prostate is significantly lower
with P

RF compared to P
WH. The dosimetric parameters

for all the three EBRT treatment plans are tabulated in
Table 5.
While the PTV was adequately covered by the pre-

scribed dose for all three treatment plans, a markedly
significant reduction in the bladder, rectum, penile bulb

and the femoral heads is observed with P
RF. It can also be

seen that PWF resulted in a marginal increase in dosage to
the surrounding structures while targeting the lesion with
a boosted radiation dose.

Discussion
In this study, a framework for generating radiomics based
targeted treatment plans for focal radiation therapy of
prostate cancer (Rad-TRaP) is presented. This includes 1)

Fig. 8 The treatment plans for EBRT shown on a single slice of T2w MRI, of a single patient - a PWH, b P
RF and c PWF. The red region show the cancer

lesions, cyan indicates the prostate capsule. The yellow, blue andmagenta contours show the radiation intensity in decreasing orders of magnitude.
P
RF results in a significant reduction in dosage to extra-prostatic structures compared to P

WH, and P
WF while only resulting in a marginal increase in

overall dosage compared to the PWH
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Table 5 A summary of the dosimetric parameters for PWH, PWF and P
RF plans for a single patient

Parameter Whole gland homogeneous (PWH) Whole gland with focal boost (PWF) Focal (PRF) (PWF − P
WH) (PRF − P

WH)

Prostate

V100 % 99.6 99.32 94.21 -0.28 -5.39

D98 Gy. 80.2 79.6 85.2 -0.6 5

Dmin (0.03 cc.) Gy. 76.7 78.5 83.8 1.8 7.1

Dmax (0.03 cc.) Gy. 81.9 102.5 91.3 20.6 9.4

Mean Dose Gy. 80.8 84.09 87.9 3.29 7.1

Bladder

V15% Gy. 60.7 65.5 1.45 4.8 -59.25

V25% Gy. 46.9 51.7 1.85 4.8 -45.05

V35% Gy. 36.1 42.6 1.67 6.5 -34.43

V50% Gy. 24.1 33 1.45 8.9 -22.65

Rectum

V15% Gy. 63.7 60 10.5 -3.7 -53.2

V25% Gy. 50.8 50.2 4.35 -0.6 -46.45

V35% Gy. 36.5 42.8 2.65 6.3 -33.85

V50% Gy. 23.2 27 1.9 3.8 -21.3

Penile bulb

Mean Dose Gy. 48.98 61.97 3.65 12.99 -45.33

L. Femoral Head

Mean Dose Gy. 22.1 23.3 2.3 1.2 -19.8

R. Femoral Head

Mean Dose Gy. 19.8 21.3 1.4 1.5 -18.4

It can be observed that the PRF resulted in significant reduction in the dosage to surrounding regions including bladder, rectum, penile bulb and the femoral heads
(highlighted in bold-face)

automatic detection of prostate cancer lesions on mpMRI
using radiomic features and a machine learning classi-
fier on a per-voxel basis, 2) transference of predicted
cancer regions from mp-MRI to CT using deformable co-
registration methods , and 3) a targeted focal treatment
plan generation for brachytherapy and EBRT based on the
predicted cancer regions.
The radiomics based classification of cancer requires

the mpMRI sequences to be aligned accurately. In case
of patients 2, 5 and 6, there was significant misalign-
ment between the DWI and T2w MRI sequences that
could not be resolved. This was reflected in terms of
low AUC values as observed in Fig. 3. When a machine
learning classifier using texture features from T2w MRI
alone was trained using D2 and then tested using D1, the
AUC values increased. In fact, had it not been for the
gross distortion induced in the acquisition of the diffu-
sion weighted MRI scans for these patients, the radiomics
classifier would have most likely benefited from the com-
bination of features from T2w and diffusion weighted
scans. The lower AUC values from the classifier in this
dataset mainly arise from the limitations of dataset, which

include lower resolution of the MRI data (especially ADC
sequences), smaller data size and non-availability of DCE
MRI sequence.
The registration approach appears to be dependant on

the type of coil (body or endorectal) used for mpMRI
acquisition. It can be observed from Fig. 5 that in case of
patient 3, who had an MRI scan with an endo-rectal coil,
a rigid registration of MRI and CT is sufficient.
While the results obtained with the initial set of 23

patients in this study is promising , there are avenues for
improvement in future work. Firstly, the diagnostic MRI
used in this study for cancer detection was of lower mag-
netic strength; using an MRI of higher magnetic strength
may result in an improvement in cancer detection per-
formance of the radiomics based classifier. Also, addi-
tional sequences including DCEMRI, if available, could be
explored for radiomics based cancer detection.
Secondly, the Rad-TRaP framework was validated on a

retrospective dataset of low to intermediate risk prostate
cancer patients. Experiments on a larger cohort of patients
with a wider spectrum of risk categories will be important
for evaluating the generalizability of the framework.
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Another avenue for future work is to develop an auto-
mated method of identifying the threshold to obtain con-
tours for the lesion from the spatial probability maps.
The voxel wise predictions obtained from the radiomics
classifier do not take into account factors including size
of the lesion, cancer grade and spatial location of the
cancer lesion. These are important factors in accurately
determining the optimal threshold. In order to automati-
cally define an optimal threshold, the radiomics classifier
would have to be trained and evaluated on a much larger
cohort of studies, one with additional diversity of cancers
corresponding to different Gleason grades.
The Rad-TRaP framework presented in this work has

been validated on patient studies with peripheral zone
tumors. The framework can be easily adapted for central
gland lesions by curating an appropriate dataset consisting
of cancer lesions in the central gland. In fact, the frame-
work is amenable to embedding any trained classifier. For
instance, integrating a classifier trained on specific data at
a specific site or scanner can be easily achieved.

Conclusions
Rad-TRaP presents a unique decision support framework
for radiation oncologists, potentially helping them gen-
erate effective and targeted treatment options for low,
intermediate and high risk prostate cancer patients. A
whole gland homogeneous dose plan, a whole gland dose
plan with a focal boost and a targeted focal dose plan were
generated based on the cancer predictions for brachyther-
apy and EBRT. These dose plans were evaluated and
compared in terms of several dosimetric parameters, our
simulation results suggesting a significant reduction in
radiation dosage to the rectum and bladder while deliv-
ering prescribed dosage to the cancer lesions using a
focal dose plan. The whole gland plan with a focal boost
resulted in delivery of boosted dose to the target lesions
without excess spillover of radiation to the surrounding
extra-prostatic structures.
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