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Abstract
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Purposes: To generate a nomogram to predict parotid gland (PG) overdose and to quantify the dosimetric benefit
of weekly replanning based on its findings, in the context of intensity-modulated radiotherapy (IMRT) for

locally-advanced head and neck carcinoma (LAHNQ).

Material and methods: Twenty LAHNC patients treated with radical IMRT underwent weekly computed
tomography (CT) scans during IMRT. The cumulated PG dose was estimated by elastic registration. Early predictors
of PG overdose (cumulated minus planned doses) were identified, enabling a nomogram to be generated from a
linear regression model. Its performance was evaluated using a leave-one-out method. The benefit of weekly
replanning was then estimated for the nomogram-identified PG overdose patients.

Results: Clinical target volume 70 (CTV70) and the mean PG dose calculated from the planning and first weekly CTs
were early predictors of PG overdose, enabling a nomogram to be generated. A mean PG overdose of 2.5Gy was
calculated for 16 patients, 14 identified by the nomogram. All patients with PG overdoses >1.5Gy were identified.
Compared to the cumulated delivered dose, weekly replanning of these 14 targeted patients enabled a 3.3Gy

decrease in the mean PG dose.

Conclusion: Based on the planning and first week CTs, our nomogram allowed the identification of all patients
with PG overdoses >2.5Gy to be identified, who then benefitted from a final 4Gy decrease in mean PG overdose by

means of weekly replanning.
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Introduction

During the course of intensity-modulated radiother-
apy (IMRT) for head and neck cancer (HNC), large
anatomical variations may result in delivered doses
differing from the planned dose [1]. The literature
shows that while dose variations in the clinical target
volume appear extremely low [2-5], the percentage
of patients with estimated PG overdoses ranges
widely from 5 to 70 % [1, 5-10]. With the aim of
correcting these PG overdoses, an adaptive radio-
therapy (ART) strategy involving one or several
replannings during treatment has been investigated
[1, 2]. These replannings are, however, time-
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consuming, as a complete delineation can take up to
2.5 h [11-13] and may not be beneficial for all pa-
tients. It is therefore crucial to identify patients with
PG overdose and evaluate how ART benefits each
individual. Ideally, replanning decisions should be
based on early and simple anatomical criteria, such
as weight loss or decrease in neck diameter, which
have been identified as risk factors for over-
irradiation [10, 14—17]. However, a clear correlation
between these markers and PG overdose has not yet
been established [6]. After having identified early
predictors of PG overdose, this dosimetric study had
two objectives: 1) to generate a nomogram so as to
predict PG overdose; 2) to quantify the benefits of
weekly replanning, triggered by the nomogram, in
terms of dose sparing and decrease in xerostomia
risk.
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Materials and methods

Patients and tumors

A total of 20 patients (mean age: 63; range: 50—77) were
enrolled in this study. All patients presented with
locally-advanced oropharyngeal cancer (Stage III or IV,
American Joint Committee on Cancer 7th ed.). Patient,
tumor, and treatment characteristics have been provided
in Table 1.

Treatment and planning

All patients underwent IMRT with total doses of
70Gy (2Gy/fraction/day, 35 fractions), combined with
a simultaneous integrated boost technique [18] and
concomitant chemotherapy (cetuximab or platinum).
Planning CTs (CTO) were performed with intravenous
contrast agents using 2-mm slice thickness, from the
vertex to the carina. Three target volumes were gen-
erated: CTV,o CTVg3, and CTVse. The 70Gy clinical
target volume (CTV,o) was equal to the gross tumor
volume plus a 5-mm 3D margin, adjusted to exclude
the air cavities and all bone mass free of tumor inva-
sion. CTVe3 corresponded to the area at high-risk of
microscopic spread, in particular the ipsilateral nodal
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level II, while CTVss corresponded to the low-risk
subclinical area. The planning target volume (PTV)
was the CTVs plus a 5-mm 3D margin, limited at
3 mm from the skin surface in order to avoid the
build-up region and therefore limit skin toxicity [19].
The minimum PTV covered by the 95 % isodose line
was 95 %. Dose constraints were set according to the
GORTEC group (the French group of radiation oncol-
ogy for head and neck cancer) (Table 2).

Parotid sparing was not conducted if considered to the
detriment of PTV coverage or other essential organs at
risk (OARs).

During the treatment course, set-up errors >5 mm
were corrected by weekly in-room stereoscopic kV im-
aging. Informed consent was obtained from all patients.
This study was approved by the institutional review
board (ARTIX study NCT01874587).

Weekly dose estimations

Each patient underwent six weekly CTs (CT1-CT6)
using the same protocol as CTO over the treatment
course, except for some variations in intravenous con-
trast agent use, which was not systematically employed,

Table 1 Patient, tumor, and treatment characteristics at initial planning (CT0)

ID  Gender Age TNM Tumor Chemotherapy  Volume (cm®) Mean planned PG dose (Gy) ~ Xerostomia NTCP (%) [23, 24]
sublocation Vo 1P ClP ILP cLp P cLp
1 M 77 T4NO  Tonsil Cetuximab 452 521 486 302 311 27.1 289
2 F 61 T2N2  Base of tongue  CDDP 26.3 311 275 314 26 29.7 19.1
3 M 70 T3N2c Oropharynx CDDP 1815 249 207 379 311 451 29.1
4 F 66 ~ T2N2c  Oropharynx Cetuximab 1072 278 234 329 279 331 22.5
5 M 57 T3NO  Velum CDDP 624 207 18 28.1 27.8 23 223
6 M 67  T3N2c Base of tongue  CDDP 1562 245 227 308 294 254 221
7 M 52 T4N2a  Tonsil Cetuximab 1651  N/A 216 N/A 287 N/A 24
8 M 67  T4NT  Base of tongue  CDDP 1393 22 193 307 29.2 28 25
9 F 65 T3N3 Base of tongue  CDDP 2375 239 202 424 311 56.1 29
10 F 65 T4N3  Oropharynx CDDP 2579 N/A 245 N/A 352 N/A 385
1 M 50  T4N2c  Oropharynx CDDP 4345 N/A 177 N/A 36.3 N/A 41.1
12 M 53 T3NO  Base of tongue  CDDP 144 166 233 413 24.2 536 163
13 M 73 T3N2c  Oropharynx Cetuximab 147 294 292 546 322 82.1 314
14 M 56  T3NO  Epiglottic Cetuximab 14 228 292 197 92 103 2.7
15 M 75~ T2N2a Oropharynx Cetuximab 763 203 224 294 29.1 256 25
16 M 57 T3NO  Oropharynx CDDP 46.5 238 312 321 31.2 29.3 31.3
17 M 64  T3N2c Epiglottic CDDP 1098 235 156 396 17.3 493 7.8
18 M 55 TIN2b Tonsil CDDP 31 202 208 257 2363 187 153
19 M 65 T4NO  Velum CDDP 10.1 237 253 286 282 24 232
20 M 56 T4N2b  Pharyngeal wall CDDP 150 324 268 45 244 62.8 16.6

M male, F female, CTV70 clinical target volume receiving 70Gy, ILP ipsilateral parotid glands, CLP contralateral parotid glands, CDDP cisplatin, NTCP normal tissue

complication, PG parotid gland, N/A not applicable (PGs included in the CTV)

The NTCP Lyman Kutcher Burman (LKB) model (n =1, m = 0.4, and median toxic dose [TDso] = 39.9) [23, 24] defined the risk of xerostomia as a salivary flow ratio

<25 % of the pretreatment one
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Table 2 Dose constraints according to the GORTEC group (the
French group of radiation oncology for head and neck cancer).
D2%: Near maximum absorbed dose

Organ at risk Dose constraint

Spinal cord D2% < 45Gy
Brainstem D2% < 54Gy
Optic nerves D2% < 54Gy

Contralateral parotid Mean dose < 30Gy, median dose < 26Gy

Ipsilateral parotid Mean dose: as low as possible
Oral cavity Mean dose < 30Gy, V30 < 65 %, and V35 < 35 %

Lips D2% < 30Gy, mean dose < 20Gy

particularly not in the context of cisplatin-based chemo-
therapy. Anatomical structures were manually seg-
mented on each weekly CT by the same radiation
oncologist for each patient. In the event of complete re-
sponse, the original macroscopically-involved areas were
still included in CTV;q, which was adjusted to exclude
any air cavities and bone mass showing no evidence of
original tumor invasion.

Treatment always commenced on Mondays, with each
weekly CT performed the following Monday. As patients
were treated 5 days per week, each weekly CT corre-
sponded to a 10Gy additional dose to the PTV (CT1 at
10Gy, CT2 at 20Gy, and so on). The actual doses deliv-
ered weekly were estimated by calculating the dose dis-
tribution on the weekly CTs using treatment parameters
and the CTO isocenter (Fig. 1).

Total cumulated dose estimations using deformable
registration

For all patients, the weekly CT images were first regis-
tered to the planning CT using a rigid transformation
defined by six parameters (three translations and three
rotations). The mean squared error was used as a simi-
larity criterion. The cumulated dose estimate relied on
deformable image registration, using the free-form de-
formation (FFD) method. The control points were itera-
tively displaced according to the considered metric. The
dense deformation field was obtained by B-spline
interpolation [20]. The mutual information metric was
used to handle the modified intensities between CT
datasets caused by the presence of contrast agent. The
geometric transformation obtained using both rigid and
deformable registration was then applied to the weekly
dose distributions in order to propagate each one to the
planning CTO dataset. The implementation was provided
by the ElastiX library [21].

The average Dice score for PG registration was 0.81
(0.62-0.94). The propagated dose distributions were to-
taled to compute the cumulated dose on the planning
CT, which was finally compared to the planned dose.
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Linear regression model and nomogram to predict PG
overdose

PG overdose was calculated as the difference between
the cumulated mean PG dose and the mean PG dose of
the planning CT dataset (CTO).

The following anatomical and dosimetric parameters
have previously been described in the literature as
correlating with PG overdose [6, 10, 14, 15], and were
assessed for this correlation: CTV70 (cm3), PG vol-
ume (cm3), neck thickness (mm), PG-to-CTV70 dis-
tance, and mean PG dose. The PG-to-CTV70
distance was defined as the minimal Euclidean dis-
tance between the surfaces of the two contours. The
difference between and ratio of each of these parame-
ters computed from the two CTs (CTO and each
weekly CT, respectively) were also studied. The Pear-
son correlation was used to assess the correlation be-
tween variables significantly correlated with the PG
overdose. When high correlation was observed be-
tween two variables (r*>0.5), only the most signifi-
cant parameter was included for further analysis.
Finally, a linear regression method with backward elimin-
ation (coefficient of determination r*>0.3, p <0.05) was
used to generate a model for PG overdose prediction. Re-
gression was run with and without an intercept. The
standard errors were compared to decide whether ordin-
ary least squares or regression through origin provides a
superior fit [22]. The model’s accuracy was then validated
by the quantiles-quantiles plot (QQ-plot) and r* for PG
overdose prediction. A nomogram was generated based
on this model, i.e. a chart representing a linear function
calculating a predicted value from plotted input data
(Fig. 2).

Leave-one-out cross validation was then performed to
estimate the model’s stability and accuracy. This method
consisted in all patients but one (1 =19) being used to
develop a PG overdose model (difference between cu-
mulated PG dose and planned dose). A PG overdose
prediction was then calculated for the one remaining pa-
tient using the model. This predicted PG overdose was
then compared to the cumulated PG overdose. This step
was repeated for each patient. The variance of each
model parameters was calculated to estimate the model’s
stability and identify outliers. The mean squared error of
the predicted values was calculated.

Statistical analysis was carried out using the Statistical
Package for the Social Sciences V. 20.0, and R language
and environment for statistical computing.

Weekly replanning for the patients at risk of PG overdose
Using the nomogram, we identified patients predicted
to receive at least one PG overdose, for whom we
performed a weekly IMRT replanning on each weekly
CT dataset, in accordance with the dose constraints
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Week/y cT Deformation field Planning CT (CTO)
Anatomy
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Dose
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Planned dose

dose Estimated cumulated
dose (CT)
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Fig. 1 Total cumulated dose estimation by deformable image registration in four steps. Step 1: The weekly delivered doses were calculated from the
weekly computed tomography scans (CTs). Step 2: A deformable image registration was applied to the weekly doses according to the
deformation field between the weekly and planning CT (CT0). Step 3: The propagated dose distributions were totaled to compute the cumulated
dose for the CT0. Step 4: The planned dose was compared with the estimated cumulated dose

described for the initial planning. PTV coverage did planning. The mean PG cumulated doses with replan-
not significantly differ between the initial planning ning were compared to those without. The impact of
and the weekly replanning. The dose constraints spe- the replanning on the risk of xerostomia was esti-
cified for the OARs complied with the GORTEC rec- mated by using the Lyman Kutcher Burman (LKB)
ommendations for all replanning, as for the initial model of normal tissue complication probability

Cumulgted dose

Nomogram calculation

wleem LR o icted PG i Estimated
replanning g e o calculated PG
cumulateddose ? overdose

Fig. 2 Nomogram use to predict parotid gland overdose. For each patient, the nomogram was used to predict the parotid gland (PG) overdose. In
the event of an estimated PG overdose, weekly replanning was performed. The cumulated doses with replanning were compared to those
without to quantify the benefit of adaptive radiotherapy (ART). CT: computed tomography; CTO: planning CT; CT: first weekly CT (C1); CTV70:
clinical target volume receiving 70Gy
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(NTCP) (n=1, m=0.4, and median toxic dose
[TDso] =39.9) [23, 24], the complication defined as a
salivary flow ratio <25 % of the pretreatment one at
12 months.

Results

A total of 37 PGs were analyzed, due to three ipsilateral

PGs included within the PTV being excluded from analysis.
Based on the difference between the cumulated and

planned PG doses, two PG subgroups were identified

(Fig. 3):

— a PG overdose group: 70 % of all the PGs, with a
mean dose increase of 2.5Gy (up to 11.7Gy) and 16
patients presenting at least one overdosed PG;

— a PG under-dose group: involving the other 30 % of
the PGs, with a mean dose decrease of 1.2Gy (up to
3.1Gy).
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When identifying PG overdose predictors, we found
the parameters from the first weekly CTs to be the most
significant. Two anatomical and three dosimetric param-
eters were significantly correlated with PG overdose
(Table 3).

As the mean PG dose for CT1 and the CT1/planning
mean PG dose ratio were highly correlated with the dif-
ference between the mean PG doses for CT1 and CTO
(ADosePG) (r* = 0.5 and 0.9, respectively, p <0.001), only
the parameter with the highest r* was used (mean PG
dose difference). The three parameters used for PG
overdose prediction were CTV,, on the planning CT
dataset (CT V7o cro), the CTVy;o CTO-to-CT1 difference
(ACTVyp), and the difference between the mean PG
doses of CT1 and CTO (ADosePQ).

Based on these parameters, the resulting linear regres-
sion model for PG overdose prediction, optimized for all
patients, was:

Amean PG dose (Gy)

. . .
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.
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by circles (ipsilateral PG) or diamonds (contralateral PG) (cf. Section 3.2)

Patient number

Fig. 3 Parotid gland overdose assessment. The mean dose difference was calculated between the estimated cumulated dose (without replanning)
and the planned dose, in each parotid gland (PG) (ipsilateral and contralateral), for each of the 20 patients. A dose difference with a positive or
negative value corresponded to a PG overdose or under-dose, respectively. Predicted PG overdose calculated by the nomogram are represented

13 14 15 16 17 18 19 20
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Table 3 Correlation between the anatomical/dosimetric

parameters (calculated on CTO and CT1) and the PG overdose
2

Analyzed parameters r p-value
CTV70_cto 0.32 0.038
ACTVy, —046 0.004
ADosePG 0.72 <0.001
DmeanPG_c 049 0.002
DmeanPG_ct1,DmeanPG_cro 0.70 <0.001

r? = Pearson correlation value, DmeanPG = Mean PG dose (Gy), _CTO = on the
planning CT (CT0), _CT1=CT at the first week (CT1), A =difference of the
parameter between CT1 and CTO

PGoverdose = (0.007 x CTV70cro)-(0.045 x ACTV70)
+(0.509 x ADosePG)

The corresponding nomogram is shown in Fig. 4a.
The quantiles-quantiles plot of the nomogram is shown
in Fig. 4b.

The correlation between the observed and predicted
cumulated PG doses is shown in Fig. 5 (r*=0.75).

Dose variations (PG over- or under-doses) were cor-
rectly predicted for 25 of the 37 PGs (Fig. 3). Of the 16
patients with at least one overdosed PG, 13 were accur-
ately identified (One patient with an error concerning
the side of the PG overdose). In the three patients (Pa-
tients 12, 18 and 19) who were inaccurately classified,
the mean PG was increased by an average of 1Gy (range:
0.4-1.5Gy).

The model’s performance, evaluated using the leave-
one-out cross validation, in terms of identifying patients
with or without PG overdose achieved sensitivity, speci-
ficity, and positive and negative predictive values of
80 %, 60 %, 86 %, and 50 %, respectively. The mean
values and standard deviations (SDs) of each coefficient,
considering the leave-one-out cross validation, were
0.007 (SD: 0.0006), —0.045 (SD: 0.004), and 0.507 (SD:
0.01), for CTV70¢cro, ACTV70, and ADosePG, respect-
ively. The mean square error for the predicted PG over-
dose was 2.6 Gy (SD: 1.6 Gy). No significant outliers
were extracted from the validation procedure.

For the 14 patients identified by the nomogram as
having a predicted PG overdose, the mean PG dose
without ART was 34.8Gy (range: 20.9-51.4Gy), corre-
sponding to a mean xerostomia risk of 37 % (20-86 %).
The dosimetric benefit of weekly replanning for these 14
patients is shown in Fig. 6. Replanning achieved an aver-
age decrease of 3.9Gy in the mean PG dose (range: 0—
9.5Gy), representing an average decrease in absolute xer-
ostomia risk of 8 % (0-22 %).

Discussion
We generated a nomogram aimed at predicting PG over-
dose based on early predictors calculated on the

Page 6 of 11

planning CT dataset and on a CT performed in the first
week of treatment.

In total, 14 of the 16 patients with a calculated
mean PG overdose of 2.5Gy were identified by the
nomogram. All patients with a PG overdose >2.5Gy
were identified. Weekly replanning of these 14 tar-
geted patients enabled the mean PG dose to be de-
creased by 3.9Gy compared to the cumulated
delivered dose, corresponding to an 8 % decrease in
the estimated absolute xerostomia risk.

Due to anatomical variations occurring during the
course of IMRT, some PGs can receive doses exceeding
the planned dose (overdose). In an attempt to prevent this,
ART is designed to take these anatomical variations into
account by generating one or several new plannings. An
increasing number of studies demonstrate this technique
to have dosimetric benefits [1, 2, 4, 25]. The clinical im-
pact of replanning has been evaluated in two studies [5,
26], where it was shown to improve both patient quality
of life [26] and localize disease control, yet had no impact
on overall survival. Nevertheless, ART is particularly com-
plex and time-consuming [11-13], generating increased
workload for all treatment staff. As not all patients may
benefit from ART, it is essential to identify early predictors
of PG overdose to enable appropriate patient selection.
Neck thickness, weight loss, PG volume, initial tumor vol-
ume, and decrease in tumor volume were found to correl-
ate with PG overdose [10, 14, 15]. In a recent review [6],
these anatomical parameters were identified as selection
criteria for ART patient selection, though no clear conclu-
sion was reached due to the heterogeneity of the studies.
However, these correlations were mostly primarily identi-
fied using parameters calculated at the end of treatment,
therefore significantly limiting the possibility of treatment
modifications. These parameters were also correlated with
each other. Decrease in PG volume, for instance, has been
found to correlate with age, body mass index, planned
dose to the parotid glands, initial PG volume, and the vol-
ume of PG overlapping with lymph node metastases. De-
crease in PG volume may be a useful parameter for
identifying patients at higher risk of xerostomia [27].
However, neither the Brouwer et al. [6] study nor our own
found any clear association between the decrease in PG
volume and PG overdose. Other parameters may be indir-
ectly linked to PG overdose. Human papillomavirus
(HPV)-positive cancer has demonstrated a higher sensitiv-
ity to radiation [28, 29]. As the decrease in the CTV dur-
ing the first week of treatment was correlated with PG
overdose, HPV-status may exert an impact on the risk of
PG overdose. Yet our series was not large enough to
analyze the impact of this relationship.

Anatomical variations occurring during the first two
weeks of treatment may be particularly relevant for PG
overdose prediction, and may justify early replanning,
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Fig. 4 a Nomogram to predict PG overdose. The nomogram enables easy prediction of the difference between the mean cumulated parotid
gland (PG) dose and the mean planned PG dose (in Gy), using three parameters calculated on the planning computed tomography (CT) (CT0)
and on a CT performed during the first week of the treatment (CT1). CTV70 (in cm?): clinical target volume receiving 70Gy; ACTV70 (in cm?):
difference between the CTV70 of CT1 and CT0; ADosePG (in Gy): mean PG dose difference between CT1 and CT0. b Quantiles-quantiles plot
(Q-Q plot) of the nomogram. The more accurately the quantile position is aligned, the more linear the model

resulting in significant PG dose sparing [17, 30]. Indeed,
in the literature, CTV shrinkage appears to be particu-
larly significant during the first week of radiotherapy
[31]. In our study, the only anatomical parameters
strongly correlated with PG overdose were CTVy, at
planning and its decrease in the first week. However, this
parameter alone was not sufficient to predict final PG
overdose. Indeed, the most relevant parameter in our
nomogram was the PG dose difference between the
planning CT (CTO0) and the first week of treatment CT
(CT1). Early PG overdose has also been demonstrated to
correlate with the estimated cumulated PG dose by
Hunter et al. [8].

In our study, we found that considering the parame-
ters only for the planning CT was not sufficient for PG
overdose prediction. The acquisition of a new CT,

performed during the first week of treatment with dose
calculation, was required to predict the mean cumulated
PG dose at the end of treatment. In terms of practical
use of ART, replanning decisions can be based solely on
anatomical parameters, ideally defined on cone-beam
CT (CBCT) performed at the time of the fraction, which
is also useful for bone registration to correct for patient
set-up. This approach should be explored further, as-
suming that anatomical parameters alone could be suftfi-
cient for PG overdose prediction, and also be visible on
the CBCT.

We performed a leave-one-out cross validation to esti-
mate the model’s stability and accuracy, which revealed
very low variation in each model coefficient. So, the
model is not strongly influenced by individual patients,
showing that, even if the number of patients is low, the
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considered population is homogeneous enough for the
model to reach stability. No outliers were extracted.
These results are proof of the model’s good stability and
accuracy.

The nomogram’s sensitivity was only 80 %, which is
insufficient for clinical decision making. The nomo-
gram failed to predict PG overdose for two patients,

whom exhibited moderate mean PG dose increases
(<1.5Gy). In order to improve the sensitivity and
identify other anatomical parameters correlated with
PG overdose, a larger patient cohort is required. In
addition, an external cohort is needed to validate the
nomogram before it can be implemented in routine
clinical practice.

Patient number
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Fig. 6 Benefit of weekly replanning for the 14 parotid gland (PG) overdose patients identified by the nomogram. Cumulated mean dose
difference between doses with replanning and those without (left y-axis), in each of the parotid glands (PGs) (ipsilateral and contralateral). The
corresponding estimated risk of xerostomia (%), computed using the normal tissue complication (NTCP) Lyman Kutcher Burman (LKB) model (LKB
NTCP) (n=1, m =04, and median toxic dose [TDsq] =39.9) [23, 24] is represented on the right y-axis. Xerostomia was defined as a salivary flow ra-
tio <25 % of the pretreatment one
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We attempted to translate the dosimetric benefit from
ART to a clinical benefit, based on a xerostomia NTCP
model. A strong relation existed between the mean doses
to the parotid glands and salivary flow, and the efficacy of
these NTCP models proved relatively high (area under the
curve: 0.68—0.75) [24, 32—34]. Non-dosimetric patient fac-
tors, such as age, tumor stage, baseline xerostomia, and
chemotherapy [32, 35-37] may also increase the risk of xer-
ostomia, though this is controversial [32—34]. Using IMRT,
severe xerostomia was detected in approximately 40 % of
the patients, compared to 80 % using 3D conformal radio-
therapy [38, 39]. The dose constraints recently suggested by
the QUANTEC group [34] may enable reducing severe xer-
ostomia to under 20 % [33, 37]. However, these dose con-
straints were only met in a minority of patients. In our
study, the estimated xerostomia risk for the cumulated dose
without replanning was 37 %, close to the observed xeros-
tomia values in IMRT studies [38, 39]. For the patients pre-
dicted to receive overdose by the nomogram (70 % of our
population), an ART strategy could enable the xerostomia
risk to be reduced to under 30 %.

The key issues affecting ART use include the choice
of image registration method to monitor the cumu-
lated dose and thus trigger replanning, within a dose-
guided radiotherapy perspective. The PGs are often
close to or within a high-dose gradient, and even
minor geometrical registration errors can lead to high
cumulated-dose errors. A recent study evaluating ac-
curacy for dose accumulation of 10 deformable-image
registration methods in HNC [40]. For the most ac-
curate method (FFD with mutual information), a
mean cumulated dose point-to-point error of 2.5Gy
for the PG was shown. Taking into account these un-
certainties, it was possible to correctly identify the
overall under- and overdosed PGs. Moreover, poten-
tial loss of PG cells during the course of radiotherapy
[41] should be carefully considered due to the uncer-
tainty of point-to-point matching between different
CTs when using a deformable registration method. In
addition, due to the possible heterogeneity of radio-
sensitivity within the PGs [42-44], local hotspots may
also have different impacts on xerostomia risk. In our
study, the predicted value of PG overdose was ob-
tained from the estimated cumulated dose using the
Dose Index Registry (DIR), and is therefore subject to
uncertainty. For all these reasons, and in the interest
of clinical justification (correlation between the mean
PG dose and xerostomia), we only investigated the
mean PG dose. Clearly, more thorough analysis into
correlations between the PG cumulated dose and xer-
ostomia, using a larger patient cohort or phantom-
based studies evaluating the accuracy of the DIR,
need to be carried out in order to validate the dose
accumulation method for daily clinical practice.
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Conclusion

Based on the planning and first week CTs, our nomo-
gram enabled the identification of all patients with large
PG overdoses (>2.5Gy). Replanning of these targeted pa-
tients lead to an eventual 4-Gy decrease in the mean PG
overdose, while still respecting the dose-volume con-
straints in the other OARs and PTV. Other external co-
horts are now required to validate this nomogram, as
are clinical studies in order to validate the benefit of
ART in the aims of decreasing the risk of xerostomia in
locally-advanced HNC IMRT.
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