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Background: Preoperative chemoradiotherapy (CRT) has become a widely used treatment for improving local
control of disease and increasing survival rates of rectal cancer patients. We aimed to identify a set of genes that
can be used to predict responses to CRT in patients with rectal cancer.

Methods: Gene expression profiles of pre-therapeutic biopsy specimens obtained from 77 rectal cancer patients
were analyzed using DNA microarrays. The response to CRT was determined using the Dworak tumor regression
grade: grade 1 (minimal, M), grade 2 (moderate, MO), grade 3 (near total, NT), or grade 4 (total, TO).

Results: Top ranked genes for three different feature scores such as a p-value (pval), a rank product (rank), and a
normalized product (norm) were selected to distinguish pre-defined groups such as complete responders (TO) from
the MI, MO, and NT groups. Among five different classification algorithms, supporting vector machine (SVM) with
the top 65 norm features performed at the highest accuracy for predicting Ml using a 5-fold cross validation strategy.
On the other hand, 98 pval features were selected for predicting TO by elastic net (EN). Finally we combined TO- and
MI-finder models to build a three-class classification model and validated it using an independent dataset of rectal

cancer mRNA expression.

Conclusions: We identified MI- and TO-finders for predicting preoperative CRT responses, and validated these data
using an independent public dataset. This stepwise prediction model requires further evaluation in clinical studies in
order to develop personalized preoperative CRT in patients with rectal cancer.
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Background

Treatment strategies for patients with rectal cancer have
changed substantially in recent decades. Historically,
postoperative chemoradiotherapy (CRT) was considered
to be first-line therapy for stage II and III rectal cancers.
However, preoperative CRT is now considered to be
optimal therapy for locally advanced rectal cancer due to
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improved local control, reduced toxicity, and increased
rates of sphincter preservation [1, 2].

Preoperative chemoradiotherapy (CRT) has been widely
used as the treatment of choice for locally advanced rectal
carcinomas [3, 4]. Radiotherapy works by inhibiting cell
proliferation and inducing apoptosis in vitro, and inhibit-
ing tumor growth in vivo [5, 6]. However, responses to
radiotherapy differ among individuals with similar histo-
logic backgrounds, and the essential determinants of these
responses have yet to be studied. Thus, identifying the key
factors that predict responses to radiotherapy before
treatment could be helpful in that those patients predicted
to have poor responses can undergo the initial surgery
without preoperative CRT.
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To date, several studies have investigated the response of
rectal cancer to radiotherapy using gene expression micro-
arrays [7—10]. In one report, pre-therapeutic biopsies from
30 patients with locally advanced rectal carcinomas were
profiled. By grouping the radiation responses of patients
defined as T-level downsizing, a set of 54 genes was found
to be differentially expressed between responders and non-
responders. Diagonal linear discriminant analysis (LDA) of
the 54 genes was applied to predict responses to CRT.
Using a leave-one-out cross validation (LOOCYV) strategy,
responses for 83 % of patients were correctly predicted.

Watanabe et al. [8] identified 33 genes that were differ-
entially expressed in responders and non-responders as
determined by histopathologic regression grading of surgi-
cally resected specimens from 52 rectal cancer patients.
The prediction accuracy in this study was 88.6 % for the
17 test samples using the k-nearest-neighbor algorithm.
Similarly, Kim et al. [7] and Rimkus et al. [10] reported 87
and 78.5 % prediction accuracies for 46 and 43 patients,
respectively.

It is important to note, however, that there is very little
overlap in the genes included in these studies, even when
high prediction accuracies were reported [11]. This incon-
sistency may be due to use of different criteria in defining
a response, small sample size, or different origins of re-
sponses. Additionally, all of the previous studies formu-
lated models that predicted a two-class classification
system by applying a specific algorithm with a simple
feature selection procedure using a p-value threshold.
Taken together, these issues indicate that no optimal
system for gene identification has yet been developed for
incorporation into clinical practice.

Our objective was to build a clinically feasible model that
predicts multi-class responses to CRT. A schematic repre-
sentation of whole analysis flow is shown in Table 1. We
classified responses of patients according to Dworak grade
using 77 patient samples, which is the largest sample size
reported in the published literature. We then defined three
different feature scores to identify a novel set of genes for
predicting responses. Various classification algorithms were
applied to this set of genes to build a complete regression
(TO) prediction model and a minimal regression (MI)

Table 1 Schematic representation of the overall analysis flow

1. Collecting 77 rectal cancer samples with clinical features
2. Gene expression profiling with Affymetrix ST1.0 array

3. Feature selection by pval, norm and rank

4. Designing most accurate prediction models for Ml or TO
5. Testing the prediction models for MI or TO

6. Multi-class prediction model

7. Internal validation of prediction model

8. External validation of the prediction model
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prediction model. From the most accurate models, we
established a novel strategy for predicting multiple re-
sponses to CRT by applying TO and MI models sequen-
tially. To date, this is the first trial to predict multi-class
responses to CRT. Finally, we validated our model using a
published dataset from an independent source.

Methods

Patient samples and response classification

This study was approved by the Institutional Review
Boards (IRBs) at Samsung Medical Center (IRB No. SMC
2009-10-067). Written informed consent for participation
in this study was obtained from the patient. A total of 77
rectal cancer patients who underwent preoperative CRT
were included in this study. Various clinical information
such as UICC stage and Dworak grade are summarized in
Table 2 and more detailed information is available in

Table 2 Clinicopathologic features and responses to
preoperative CRT

Parameters Value
Number of patients 77
Median age (yrs, range) 56, 33-76
Sex
Male 54
Female 23
Histological subtype
Adenocarcinoma 72
Mucinous 3
Signet ring cell 2
Median interval to surgery (days, range) 56, 41-76
CEA (ng/ml)
Before CRT 47 £ 66
After CRT 19+£15
UICC stage after surgery
0 16 (20.8 %)
I 18 (234 %)
[ 18 (234 %)
MMl 22 (286 %)
Y 3 (3.9 %)
Number of lymph nodes 118+ 66
Lymphatic invasion (+) 17 (22.1 %)
Vascular invasion (+) 5 (6.5 %)
Perineural invasion (+) 4 (5.2 %)
Dworak regression grade
Grade 1 10 (13.0 %)
Grade 2 36 (46.8 %)
Grade 3 13 (16.9 %)
Grade 4 18 (234 %)
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supplementary Additional file 1: Table S1. Responses to
CRT were determined according to Dworak tumor regres-
sion grade. Tumor regression grades were classified into
five groups: grade 0 (no regression), grade 1 (minimal re-
gression, MI), grade 2 (moderate regression, MO), grade 3
(near total regression, NT), and grade 4 (total regression,
TO). A total of 10, 36, 13, and 18 patients were classified
as MI, MO, NT, and TO, respectively. Tumor stage was
determined according to the guidelines set forth by the
International Union Against Cancer (UICC).

RNA isolation and microarray procedures

Total RNA was extracted from tumor tissue using TRIzol
reagent (Invitrogen, Carlsbad, CA), and the collected RNA
was purified using RNeasy mini kits (Qiagen, Valencia,
CA). The purity and concentration of RNA were
determined using a Bioanalyzer (Agilent Technologies,
Santa Clara, CA). The RNA was amplified and labelled
according to the Affymetrix GeneChip Whole Transcript
(WT) Sense Target Labelling protocol. The resultant
labeled cDNA was hybridized to Affymetrix Human Gene
1.0 ST arrays and scanned. The R program from CEL file
preprocessing was used for all statistical analyses. The
expression data obtained from each microarray was
normalized using a Robust Multislide Array (RMA)
normalization algorithm. Raw and expression microarray
datasets are available upon request.

Statistical analysis

Feature scores

We first placed the patients into groups labeled TO or
other, and MI or other. We then used a two-sample
Welch’s t-test with unequal variances to determine which
genes were differentially expressed between groups. The
feature score (FS) was defined as shown below. For genes
i, pi» and d; the p-value and effect size were obtained from
predefined group comparisons. P-value based (‘pval’), rank
product based (‘rank’), and normalized value product
based (‘norm’) feature scores were calculated.

- logo(p)), pval
mnké— loglo(pi)g x rank(d;), rank

norm(-log,,(p;)) x norm(d;), norm

FS =

x;— min (x)

where, norm (x;) = T () min (7 -

Classification models

To build prediction models, we applied multiple classifica-
tion algorithms using varying numbers of features based on
‘pval, ‘rank] and ‘norm’ scores. Samples from 77 patients
were divided into a training set and a test set. We applied 5
different algorithms including support vector machine
(SVM), random forest (RF), elastic-net (EN) [12], linear dis-
criminant analysis (LDA) and k-nearest neighbor (kKNN)
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[13] with k=1, 3, and 5. The TO and the MI predictors
were built by applying all algorithms using varying numbers
of features with different feature scores to two different
classification problems (i.e., TO vs. other and MI vs. other).

Model selection

We consider iid data (xq,y1),"-, (x,,y,) where x; =
(%1, %) € X R? is a d-dimensional expression vector
and Y; denotes values of a specific class in some finite
set Y. A classification rule is a function: /1: X — Y. Our
goal was to choose the optimal classification rule or
classifier /1 to minimize the training error. We adopted a
5-fold cross-validation (CV) scheme to estimate the pre-
diction accuracy for each classification method and se-
lect the most accurate model. Note that the CV scheme
used in this work is not a conventional CV approach, in
which only training data is used for selecting features
and training a classifier. Since the number of sample was
not large enough, we evaluated the feature scores with
whole dataset to reliably select the important features.
This might cause biased estimate of the true error of the
model prediction. Thus we applied the final model to an
independent publicly available dataset.

Sequential multiclass prediction

Multiclass (minimal, moderate, or total response) predic-
tion was conducted by applying the best MI and TO pre-
diction models sequentially. With SVMs, reducing the
single multiclass problem into several binary classification
problems is likely a better approach [14]. We first applied
the TO model to an individual to predict whether the indi-
vidual was classified into that group. If not, the MI model
was applied and the final conclusion was made according
to the MI prediction result.

Application to independent published dataset

An independent test set was obtained from the previous
study which classified the patient responses using Dworak
criteria [7]. Thus, we can apply our model without a
response classification criteria compatibility issue. Because
of the platform difference, however, direct application of
our model to data reported in [7] had two limitations: the
limited number of overlapping features and the different
expression scale. To resolve these issues, we first matched
the features (genes) using “HGNC gene symbols” and
subsequently applied quantile normalization of these
genes using average values of the same ranked genes in
our dataset. We identified 38 (of 65) and 32 (of 98)
common genes for the MI and TO models. Since only 70
of 163 of the best model features were available, the best
model found using 77 samples could not be directly
applied to the dataset reported in [7]. Therefore, we rebuilt
the model with common genes to better predict responses
to CRT.
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Fig. 1 Characteristics of features selected by three different scores. All genes are represented in volcano plot. Gene with top 100 highest feature
score are depicted with different color and shape while others with grey color. P-value based feature score (‘pval’, left), normalized product based
('norm’, middle) and rank product based feature scores (rank’, right) are shown

Results

Three feature score types and their characteristics

To identify molecular features of CRT responses, we
analysed whole gene expression profiles of 77 rectal
cancer biopsy specimens. The overall scheme for a
multi-class prediction model is summarized in Table 1.
We divided patients into TO versus other, or MI versus
other. For each comparison, we obtained p-values and
effect sizes for all genes. From these two values, we
defined three different feature scores including p-value,
normalized product, and rank product.

Characteristics of the features with different FS criteria
used for TO prediction are shown in Fig. 1. P-value based
(‘pval’) features were selected using the lowest ‘pval’
criterion. Unlike the ‘pval’ score, the normalized prod-
uct (‘norm’) and rank product (‘rank’) scores with
higher p-values (less significant) were selected if they
also had larger effect sizes. Thus, in selecting features with
higher ‘norm’ and ‘rank’ scores, both the effect size and
the p-value were considered. A similar pattern was ob-
served for features predictive of ML

To investigate the effect of prediction performance of
three FS criteria, we evaluated average accuracy across
the models with different number of features for each
classification algorithm (Table 3). Among these three FS
measures, ‘pval’ showed the superior to other measures.
For MI prediction, 5 out of 7 different methods with
‘norm’ FS type were found to be the best performer. For
TO prediction, however, all the highest values were
observed with ‘pval’ FS. In addition, SVM with ‘pval’ FS
showed the most stable and the highest average accuracy
for both MI and TO prediction (Table 3).

TO and MI prediction models
To find the most accurate TO and MI prediction models,
we conducted various classification analyses using multiple

features. Rather than using the leave-one out cross valid-
ation (LOOCV) that many similar studies have used, we
adopted a 5-fold cross-validation strategy to prevent
overfitting (i.e, making the model less fit to the sample
data but a better fit with new data). Classification accuracy
(1 -error) was evaluated using five different classification
algorithms: support vector machine (SVM), random forest
(RF), elastic net (EN), linear discriminant analysis (LDA),
and k nearest neighbor (kNN, with k=1, 3, and 5).

As can be seen in Fig. 2, in most cases, prediction
performances were consistently around 85 % regardless
of the classification algorithm, feature score type, or
number of features. LDA, however, had poor prediction
performance with an accuracy of approximately 50 %
when more than 30 features were used (Fig. 2). Since
some of genes may be highly correlated, collinearity
among an increasing number of features may impede
the performance of the LDA algorithm.

The best accuracy rates for MI and TO predictions
were attained using SVM and EN, respectively. Using
the SVM classification model, the prediction accuracy
for MI was 100 % with 65 ‘norm’ feature score genes
(Fig. 2). For TO predictions, the EN algorithm achieved

Table 3 Average accuracy across the different number of
features

Predictors  FS Algorithm
SVM  RF EN  LDA kNNT KkNN3  kNN5
M pval 096 089 089 077 08 087 087
norm 096 088 090 082 085 0.89 0.90
rank 095 088 089 081 085 0838 090
TO pval 087 083 087 072 077 078 078
norm 081 080 074 067 072 0.73 0.74
rank 081 081 075 067 072 074 075
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a 94.8 % accuracy rate with 98 ‘pval’ feature score genes
(Fig. 2). Note that SVM showed the most stably high
prediction rate performances regardless of the number
of features used.

Gene function annotation of the best TO and MI
predictors

To investigate the biological functions of the genes that
are predictive of TO and MI, we conducted gene-set
enrichment analysis using DAVID [15]. With the gene
ontology as a gene set, we observed that the genes
predictive of TO were enriched in the regulation of cell
migration, cell maturation, and cell death, whereas the
genes predictive of MI were involved in protein localization
and protein transport (Table 4). With the pathway as a
gene set, N-Glycan biosynthesis and Oocyte meiosis path-
ways were enriched by the genes predictive of TO and M],
respectively (Table 4). These two pathways are associated
with responses to irradiation [16, 17]. N-linked glycosyla-
tion in particular enhances the effects of radiation therapy
and is advantageous for inhibition of tumor growth [17].
The whole list of genes and the results of gene set analysis
can be found in Additional file 2: Table S2.

A sequential approach model for multi-class prediction
and external validation

We next examined whether our two best models are
practically useful in predicting multi-class responses to
radiotherapy. To this end, we combined TO- and MI-
finder models for a three-class prediction (Fig. 3). We
used a sequential approach in applying the TO and MI
models to both our dataset and validated the performance
using a previously published dataset. Since not all of the
genes used in our study were available in the dataset
obtained in [7], we used overlapping genes included in
both datasets. We found that the best TO prediction
algorithm was EN. However, only a third of the previously
described TO predictive genes were included in the
dataset, and in cases in which there were fewer feature
numbers, SVM was more accurate than EN (Fig. 2). Thus,
our sequential approach model was designed to use the
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expression of 70 matched genes including 32 genes for
TO prediction and 38 genes for MI prediction.

The sensitivities for predicting TO, MO (including NT),
and MI using the sequential approach model among the
77 samples were 94.4, 100, and 90 %, respectively (Table 5).
We defined sensitivity for each class as a correct predic-
tion. To further test the validity of our model, we also
applied it to an independent dataset [7]. The sensitivites
for TO, MO and MI prediction were 86.6, 100, and
64.3 %, respectively (Table 5). We also confirmed that a
sequential approach in the reverse order (MI prediction
first, then TO prediction) did not change the prediction
results in either dataset.

Discussion

The objective of this study was to generate a clinically
feasible model that predicts multi-class responses to CRT.
In the past, one of the difficulties that impeded the devel-
opment of such a model was the use of non-overlapping
sets of genes across different studies, which may due to
different definitions of response to CRT or the genetic
diversity of rectal cancer [11, 18]. We sought to eliminate
this issue by increasing our sample size and using a
Dworak regression grade for distinct classification accord-
ing to our three FS criteria. To date, this is the largest
study that examines the genetic diversity of rectal cancer.
The lack of independent prospective validation has also
been an issue in previous studies, as many have used a
LOOCYV strategy to validate prediction accuracies due to
small sample sizes (less than 50).

However, LOOCV may strengthen prediction accuracy
by over-training with n-1 samples from the total sample
pool. In our study, we applied a 5-fold cross-validation
strategy to the 77 samples to achieve a higher degree of in-
dependence between training and test data. It is important
for the clinician to classify the patient into the appropriate
category, such as total response, intermediate response, or
no response. To achieve this, we established the multi-
class prediction model by adopting a novel sequential ap-
plication of two separate prediction models. Using Dworak
regression grade, the results of our multi-class prediction

Table 4 Gene-set analysis with TO and MI predictors using DAVID (https://david.ncifcrf.gov/)

Predictors GO Term P-value Genes

TO GO:0030334 Regulation of cell migration 0.046 BCART1, RRAS, BDKRB1, APC
GO:0048469 Cell maturation 0.049 HEST, TFCP2L1, MTCH1
GO:0043065 Positive regulation of apoptosis 0.052 IFNA2, OBSCN, GSDMA, MTCH1, RPS27A, APC
HSA00510 N-Glycan biosynthesis 0.021 MGAT1, RFT1, GANAB

MI GO:0008104  Protein localization 0010 SFT2D2, BLZF1, KIFAP3, BCAP29, NECAP1, GOSR1, SEC62, NSF, SRP9
GO:0015031 Protein transport 0.015 SFT2D2, BLZF1, BCAP29, NECAP1, GOSRT1, SEC62, NSF, SRP9
G0:0045184 Establishment of protein localization 0.016 SFT2D2, BLZF1, BCAP29, NECAP1, GOSR1, SEC62, NSF, SRP9
HSA04114 Oocyte mejosis 0.051 CCNE2, RPS6KAG, ITPR2
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Fig. 3 Sequential multi-class prediction. To predict the preoperative CRT response of a patient, TO predictor is performed and answers whether
the patient is total response group or not. If yes, CRT is conducted, or Ml predictor is performed and predicts whether the patient will show minimal
response. According to the result of this step, clinician can decide a proper treatment of the patient

analysis resulted in highly accurate classification (97.4 %;
Table 5). A relatively lower accuracy (84.67 %; Table 5) was
obtained using the previously published independent
dataset that included 46 patients. While these data are
encouraging, prospective clinical trials using homogenous
cohorts of patients (11) are needed to confirm the feasibil-
ity of using this model in clinical practice.

Some limitations are worth noting. Although our model
was supported by independent dataset, conventionally
cross-validation approach, in which features are selected
on a training set, was not applied in our study due to a
small sample size. Also we built our model based on
univariate feature selection method without considering
clinical predictors. Future work should therefore include
follow-up work designed to evaluate whether our model
and our approach are retained in more datasets and also
whether the joint analysis of multiple genes, clinical
variables, and interaction among them are necessary to be
used to improve prediction performance.

Conclusions

Historically postoperative chemoradiotherapy (CRT) was
considered to be the first-line therapy for stage II and III
rectal cancers. However, the preoperative CRT is now
considered to be the optimal therapy regimen for locally

Table 5 Validation of multi-class prediction model

Internal validation True
M MO TO
PREDICTION Ml 9 0 0
MO 1 49 1
TO 0 0 17
External validation True
M MO TO
PREDICTION Ml 9 0 0
MO 5 17 2
TO 0 0 13

advanced rectal cancer due to its improved local control,
reduced toxicity, and increased rate of sphincter preser-
vation. Our study established a clinically practical multi-
class prediction model by adopting a novel strategy that
applies two separate prediction models (MI and TO pre-
dictor) sequentially to a patient to predict the response.
For promising clinical practice, we validated our model
in a published dataset, which is completely independent
dataset from ours. This study suggests a clinically plaus-
ible prediction model that correctly infers the preopera-
tive CRT response of patients with high accuracy based
on 163 gene signatures we identified. Larger prospective
trials will be needed to confirm harder the validity of the
present scheme.
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