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Abstract

Background: This study investigates the implementation of a new intensity modulated arc therapy (IMAT) class solution
in comparison to a 6-static beam step-and-shoot intensity modulated radiotherapy (s-IMRT) for three-phase adaptive
'8F_FDG-PET-voxel-based dose-painting-by-numbers (DPBN) for head-and-neck cancer.

Methods: We developed '®F-FDG-PET-voxel intensity-based IMAT employing multiple arcs and compared it to clinically
used s-IMRT DPBN. Three IMAT plans using 8 FDG-PET/CT acquired before treatment (phase ), after 8 fractions (phase 1)
and CT acquired after 18 fractions (phase Ill) were generated for each of 10 patients treated with 3 s-IMRT plans based on
the same image sets. Based on deformable image registration (ABAS, version 041, Elekta CMS Software, Maryland Heights,
MO), doses of the 3 plans were summed on the pretreatment CT using validated in-house developed software.
Dosimetric indices in targets and organs-at-risk (OARs), biologic conformity of treatment plans set at <5 %, treatment
quality and efficiency were compared between IMAT and s-IMRT for the whole group and for individual patients.

Results: Doses to most organs-at-risk (OARs) were significantly better in IMAT plans, while target levels were similar for
both types of plans. On average, IMAT ipsilateral and contralateral parotid mean doses were 14.0 % (p =0.001) and 12.7 %
(p < 0.001) lower, respectively. Pharyngeal constrictors Dsq, levels were similar or reduced with up to 54.9 % for IMAT
compared to s-IMRT for individual patient cases. IMAT significantly improved biologic conformity by 2.1 % for treatment
phases | and Il. 3D phantom measurements reported an agreement of 295 % for 3 % and 3 mm criteria for both
treatment modalities. IMAT delivery time was significantly shortened on average by 41.1 %.

Conclusions: IMAT implementation significantly improved the biologic conformity as compared to s-IMRT in adaptive
dose-escalated DPBN treatments. The better OAR sparing and faster delivery highly improved the treatment efficiency.
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Background

Intensity-modulated radiation therapy (IMRT) has become
a standard treatment of head-and-neck cancer due to its
ability to decrease radiation-induced toxicity [1-3], though
the survival rates have not been significantly improved.
Since its introduction, different delivery techniques have
evolved to make IMRT faster, more precise and flexible. At
present, static, dynamic and rotational IMRT are in use
demonstrating comparable dose coverage and conformity
[4, 5]. Because of a faster delivery, rotational techniques
like intensity-modulated arc therapy (IMAT) gained wide-
spread use over recent years. A comparison of different ro-
tational techniques has already been done in literature and
it is beyond the scope of this paper [6]. Commercial solu-
tions to perform IMAT are currently available for as well
Elekta (Crawley, UK) as Varian (Palo Alto, CA, USA).

In planning studies for head-and-neck cancer, IMAT
demonstrated better sparing of organs-at-risk (OARs) with-
out increasing integral dose when compared to static or
dynamic IMRT [4-6]. IMAT has the ability to modulate
intensities at an infinite number of gantry angles resulting
in superior, highly structured dose distributions that are
needed for dose painting, i.e., mapping dose to tumor het-
erogeneity detected by biologic imaging. Up to now, clinical
dose-painting by numbers for head-and-neck cancer was
based on non-rotational IMRT [7, 8]. The potential of bio-
logical image-based IMAT has not been explored yet. We
developed an '®F-FDG-PET-voxel intensity-based IMAT
class solution and investigated its possible implementation
in comparison to clinically used adaptive step-and-shoot
18 _FDG-PET-voxel intensity-based IMRT (s-IMRT). Here-
with we present the results of our study.

Methods

Study population

The first 10 head-and-neck cancer patients treated with
adaptive '®F-FDG-PET-voxel intensity-based IMRT in
a randomized phase II dose-escalation clinical trial
(NCTO01341535) were selected for this study (Table 1).

Table 1 Patient characteristics

Patient No. Age (years) Tumor site Tumor subsite TN-stage

1 64 Oropharynx  Tonsil cT4a pN2b
2 48 Oropharynx  Base of Tongue  cT1 cN2c
3 54 Oropharynx  Tonsil cT4a cN2c
4 74 Hypopharynx  Aryepiglottic Fold ¢T2 cN1

5 40 Hypopharynx  Piriform Sinus cT1 pN2a
6 53 Larynx Glottis cT3 cNO

7 52 Oropharynx  Vallecula cT1 pN2b
8 54 Oropharynx  Tonsil cT2 cN2c
9 59 Larynx Supraglottis cT2 cNO
10 58 Oropharynx  Vallecula cT4a cN2c
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All tumors were biopsy-proven non-metastatic head-
and-neck squamous cell carcinomas.

Imaging and target definition

All patients were positioned with a five-point thermoplas-
tic mask (Orfit Industries N.V., Belgium), which extended
down to the shoulders, during computed-tomography
(CT) isocenter simulation and treatment delivery. Planning
CT scans of 3 mm slice thickness were acquired before the
treatment and after the 8™ and 18™ fraction. A verification
CT was taken at the treatment end. Contrast-enhanced
"E_-FDG-PET/CT (Philips Medical Systems, Germany)
was performed before treatment and after the 8" frac-
tion. '®F-FDG-PET-images were acquired with a voxel
size of 4 x 4 x 4 mm?® as described earlier [9]. Fusion of
the planning CT and '®F-FDG-PET/CT scans was done
on a Pinnacle treatment planning system, version 9.0
(Philips Medical Systems, Andover, MA).

Delineation of the gross tumor volume of the primary
tumor (GTVrt) and pathological lymph nodes (GTVy)
was done using mutual information of both anatomical
and biological imaging. A threshold level of 50 % of
SUVpymax (maximal standardised uptake value) was set
for "®F-FDG-uptake in Pinnacle. Pathologic lymph nodes
were delineated separately and noted as the GTVy; and
GTVyp. The high-risk clinical target volume (CT Vi) was
created combining the GTVy and a three-dimensional
expansion of the GTVt with 1 cm and adjusted to the air
cavities and uninvolved bones. 3 mm margin to the CTVyy
was used to create the high risk planning target volume
(PTVyg). Delineation of the elective neck regions according
to the guidelines of Gregoire et al. [10] resulted in the CTV
of the elective neck (CTVgy) and the elective neck PTV
(PTVgy) after a 3 mm expansion in all directions.

The considered organs-at-risk (OARs) were spinal cord,
brainstem, swallowing structures defined as one region-
of-interest (superior, medial and inferior pharyngeal con-
strictor, upper oesophageal sphincter, first 2 cm of the
oesophagus and supraglottic larynx), parotids and man-
dible. Planning OAR volumes (PRVs) were created for the
spinal cord and brainstem by three-dimensional expan-
sions of 5 mm and 3 mm, respectively.

Deformable image co-registration (ABAS, version 0.41,
Elekta CMS Software, Maryland Heights, MO) was used
to propagate the targets and OAR contours from one CT
to another in chronological order. All structures were
reviewed and edited if necessary by an experienced head-
and-neck radiation oncologist.

Dose prescription and treatment planning

Treatment phases I, II and III consisted of 10 fractions
planned on the 1%, 2™ and 3™ CT set, respectively.
Dose-painting was performed in GTVt and GTVy dur-
ing the first 20 fractions. The dose range was between
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2.2 Gy and 3.1 Gy per fraction in phases I and II. Only a
GTV volume <1.75 cm® was allowed to receive more
than 2.9 Gy per fraction. GTVy was dose-painted in 4
out of 6 patients with N+ disease; in the 2 other patients,
which had a pathological lymph node volume <4 cm?,
the GTVy median prescription dose was 2.2 Gy per frac-
tion. The total dose range for the GTVt and GTVy was
66-83 Gy.

No dose-painting was performed during the last 10
fractions, where a Dgsy, of 2.0 Gy/fx was prescribed to
PTVyr. Elective neck was irradiated during fractions 1-
20 with a median total dose prescription of 40 Gy to
PTVgn. GTVr and GT Vy biologic conformity was mea-
sured by a quality factor (QF), defined as the mean devi-
ation between prescribed and planned dose in each
PET/CT voxel [9]. QF was kept below 5 % where pos-
sible. Every treatment was planned to a total of 30 frac-
tions and then rescaled to 10 fractions. Maximum doses
of 50, 60 and 70 Gy were allowed to <5 % of the spinal
cord (PRV), brainstem (PRV) and mandible, respectively.
A maximal dose of less than 45 Gy for the spinal cord,
50 Gy for the brainstem and 27 Gy to <50 % of the vol-
ume of the spared parotids, respectively, were consid-
ered clinically acceptable.

The methodology of 'F-FDG-PET voxel intensity-
based DPBN has been previously discussed [9]. Briefly, a
dose is prescribed to the voxels in the dose-painted tar-
get volume as a function of signal intensity as follows:

D(I) = DlOW 1 SIlow

D(I) = Dyt ﬂ (Dhigh _Dlow) IlaWSISIhigh
Ihigh ~Liow

D(I) = Dyign Tnign<I

where the signal intensities Iy, and Ijo, are determined
as 95 % of the maximum '®F-FDG-PET intensity and as
25 % of Ijgh, respectively. The extension of the discrete
PET intensity data to the continuum was implemented
using trilinear interpolation for the randomly seeded
points in the delineated volumes. Using the PET-
intensity to dose relation, the dose prescription was on a
point-by-point base.

All treatment plans were created for an Elekta linac
(Crawley, UK) equipped with a standard multileaf colli-
mator with 40 leaf pairs, capable of delivering s-IMRT
and IMAT with variable dose rate, gantry and collimator
rotation speed. In-house developed software using an
anatomy- and '®F-FDG-PET-voxel intensity-based seg-
mentation tool (ABST, BBST) followed by leaf position
and monitor unit (MU) optimization was used for treat-
ment planning [11, 12].

s-IMRT plans consisted of six non-opposing coplanar
6 MV beams with gantry angles of 45°, 75°, 165°, 195°,
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285° and 315°. The IMAT class solution was made of 6
MYV arcs collimated around PTVgy (gantry angle from
-176° to 176°) and PTVyg (144° to -144°) with control
points (CPs) defined every 8°. The only constraints were
on the physical abilities of the linear accelerator to de-
liver the treatment (maximum gantry speed, maximum
collimator rotation speed, maximum leaf speed, mini-
mum dose rate), and a minimum distance constraint of
1 c¢cm for opposite and diagonally-opposite leaves of the
MLC. ABST [11] was used to create the starting set of
CPs, resulting in multiple initial arcs, avoiding both pa-
rotids, the swallowing structures and the PRV of the
spinal cord. The CPs were optimized as described previ-
ously [12]. ABST generates beam segments with leaf and
jaw positions based on a beams-eye-view projection of
selected PTVs and OARs. BBST additionally takes into
account PET-intensities to create initial beam segments
shapes [9]. For a faster delivery, the parts of the arcs
with a contribution of less than 2 MUs were eliminated
during the optimization leading to the split of the arcs in
sub-arcs. A CP refinement was performed by interpolating
and generating additional CPs within the arcs, followed by
MU and leaf position optimization. This CP refinement
limited MU differences, gantry and collimator angle differ-
ences, leaf and jaw position movements between CPs and
was applied to reach the accuracy constraints used in the
treatment verification. After the final optimization, the
remaining arcs were linked together in one beam accord-
ing to the shortest possible delivery time. All dose compu-
tations were done in Pinnacle with a collapsed cone
convolution/superposition calculation algorithm.

Dose reporting and statistical analysis
Doses of the 3 treatment plans were summed on the pre-
treatment CT using in-house developed software [13]
based on the deformable CT image registrations made
with the ABAS software. The reporting of the region-of-
interest (ROI) dose levels was done on the summed doses.
To assess the risk of inducing secondary malignancies,
the integral dose was calculated in the patient volume as
follows:

ID = Dmean'v'p

where Diean is the mean dose, V is the volume and p
the tissue density, which was considered to be 1 g/cm®.

Statistical tests of dosimetric, biologic conformity, treat-
ment verification and quality (MUs and delivery time) dif-
ferences between s-IMRT and IMAT were done using a
two-sided Wilcoxon matched-pair signed rank test with
SPSS software version 20.0 (SPSS Inc., Chicago, IL).
Differences were considered statistically significant for
p-values <0.05.
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Table 2 Population average dose levels for s-IMRT and IMAT treatments
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Target/Organ-at-risk

s-IMRT (Gy)

IMAT (Gy)

p-value

GTVy
DZ%
Dogoo
GTVy
D2%
D98%
PTVir
D2%
Dogoe
PTVey
Dags
Doss
CTVhr
DZ%
Dogoo
CTVen
D2%
D98%
Spinal cord PRV
Dsos
Dsos%
Brainstem PRV
Dsas
Dsos%
Ipsilateral parotid
Vazay
Dmean
Contralateral parotid
Varay

Dmean

PC
Dz%
Dsos%
Dosss
SS
Dags
DSO%
Dogoo
Mandible

D2%

804 (764 - 83.7)
67.3 (63.8 - 71.0)

73.3 (664 - 79.3)
64.8 (62.5 - 69.9)

769 (745 - 79.6)
575 (543 - 594)

66.0 (61.1 -73.3)
322 (212-422)

78.1 (756 - 81.2)
60.9 (59.6 - 61.6)

66.5 (59.7 - 75.9)
389 (35.2-445)

324 (295 - 347)
214 (35-285)

205 (124 - 284)
23(14-3.1)

43.8 (348 - 52.5)
258 (187 -31.8)

40.0 (27.6 - 50.1)
244 (169 - 306)

67.3 (639 - 73.3)
57.0 (49.1 - 62.0)
363 (194 -51.3)

68.0 (61.0 - 77.6)
535 (405 - 63.8)

343 (24.1 - 40.3)

53.6 (344 - 68.1)

81.0(77.2-85.1)
684 (64.8 - 73.6)

748 (67.2 - 81.0)
66.3 (63.1 - 72.8)

779 (758 - 79.3)
56.9 (525 - 58.7)

67.0 (62.0 - 76.0)
327 (202 - 40.8)

79.1 (766 - 81.3)
60.3 (589 - 61.5)

67.8 (61.7 - 77.9)
386 (34.1 -422)

284 (23 -353)
136 (1.8 -21.5)

142 (6.1 - 23.6)
21 (1.1 -34)

366 (246 - 48.1)
222 (149 -294)

33.0(132-474)
213 (125-275)

67.6 (63.5 - 74.0)
534 (38.2 - 60.8)
251 (111 -437)

68.0 (60.8 - 76.6)
474 (325 -63.2)

233(124-312)

536 (350 - 669)

0.175
0.009

0.014*
0.043*

0.013
0.160

0.005
0452

0.023
0.025

0.001
0.222

0.003
0.001

<0.001
0.019

0.007
0.001

0.003
<0.001

0469
0.021
<0.001

0.903

0.003

<0.001

0923

The dose distributions of the 3 treatment phases were summed on the pretreatment CT. Reporting is done on manually delineated targets and organs-at-risk.

Statistically significant differences are shown in bold

Abbreviations: s-IMRT step-and-shoot IMRT, IMAT intensity modulated arc therapy, GTVr gross tumor volume of the primary tumor, GTVy GTV of the metastatic
lymph nodes, CTVyz high-risk clinical target volume, PTVyz high-risk planning target volume, CTVgy elective neck CTV, PTVgy elective neck PTV, PRV planning
organ-at-risk volume, SS swallowing structures include the superior, middle and inferior pharyngeal constrictor muscles, upper esophageal sphincter, supraglottic
larynx and upper 2 cm of the cervical esophagus, PC pharyngeal constrictors include the superior, middle and inferior pharyngeal constrictor muscles, D,o, dose

received by x% of the volume, V;, % of the volume that receives at least 27 Gy
*Of 10 patients, 6 had metastatic lymph nodes
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Treatment verification
The delivered dose distributions of all IMAT and s-IMRT
treatment plans were verified with the 3D dosimetry system
Delta* (Scandidos, Uppsala, Sweden). The Delta* phantom
has 1069 p-type disc-shaped Silicon diodes with a diameter
of 1 mm and axial size 0.05 mm, in a central region (6x6
cm) spaced per 5 mm, outside the central region spaced
per 10 mm. Global gamma indices [14] were deter-
mined in the Delta* control software for the criteria of
3 % dose difference and 3 mm distance-to-agreement,
the normalization dose being the prescribed dose.

The delivery treatment time was also recorded from
the start of the first beam till the end of the last beam.

Results

Dosimetrical and biological conformity results

Population average dose-volume parameters of targets
and OARs for both strategies are shown in Table 2. Most
of the differences between s-IMRT and IMAT for target
and OAR dose levels were significant (Table 2). Mean
Va6y of ipsi- and contralateral parotids were improved
by 16.4 % (p =0.007) and 17.5 % (p = 0.003) in the IMAT
plans, respectively. For the volume of interest that com-
prised the pharyngeal constrictor muscles (PC) and the
one that combined the swallowing structures (SS), both
Dsg9 and Dogy, levels were significantly improved in the
IMAT plans, while D5y, did not show on average any im-
portant differences.
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Analysis of each summed dose distribution separately
revealed larger differences for some cases in comparison
with average data. Additional file 1: Figure S1 showed
similar or highly reduced Dsg, and Dogy, levels of PC and
SS with up to 54.9 % for IMAT compared to IMRT. Doy
differences of the same structures varied from -2.8 % to
3.6 %. For a cT4a pN2 ¢cMO oropharynx cancer case the
results were plotted in Fig. 1. IMAT ipsilateral and contra-
lateral parotid mean dose was lowered by 24.9 % and
5.3 %, respectively, while V,, was also improved by 24.9 %
and 6.7 %, respectively. Additional file 2: Figure S2 pro-
vides for the same patient a visual image of how IMAT
isodoses better spare the parotids on every treatment
phase, except for the contralateral parotid on the third
treatment phase. The s-IMRT median dose of the swal-
lowing structures was 22.7 % and 12.3 % higher for the PC
and SS structures.

GTVr quality factors (QF) were significantly better for
the IMAT-plans (p <0.001 for both DPBN-phases) with
a maximum difference from IMRT factors of -2.1 % in
phase I and II (Table 3). When the QF values of GTVt
and GTVy were considered as one group, a Wilcoxon
test also showed significantly (p < 0.001) lower values for
IMAT.

The integral dose inside the patient was lower for IMAT
in 7 patients with a maximum difference of 14.4 % (Table 4).
For 2 cases, IMAT integral dose was with 2.8 and 3.7 %
higher, while for one case it was similar.

8
PTVen Dogs, 7 Dogy,
6!
Doy,
3
0
Doy
PTVur
D2,
Dogss

Doges

CTVen

of the volume that receives at least 27 Gy

Fig. 1 Radar charts of dose/volume levels comparing s-IMRT and IMAT plans summed on the pretreatment CT for a patient with a cT4a pN2 cMO
oropharynx cancer. The areas are formed by connecting the values belonging to one of the two treatment strategies. Abbreviations: s-IMRT = step-and-
shoot IMRT; IMAT = intensity modulated arc therapy; GTVy = gross tumor volume of the primary tumor; GTVy = GTV of the metastatic lymph nodes;
CTVg = high risk clinical target volume; PTV,jz = high risk planning target volume; CTVgy = elective neck CTV; PTVgy = elective neck PTV; PRV = planning
organ-at-risk volume; SS = swallowing structures — includes superior pharyngeal constrictor, middle pharyngeal constrictor, inferior pharyngeal
constrictor, upper esophageal sphincter, supraglottic larynx and upper 2 cm of the esophagus; PC = pharyngeal constrictors — includes superior
pharyngeal constrictor, middle pharyngeal constrictor and inferior pharyngeal constrictor; Dy, = dose received by x% of the volume; V56, = %

Spinal Cord (PRV)

D N
Brainstem
(PRV)
Dsoss
=s-|MRT
—— IMAT
Dy, Mandible

Dmean

V27Gy

Ipsilateral Parotid
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Table 3 Quality factors (%) of s-IMRT and IMAT dose-painting by
numbers plans of the first two treatment phases
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Table 4 Integral Dose (J) calculated on the pretreatment CT
scans inside the patient volume

Phase | Phase I Patient No. s-IMRT IMAT A%
SIMRT IMAT SIMRT IMAT 1 2431 2384 -1.9
Patient 1 2 2744 2743 0.0
GTVr 51 39 43 28 3 1153 109.1 -54
GTVn1 1.8 15 4.6 14 4 1251 1236 -1.2
GTVh2 28 20 5 1353 129.1 -4.6
Patient 2 6 1205 124.9 37
GTVy 50 36 40 32 7 130.2 1289 -1.0
GV 3.1 29 53 38 8 150.1 1286 -144
Patient 3 9 1044 1016 -2.7
GIVy 43 28 36 22 10 160.1 164.6 28
Patient 4 Abbreviations: s-IMRT step-and-shoot IMRT, IMAT intensity modulated
GTVr 40 45 26 34 oretherpy
Patient 5 Discussion
GTVr 51 35 45 37 In this study we demonstrated the feasibility of a new
Patient 6 8F_FDG-PET-voxel intensity-based IMAT class solution in
o b 29 - - our adaptive dose-painting s.trategy. D?BN imposes hegvy
demands to treatment planning and delivery technology in-
Patient 7 cluding high dose gradients and high degree of fluence
GTVr 38 41 34 29 modulation. Until now **F-FDG-PET-voxel intensity-based
Patient 8 s-IMRT has been used in DPBN trials for head-and-neck
GTV; 40 23 49 28 cancer [7, 8]. Probably due to limited modulation of s-
GV, 25 55 IMRT in comparison to IMAT, biologic conformity of
e, 26 . s—IMRT—based DPBN plf\ns was r}0t systematic. Severe
toxicity was also experienced with DPBN-based dose
Patient 9 escalation s-IMRT treatments [7] e.g. mucosal ulcers
GTVy 35 19 28 14 and dysphagia. Preliminary data from our clinical trials
Patient 10 suggests that severe toxicity was correlated with dose-
GTVr 51 41 51 40 escalation and with smoking and alcohol abuse during
GTVe 39 34 51 24 and after treatment. There was no indication that severe

Dose painting inside GTVy was done only for the cases where the PET signal
was high enough

Abbreviations: s-IMRT step-and-shoot IMRT, IMAT intensity modulated arc
therapy, GTVy gross tumor volume of the primary tumor, GTVy, metastatic
'8F_FDG-PET-positive lymph node

Delivery results

The data on dosimetric verification of treatment plans,
number of MUs and delivery time are presented in
Table 5. The number of MUs was significantly higher
for IMAT than for s-IMRT plans. All treatments were
delivered on the Elekta linacs while measuring with
the Delta* system. Mean percentages of the points
with gamma index >1 were 99.7 £ 0.6 % versus 98.7 +
1.3 % for s-IMRT and IMAT, respectively. On average,
s-IMRT treatment times of phases I, II and III were
6:52, 6:39 and 5:00 min, respectively. IMAT delivery
was significantly shorter: 4:13, 3:44 and 2:56 min,
respectively.

toxicity could be caused by IMRT or the dose painting
concept itself. The search to decrease the toxicity of dose-
escalated treatments by reducing the OAR doses lead to
the development of '*F-FDG-PET-voxel intensity-based
IMAT.

We proposed a method using multiple partial arcs that
would ensure higher flexibility and better conformity in
dose distributions. In IMAT plans, the dose-painting
quality factor evaluating biologic conformity of treat-
ment plans showed significantly better values than for
s-IMRT plans. Although most of the differences in Do
and Dggo, for the target structures were significant, they
were not clinically relevant on both individual and aver-
age patient data.

Previous studies showed that in complex-shaped tar-
gets as head-and-neck cancer using a single arc was not
sufficient to reach the quality of IMRT plans [15]. Most
publications report similar or slightly better IMAT
plans (dose coverage and homogeneity in targets) in
comparison with dynamic IMRT or static IMRT at
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Table 5 Delivery analysis of each treatment phase: number of monitor units (MUs), treatment time (minutes:seconds) - registered
from the beginning of the first beam till the end of the last beam - and the percentage of the measurement points with y< 1 -
which compares Delta® measurements and Pinnacle dose calculations

Patient Phase Number of MUs Treatment time % of points with y < 1
s-IMRT IMAT s-IMRT IMAT s-IMRT IMAT
1 I 609 792 813 5:15 100.0 984
I 515 671 803 349 100.0 96.8
Il 599 777 6:05 341 100.0 985
2 I 646 742 9:00 4:27 100.0 98.6
I 646 803 813 330 100.0 97.5
Il 448 616 5:50 3:35 994 989
3 I 415 725 6:11 3:56 100.0 97.8
I 436 734 6:30 315 100.0 96.1
Il 310 877 5:00 412 97.3 94.3
4 I 384 737 5:50 348 100.0 98.8
I 409 671 5:55 412 99.6 98.6
Il 283 575 5:02 3:05 994 98.7
5 I 438 719 5:50 347 100.0 99.7
I 417 751 6:12 312 100.0 974
Il 235 226 4:24 1:27 100.0 100.0
6 I 520 809 6:13 3:14 100.0 99.8
I 466 748 5:55 323 100.0 984
Il 263 424 4:22 2:35 100.0 100.0
7 I 538 695 6:10 4:20 100.0 99.9
I 591 738 6:30 349 100.0 100.0
Il 263 664 5:00 3:05 99.5 994
8 I 689 672 9:00 336 99.7 99.0
I 437 595 6:32 4:06 100.0 100.0
Il 368 740 415 3:54 99.8 982
9 I 450 708 526 451 100.0 99.2
I 464 674 541 3:34 99.9 99.7
Il 315 322 4:46 1:56 984 100.0
10 I 545 746 6:47 5:03 100.0 100.0
I 562 759 7:07 437 99.8 98.6
Il 336 270 5:25 1:52 994 99.6
p-value <0001 < .0001 <0001

Two-sided Wilcoxon matched-pair signed rank test p-values are given on the last row

Abbreviations: s-IMRT step-and-shoot IMRT, IMAT intensity modulated arc therapy

conventional dose prescription, when double or triple
full arcs were used [4, 5, 15-20].

IMAT has the potential to decrease doses to OARs
[4, 5, 15-21] that becomes crucially important in dose-
escalation treatment protocols. In s-IMRT plans we
usually sacrifice the ipsilateral parotid, if the tumor or
metastatic lymph node is at the level of the gland. A
previous study [22] showed that adapting treatment to
anatomic changes in the glands could lower doses even
in the ipsilateral parotid. The current study results

demonstrate that IMAT could further spare both pa-
rotids by significantly reducing Dyean (by 14.0 % and
12.7 % for the ipsilateral and contralateral parotid, re-
spectively) and Va6, (by 16.4 % and 17.5 % for the ipsi-
lateral and contralateral parotid, respectively) as compared
to s-IMRT, both treatments being adaptive. Vanetti et al
[5] obtained a significant reduction of parotid Dyc., using
two full arcs against dynamic IMRT by 14.0 % and 13.5 %
for the ipsilateral and contralateral parotid, respectively.
Other studies employing double or triple full arcs
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demonstrated similar contributions to parotid Dpe.n by
IMAT and IMRT [15, 16, 19]. With IMAT we could also
better spare other OARs - the spinal cord, brainstem,
pharyngeal constrictor muscles and swallowing structures -
except the mandible (Table 2) a finding in agreement with
Vanetti et al. [5]. Reduction in doses to OARs was even
more evident in individual patients (Additional file 1:
Figure S1 and Additional file 2: Figure S2).

Most retrospective [4, 5, 15—20] and prospective [21]
IMAT-IMRT comparisons report a lower number of
MUs for the arc therapy plans, although some report
higher MUs [16, 26]. Our IMAT plans had on average
higher MUs than IMRT plans, which might be of less
concern due to the following reasons. The integral dose
inside the patient (Table 4) showed that for IMAT plans
the theoretical risk of developing secondary malignancies
was less or similar to the s-IMRT plans. By delivering
more dose to the surrounding tissues, based on the linear-
non-threshold-model, an increase in secondary neoplasm
can be expected [23]. Furthermore, the latest commer-
cially available MLC devices are characterized with very
low leakage and hence the overall patient exposure to low
doses is highly reduced [24-26]. The linac head and MLC
leakage is even further reduced in the case of flattening fil-
ter free linacs [27].

Our IMAT plan measurements showed that a discrete
dose calculation per 8° was not always a good approxi-
mation of the arc delivery (data not shown). There are
two reasons likely to cause the lower gamma index per-
centages for the IMAT QA: one is the discretization (to
a limited number of gantry angles) used in the dose
computation, the second is the higher number of Monitor
Units (MU) for the IMAT plans together with smaller
fields. By CP refinement and further optimization, gamma
percentages higher than 94.3 % could be achieved. The
single arc plans of Bertelsen et al. [18] gave slightly better
average percentages for gamma<1 (99.6 £ 0.5 %) as com-
pared to the multiple partial arc plans of the present study
(98.7 £ 1.3 %). Korreman et al. [28] got 89.6 %, 88.5 % and
92.2 % for double arc plans corresponding to 3, 7 and
11 dose-painting-by-contours prescribed levels for one
individual case. The reliability of Delta* phantom mea-
surements for IMRT and IMAT was studied by Bedford et
al. [29]. We would like to point out that the spacing of 0.5
and 1 cm between the Delta® array detectors was rather
limited for the high dose gradients of DPBN plans.

Rotational treatment shortens delivery time thus im-
proving comfort for the patient and reducing risk of pa-
tient movement during treatment, which cannot be
neglected [30]. By eliminating parts of the arcs with very
low contribution and linking them in one arc, IMAT
treatment delivery time became in the range 1.3 to
5.2 min, which despite dose escalation, was comparable
or even faster than published data on single, double or
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triple full arc plans using conventional prescription
doses to targets [5, 15-20].

Conclusions

IMAT implementation in an adaptive dose-escalation
biological image-guided treatment strategy lead to sig-
nificantly better biological quality factors in comparison
to s-IMRT. The method was superior in reducing dose
to OARs, biologic conformity and treatment efficacy.
IMAT treatment delivery was significantly faster than s-
IMRT and the multiple partial arc class solution made it
one of the fastest reported in literature. Hence more pa-
tients can be treated per day with more comfort and less
intra-fraction movements.
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Additional files

N
Additional file 1: Figure S1. Individual patient IMAT and s-IMRT dose
levels (Dao, Dsoos, Dogos) for the volume of interest that comprises the
pharyngeal constrictor muscles (PC) and the one that combines the
swallowing structures (SS). Each graph presents the 10 individual patient
values of one volume of interest dose level for the total summed dose
distribution on the pretreatment CT. X and y axes show the s-IMRT and
IMAT dose values (Gy). The marker position above or below the identity line
(dotted) correspond to a higher or lower IMAT dose level value in comparison
with s-IMRT, respectively. Abbreviations: s-IMRT = step-and-shoot IMRT;
IMAT = intensity modulated arc therapy; PC = pharyngeal constrictor —
includes superior pharyngeal constrictor, middle pharyngeal constrictor
and inferior pharyngeal constrictor; SS = swallowing structures — includes
superior pharyngeal constrictor, middle pharyngeal constrictor, inferior
pharyngeal constrictor, upper esophageal sphincter, supraglottic larynx and
upper 2 cm of the esophagus; D,q, = dose received by x% of the volume.
(TIF 792 kb)

Additional file 2: Figure S2. s-IMRT (first row) and IMAT (second row)
dose distributions for the 3 treatment phases of a patient with a cT4a
pN2 cMO oropharynx cancer. Isodoses are displayed on the CT transverse
images. For phases | and Il the contrast-enhanced '®F-FDG-PET image set
is superposed on the CT. The regions of interest contours are drawn as
follows: GTVr and GTVy in red, CTVyg in purple, PTVr in blue and the
parotids in green (colorwash). Abbreviations: s-IMRT = step-and-shoot
IMRT; IMAT = intensity modulated arc therapy; GTVy = gross tumor volume
of the primary tumor; GTVy = GTV of the metastatic lymph nodes;
CTVur = high risk clinical target volume; PTVyg = high risk planning
target volume. (TIF 1747 kb)

Abbreviations

18F-FDG-PET: 2-deoxy-2-("®F)fluoro-D-glucose positron emitting tomography;
ABAS: Elekta’s atlas-based autosegmentation; ABST: anatomy-based
segmentation tool; BBST: biology-based segmentation tool; CPs: control
points; CT: computed tomography; CTVyg: high risk clinical target volume;
CTVgn: elective neck clinical target volume; Dypean: mean dose; DPBN: dose-
painting-by-numbers; Dy, dose received by x % of the volume; GTV\,: gross
tumor volume of pathological lymph node(s); GTVy: gross tumor volume of
the primary tumor; Gy: gray; IMAT: intensity-modulated arc therapy;

MU: monitor unit; MV: megavolt; OAR: organ-at-risk; PC: pharyngeal
constrictor; PRV: planning risk volume; PTVgy: elective neck planning target
volume; PTVg: high risk planning target volume; QF: quality factor;
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ROI: region of interest; s-IMRT: step-and-shoot intensity modulated
radiotherapy; SPSS: IBM statistical package for the social sciences;

SS: swallowing structures; SUVyax: maximal standardised uptake value;
Viay: Volume receiving x Gy.
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