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Abstract

Background: Glioblastomas progress rapidly making response evaluation using MRI insufficient since treatment
effects are not detectable until months after initiation of treatment. Thus, there is a strong need for supplementary
biomarkers that could provide reliable and early assessment of treatment efficacy. Analysis of alterations in the
metabolome may be a source for identification of new biomarker patterns harboring predictive information. Ideally,
the biomarkers should be found within an easily accessible compartment such as the blood.

Method: Using gas-chromatographic- time-of-flight-mass spectroscopy we have analyzed serum samples from
11 patients with glioblastoma during the initial phase of radiotherapy. Fasting serum samples were collected at
admittance, on the same day as, but before first treatment and in the morning after the second and fifth dose of
radiation. The acquired data was analyzed and evaluated by chemometrics based bioinformatics methods. Our
findings were compared and discussed in relation to previous data from microdialysis in tumor tissue, i.e. the
extracellular compartment, from the same patients.

Results: We found a significant change in metabolite pattern in serum comparing samples taken before radiotherapy
to samples taken during early radiotherapy. In all, 68 metabolites were lowered in concentration following treatment
while 16 metabolites were elevated in concentration. All detected and identified amino acids and fatty acids together
with myo-inositol, creatinine, and urea were among the metabolites that decreased in concentration during treatment,
while citric acid was among the metabolites that increased in concentration. Furthermore, when comparing results
from the serum analysis with findings in tumor extracellular fluid we found a common change in metabolite patterns
in both compartments on an individual patient level. On an individual metabolite level similar changes in ornithine,
tyrosine and urea were detected. However, in serum, glutamine and glutamate were lowered after treatment while
being elevated in the tumor extracellular fluid.

Conclusion: Cross-validated multivariate statistical models verified that the serum metabolome was significantly
changed in relation to radiation in a similar pattern to earlier findings in tumor tissue. However, all individual changes
in tissue did not translate into changes in serum. Our study indicates that serum metabolomics could be of value to
investigate as a potential marker for assessing early response to radiotherapy in malignant glioma.
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Background
High-grade gliomas constitute a challenge for the treating
physician. Despite large efforts when treating these tumors
the median survival is only approximately 14 months at
best [1]. Today the standard treatment is based on surgery
followed by radiochemotherapy and adjuvant temo-
zolomide. When these measures fail, surgery may be
considered as well as second line chemotherapy and re-
irradiation in selected cases.
New treatment strategies are needed for malignant gli-

omas and there is currently no lack of new candidate tar-
gets. However, one of the major problems when treating
those tumors is the lack of immediate monitoring of the
treatment effects. The tumors are fast growing and re-
sponse evaluation with repeated CT or MRI is not suffi-
cient since morphological changes in many cases are
detected too late to influence treatment strategies. There-
fore, there is an obvious need for markers that could pro-
vide a reliable and early assessment of treatment efficacy. In
a recent report it was found that metabolic changes reflect-
ing tumor progression may appear earlier than morpho-
logical alteration as assessed with MRI [2]. Also in a recent
review, Nelson stressed the insufficiency of morphology as-
sessment and called for utilizing metabolic and physio-
logical MR methods to assess therapeutic response [3].
Today MR-spectroscopy (MRS) detecting choline or

lactate may provide prognostic information in high-
grade astrocytoma and glioblastoma (GBM) [4–7]. In gli-
oma cell lines and rodent tumor models, MRS has
shown the potential to provide biomarkers for specific
treatments [8–10]. In high-grade gliomas apparent diffu-
sion coefficient (ADC) texture characteristics appear to
provide pretreatment prognostic information [11]. How-
ever, regarding monitoring of treatment effect in patients
using MRI the literature is sparse and without any major
breakthrough [12].
In a study on patients with GBM our group has been

able to demonstrate that radiotherapy, already after 5 days
of 2 Gy fractions, induces significant metabolite pattern
changes in the extracellular space of tumor tissue as
assessed by microdialysis [13]. We believe that an ideal
biomarker should be non-invasive, or at least easy to col-
lect, as well as allow repeated sampling. If a simple blood
test could provide the sought for information regarding
therapeutic response, that would be optimal from the cli-
nicians’ as well as from the patients’ point of view.
In this report we have analyzed the serum metabolome in

the same group of patients and compared the findings in
serum to the previously reported metabolite changes of the
tumor extracellular compartment following radiotherapy.

Methods
In the present study untargeted metabolomic pro-
filing using gas-chromatographic- time-of-flight-mass

spectroscopy (GC-TOFMS) was performed followed by
chemometric bioinformatics analysis in order to identify
changes in metabolite patterns in serum samples during
radiotherapy. In this way robust and internally validated
metabolite patterns consisting of co-varying metabolites,
so called latent variables, can be extracted and utilized as
specific and predictive biomarkers as well as for facilitated
biochemical interpretation.

Patients, treatment and samples
Eleven patients with radiologic suspicion of a high grade
glioma not accessible for surgical resection were included
in this study. All patients underwent a stereotactic biopsy
to obtain a histopathological diagnosis. After confirmation
(10 GBM and one astrocytoma III), microdialysis catheters
were implanted with stereotactic technique, one into the
contrast-enhancing tumor tissue and one approximately
10 mm outside of the tumor in brain-adjacent to tumor
(BAT) [14]. One catheter was put in the abdominal sub-
cutaneous tissue as reference. All catheters had a 10 mm
long semi-permeable membrane with a cutoff of 100 kDa
(CMA 71, CMA Microdialysis, Stockholm, Sweden). The
catheters were perfused with Ringer solution (Perfusion
fluid T1; CMA Microdialysis) mixed with Dextran (30 g
Dextran 60 1000 mL-1), to prevent microfiltration, and
with a flow-rate of 0.3 μl/min (CMA 106 or 107, CMA
Microdialysis).
All patients were treated with radiotherapy started

within 2 to 5 days after surgery. A standard schedule of
2 Gy × 30 were given to eight of the patients. Three pa-
tients in poor general condition were treated using hypo-
fractionationated schedules 3 Gy × 13 for two patients,
and 3.4 Gy × 10 for one patient. Fasting serum samples
were collected at admittance to the ward, on the same day
but before the first treatment session and in the morning
after the second and fifth radiotherapy fraction (Table 1).
The extracellular compartment were collected every

Table 1 Overview of serum samples

Day −4 0 2 5

Pat. 1 x x

Pat. 2 x x x x

Pat. 3 x x x

Pat. 4 x x x x

Pat. 5 x x x

Pat. 6 x x x

Pat. 7 x x x x

Pat. 8 x x x x

Pat. 9 x x x x

Pat. 10 x x x x

Pat. 11 x x x

Day is given in relation to irradiation treatment. x = sample collected for analysis
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second hour from surgery to the morning after the fifth
radiotherapy fraction. Three samples for analysis were
selected before the first radiation dose and samples for
analysis were matched to the same time-span as for the
serum samples. The results from the extracellular com-
partment in tumor tissue and BAT in the same group of
patients have been reported earlier [13].
All patients participated voluntarily and gave their

fully informed consent. The study was approved by the
Ethics committee of Umeå University.

Sample preparation
The serum samples were thawed in room temperature
for 30 min before addition 900 μl extraction solution
consisting of methanol (90 %) and water (10 %) with 11
internal standards (IS) (7 ng/μl) to 100 μl serum. The
samples were extracted using a MM301 vibration Mill
(Retsch GmbH & Co. KG, Haan, Germany) for 2 min,
30 Hz, after 2 h on ice, centrifuged 15 min, 4 °C,
14,000 rpm. Then 200 μl of the collected supernatant
was transferred to vials and evaporated to complete dry-
ness before methoxymation with 30 μl of methoxyamine
solution in pyridine (15 μg/μl) first at 70 °C for 1 h then
in room temperature for 16 h. Thereafter, the samples
were trimethylsilylated with 30 μl of MSTFA at room
temperature for 1 h and before addition of 30 μl of hept-
ane (containing 0.5 μg of methyl stearate).

GC-TOFMS
GC-TOFMS was used to screen the serum samples for a
broad spectrum of metabolites in terms of chemical prop-
erties. In this way a robust common metabolite profile can
be obtained for all samples and used for further multi-
variate sample comparisons. Prior to analysis, the samples
were randomized and analyzed together with a series
of n-alkanes (C12-C32) to allow retention indexes to
be calculated. 1 μl sample was injected splitless by an
Agilent 7683 Series autosampler (Agilent, Atlanta, GA)
into an Agilent 6980 GC equipped with a 10 m × 0.18 mm
i.d. fused-silica capillary column chemically bonded with
0.18 μm DB5-MS stationary phase (J&W Scientific,
Folsom, CA). The injector temperature was set at 270 °C.
Helium was used as carrier gas at a constant flow rate of
1 ml/min through the column. The purge time was set to
60 s at a purge flow rate of 20 ml/min and an equilibration
time of 1 min for every analysis. Initially, the column
temperature was kept at 70 °C for 2 min and then in-
creased to 320 °C at 30 °C/min, where it was kept for
2 min. The column effluent was introduced into the ion
source of a Pegasus III TOFMS (Leco Corp., St Joseph,
MI). The transfer line temperature was set at 250 °C and
the ion source temperature at 200 °C. Ions were generated
by a 70 eV electron beam at a current of 2.0 mA. Masses
were acquired from m/z 50 to 800 at a rate of 30 spectra/s,

and the acceleration voltage was turned on after a solvent
delay of 165 s. The acquired data was exported to
MATLAB 7.11.0 (R2010b) (Mathworks, Natick, MA) as
NetCDF files. MATLAB 7.3 (R2006b) (Mathworks, Natick,
MA) was used for data processing for the MD samples.

Hierarchical multivariate curve resolution
Metabolomics screening by means of GC-TOFMS
generates a profile of more or less overlapping com-
pounds (metabolites). To be able to obtain a reliable
quantification and identification of the detected metabo-
lites for further sample analyses and evaluation the raw
GC-TOFMS data has to be resolved into pure chromato-
graphic peaks and mass spectra for each individual me-
tabolite. To achieve this, baseline correction, alignment,
time-window settings and hierarchical multivariate curve
resolution (HMCR) [15, 16] were performed using in-
house developed scripts in Matlab 7.11.0 (R2010b)
(Mathworks, Natick, MA). The chromatograms were
divided into 56 time windows from which the chromato-
graphic peaks were resolved resulting in a data matrix
(X) were each row represents one serum sample and
each column represents one metabolite. For each metab-
olite in each sample the area under the chromatographic
peak, the relative concentration, is calculated. All peak
areas were normalized using the peak areas from the 11
internal standards. To identify the detected compounds
the mass spectral profile and retentions index were com-
pared with spectra in an in-house spectra library, the
NIST library 2.0 (as of January 31, 2001), and the mass
spectra library maintained by the Max Planck Institute
in Golm. This was followed by a manual inspection and
curation of the data to further resolve co-eluting com-
pounds and to correct for split peaks.

Data analysis
The pre-treated and HMCR resolved GC-TOFMS data
describes the complex interactions taking place in the
serum metabolome of GBM patients as a consequence
of radiotherapy. To be able to extract information of pat-
terns of co-varying metabolites associated with the effect
of radiotherapy methods that can handle variable corre-
lations and allows interpretation of such complex inter-
actions are required. To achieve this, chemometric
bioinformatics by means of multivariate projection
methods was applied to the processed data in order to
detect and evaluate metabolite patterns in serum associ-
ated with the effect of radiotherapy. Initially, principal
component analysis (PCA) [17] was applied to the data
to obtain an overview of the variation in the data and
detect possible outliers. Outlier detection was performed
in both the PCA model space (scores) as well as in the
model residual (distance to model in X (DModX)) and
to qualify as an outlier leading to exclusion from the
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analysis a sample show a clearly deviating pattern in
either of these two measures. Furthermore, orthogonal
partial least squares-discriminant analysis (OPLS-DA)
[18] was used to establish if there was a systematic dif-
ference in serum metabolite profile between samples
collected before and after treatment.
To be able to further analyze treatment induced changes

on an individual patient level, the data was pre-treated
with the same approach as in our previous study on the
same patients, using the Individual Treatment Over Time
(ITOT) normalization [13]. The first two samples from
the same patient were categorized as untreated and the
last two samples were categorized as treated. The value
from the first time point (4 days before treatment) was
subtracted from the first two time points (including itself ).
The original value from time point 2 was then included as
the first value in the treated samples and subtracted from
itself as well as from time point 3 and 4 resulting in that
both the treated and the untreated group were set to have
the same starting point, for each patient. Patient one,
missing its two last time points, was excluded from the
analysis. Patient 5 was also excluded because time point
two was missing making it impossible to normalize its
treated samples.
The ITOT normalized data was then modeled by OPLS-

DA with treatment as the response variable (y). OPLS-DA
is a supervised projection method that describes the rela-
tions between the descriptive data (X) and the response
variable (y) by dividing the systematic variation in X in two
parts, one related to y, predictive and the other unrelated,
orthogonal, to y [18]. By separating the systematic variation
into predictive and orthogonal components the interpret-
ation of the model is greatly facilitated. Variables with low
model weight values (|w*| < 0.05), variables unaffected by
treatment, were discarded from the modelling.
A p-value based on ANOVA on the cross-validated

OPLS-DA models was used for model validation. The
individual metabolites were tested for significance using
a Student’s t-test, where p-values < 0.05 were considered
to be significant. To be able to investigate the whole me-
tabolite pattern in serum compared to the whole metab-
olite pattern in the extracellular compartment in tumor
from our previous study, the cross-validated score values
for each model were compared in the same analysis.

Results
Patients
All patients did undergo the stereotactic procedure and the
following period of microdialysis and radiotherapy without
any procedure-related side effects or complications.

Data processing
From the acquired serum GC-TOFMS data 159 putative
metabolite peaks were resolved using HMCR. Of these

58 (36 %) could be identified by means of library compari-
sons. The unidentified metabolites still retained informa-
tion regarding retention time index and fragmentation
patterns and were thus kept in the analysis. This can be
compared to the extracellular compartment from tumor
tissue where, 151 metabolites were reliably detected and
quantified and 67 out of those metabolites were identified
(44 %) [13].

Differences in metabolic pattern due to treatment
No outliers were found in the initial PCA analysis of the
HMCR processed data (not shown). As a first modelling
step to verify possible treatment specific alterations of
the serum metabolite profile OPLS-DA was applied dir-
ectly on the HMCR processed data. The cross-validated
score plot from the calculated OPLS-DA model (Fig. 1)
show that there is a general systematic difference in me-
tabolite profile between serum samples taken before and
after treatment (p = 0.01). To further investigate the pa-
tient specific response to treatment the ITOT normal-
ized data was analyzed using OPLS-DA with treatment
as the response variable. Based on the model weights,
variables were selected and a new OPLS-DA model was
calculated. The cross-validated score plot from the final
OPLS-DA model (Fig. 2) indicate that the majority of
the patients show a metabolic response to radiotherapy
in serum (p = 0.006). Notably, patients 6 and 11 show a
more moderate or no response to the treatment com-
pared to the other patients, indicating a possibility to
detect and follow individual differences of treatment in
serum close to real-time.
In serum, 84 metabolites passed the cut off criteria

(|w*| > 0.05) (Table 2) and 25 of them also showed a sig-
nificant univariate p-value (<0.05). Sixteen metabolites
showed higher levels during and after treatment as com-
pared to before treatment while 68 metabolites showed
lower levels (Table 2). Out of the identified metabolites,
creatinine, threonine, glyceric acid, tyrosine, oleic acid
and methionine had the strongest correlation to treat-
ment with lower serum levels after treatment.
The metabolomic findings in extracellular fluid from

tumor tissue and BAT from our previous report, in the
very same patients, have been included in Additional file 1:
Table S1 for comparison. When comparing the results we
found metabolites that were affected by treatment in both
serum and extracellular fluid from both tumor tissue and
BAT. Ornithine, tyrosine and urea decreased in both
serum and tumor. Glutamine and glutamate decreased in
serum but increased in tumor tissue and BAT. Citric acid
increased in serum and BAT while creatinine and glyceric
acid decreased in serum samples but showed an increase
in BAT.
When interpreting the cross-validated score plots from

the modeled data, built on all metabolites that passed
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the cut off criteria, for both the serum and extracellular
compartment from the tumor (Fig. 3) we can see that
the pattern before and during treatment is the same or
similar for all patients irrespective of compartment. This
indicates that the systematic response to treatment in
the tumor is reflected in serum even if not all the indi-
vidual metabolite levels coincide.

Discussion
This study demonstrates that it is possible to detect
metabolic changes in serum during radiotherapy for high
grade glioma. We found 84 metabolites that differed be-
tween samples collected before treatment compared to
samples collected during treatment with radiotherapy. In
the end, 28 of those metabolites could be assigned a

Fig. 1 Cross-validate score plot separating samples collected before and during treatment. The x-axis consits of the 10 patients included. The
circles represent the time points before treatment and the triangles represents the time points during treatment. The OPLS-DA model consisted of
1 predicted and 1 orthogonal component and predicted 31.7 % of the response variation (Q2 = 0.317). The p-value based on ANOVA on the
cross-validated OPLS-DA model is 0.01

Fig. 2 Cross-validated score plot based on metabolites in serum affected by treatment. The x-axis consists of the nine patients included. The
circles represent the two time points before treatment started and the triangles the time points during treatment. The labels correspond to the
sampling time point. 2* was calculated and used as a reference point in ITOT normalization of the treated samples. The OPLS-DA model consisted
of 1 predicted and 1 orthogonal component and predicted 31.9 % of the response variation (Q2 = 0.319). The p-value based on ANOVA on the
cross-validated OPLS-DA model is 0.006
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molecular identity. In a previous study [13], investigating
microdialysis samples from the same patients that were
included in this study, we demonstrated metabolomic
differences correlating with radiation treatment in the
extracellular compartment of tumors and brain adjacent
to tumor (BAT). In the present study, we have compared
the metabolome in serum with previous results from
tumor and BAT extracellular compartments. In all three
compartments there were significant changes following
radiotherapy, indicating that the metabolome may har-
bor metabolites or patterns of metabolites that can serve
as predictive latent biomarkers for radiotherapy treat-
ment of malignant glioma.
We found a response pattern in the serum metabo-

lome similar to the one found earlier in the tumors of

the same patients. Therefore it seems like radiotherapy
induces systematic changes in the metabolome of differ-
ent compartments, although the response in terms of in-
dividual metabolites may differ between compartments.
Radiotherapy is one of the mainstays for treatment of

malignant brain tumors. Modern radiotherapy using
three dimensional conformal radiotherapy (3DCRT) or
intensity modulated radiotherapy (IMRT) techniques is
delivered to the contrast enhancing gross tumor volume
(GTV) plus additionally approximately 2 cm margin to
control movement and include invasive tumor cells in
the surrounding brain tissue. This margin generally in-
cludes the BAT region. Thus metabolite changes found
in the extracellular compartment from tumor tissue and
BAT may reflect actual metabolic events in the tissues.
However, one can question if the metabolite changes
found in serum reflects changes in the tumor. The
present study could not demonstrate a direct correlation
between all the metabolite changes in serum and tissue
on an individual metabolite level. This may be due to
that the observed change in the serum metabolome is
only a surrogate marker profile for metabolic events tak-
ing place in the tumor. If so, the metabolite profile in
serum could be a candidate biomarker for treatment
monitoring even if individual serum metabolites lack
direct correlation to metabolites in extracellular tissue.
Changes in the serum metabolome could also describe
radiotherapy induced events in the serum compartment.
In general we found a decrease in metabolite levels in

serum during radiotherapy compared to the levels before
treatment. Ornithine, tyrosine and urea are decreased in
both serum and in the extracellular compartment from
tumor during treatment. Glutamine and glutamate on
the other hand decreased in serum during treatment
while being elevated in the extracellular compartment
from tumor.
The decreased serum levels of glutamate, ornithine, ar-

ginine and urea point towards a decrease in the urea
cycle. Glutamate which is an excitatory neurotransmitter
is also involved in growth and development by the regu-
lation of proliferation, survival, migration, and invasion
of neuronal progenitors and immature neurons [19].
The decrease in serum glutamate levels could explain
the decreased levels of urea, amino acids and fatty acids
in serum since glutamate and glutamate metabolism is
closely linked to ureagenesis, citric acid cycle, amino
acid transferase and lipogenesis among others [20].
Myo-inositol was increased in the extracellular com-

partment of the tumor and decreased in serum during
treatment. The role of myo-inositol is very complex.
Myo-inositol is a substrate in the formation of phos-
phatidylinositol, which in turn is involved in the forma-
tion of diacylglycerol and inositol 1,4,5-trisphosphate.
Diacylglycerol activates protein kinase C and a cascade

Table 2 Identified metabolites in serum that were found
affected by radiotherapy in patients with GBM

Metabolite Corr. serum

Aminomalonic acid ↓

Arachidonic acid ↓

Arginine ↓*

Asparagine ↓*

beta-D-Methylglucopyranoside ↓*

Butanoic acid ↓*

Citric acid ↑

Creatinine ↓*

Cysteine ↓

Dehydroascorbic acid dimer ↑

Glutamate ↓

Glutamine ↓*

Glyceric acid ↓*

Glycerol-3-phosphate ↓*

Glycine ↓

Linolenic acid ↓*

Lysine ↓

Methionine ↓*

myo-Inositol ↓

Octadecanoic acid ↓

Oleic/Elaidic acid ↓*

Ornithine ↓*

Phenylalanine ↓

Threonine ↓*

Tryptophan ↓

Tyrosine ↓*

Urea ↓

Valine ↓

Corr. Serum represent the correlation to treatment
↑ denotes increased levels and ↓ denotes decreased levels following treatment
* = p < 0.05 calculated with a Student’s t-test
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of proteolytic enzymes, including matrix metallopro-
teases which are highly involved in the process of tumor
invasion [21]. Inositol trisphosphate stimulates the re-
lease of Ca2+ making the tumor cells more sensitive to
apoptotic stimuli [22]. Inositol is also a precursor for in-
ositol hexaphosphate that, in vitro, has been shown to
stimulate apoptosis by upregulating calpain and caspase-
3 and downregulate survival factors such as BIRC-2 [23].
We have previously hypothesized that the increase of

myo-inositol in tumor tissue after radiation may result
from a decrease in the formation of inositol trisphos-
phate and inositol hexaphosphate [13]. Regardless of the
mechanism behind our finding that radiation treatment
appears to induce a myo-inositol increase in the tumor
and decrease in the serum, it is interesting that previous
clinical studies have demonstrated that low levels of myo-
inositol in tumor tissue is related to a more aggressive glial
tumor [24, 25]. Furthermore, in a previous study we have
found that high levels of myo-inositol in the tumor is cor-
related with longer survival, in both GBM and oligo-
dendroglioma [26]. It would be interesting to investigate
whether the increase of myo-inositol in tumor together
with a decrease in serum could potentially be a marker for
positive treatment effect. In this sense, a larger study will
be needed that also incorporates data on clinical response.
We have looked at the individual molecular response

from the 11 patients included in the study. As shown in
Fig. 2, all patients except for patient 6 and 11 seem to
have a similar molecular response to treatment based on
the metabolites analyzed in this study. The biological

reason for the different metabolite patterns for these two
patients is to us not known. Since this study is performed
on such a small group of patients reliable statistics regard-
ing the association with survival will not be conclusive. In-
stead, what this study shows is that different patients have
different metabolic starting points and they respond differ-
ently to treatment at a metabolite level.
The metabolite alterations detected in this study could

arguably be attributed to differences in concurrent medica-
tion, perioperative procedures and dietary intake, or they
could represent indirect changes due to radiotherapy-
induced effects on the hypothalamic-pituitary axis (HPA).
However, the perioperative procedures were largely stan-
dardized for this study. The patients were mobilized with
normal oral nutrition at base-line sampling and during the
treatment. In addition, the patients’ blood-glucose levels
were monitored and kept below 7 mmol, as it is known
that the routinely administered betamethasone affects glu-
cose metabolism. It has also been shown that short term
treatment with the steroid prednisolone induces catabol-
ism, resulting in changes in amino acid metabolism and
elevation of serum levels of amino acids [27]. However,
this is contradictory to our finding of a general decrease in
the serum amino acids levels, thus we consider it unlikely
that the herein reported metabolite alterations are re-
lated to differences in steroid treatment. Furthermore,
during the course of the study the patients only re-
ceived 10–17.5 Gy of radiation, and the planning
target volume only in some cases may have partially
included the hypothalamus and in no case the pituitary

Fig. 3 Cross-validated score line plot for serum and extracellular compartment from tumor. The score line plots are based on the final OPLS-DA models
from each study. The serum scores is shown by the black line and scores from the tumor extracellular compartment is shown by the grey line. The x-axis
consists of the eight patients that was included in the previous microdialysis study and this study regarding serum samples. The serum
OPLS-DA model consisted of 1 predicted and 1 orthogonal component and predicted 31.9 % of the response variation (Q2 = 0.319). The
tumor OPLS-DA model consisted of 1 predicted and 1 orthogonal component and predicted 35.5 % of the response variation (Q2 = 0.355). The p-value
based on ANOVA on the cross-validated OPLS-DA model is 0.006 for the serum model and 0.005 for the tumor model
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[28, 29]. Because radiation-induced effects of the HPA
have only been reported for larger doses, we believe our
findings are not related to effects of HPA radiation.

Conclusion
The results of this study, on a limited series of patients,
indicate that serum metabolomics could possibly be a
feasible and accessible alternative for assessing response
to radiotherapy in malignant glioma. We observed a sig-
nificant change in metabolite pattern in serum during
the early phase of radiotherapy. This change may consti-
tute a possible latent biomarker for treatment outcome
and warrants validation in larger prospective cohorts.
Correlations of changes on an individual metabolite level
between serum and the extracellular compartment was
inconclusive. The changes in the serum metabolome
may therefore be considered a surrogate biomarker of
biological events, though it may not directly reflect
changes in irradiated tissue on a molecular level. Further
studies are needed to clarify the connections between
changes in serum and the extracellular compartment.

Additional file

Additional file 1: Table S1. Identified metabolites in serum, tumor and
BAT that were found affected by radiotherapy. Tumor and BAT samples
were collected by microdialysis. (PDF 110 kb)
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