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Abstract

Background: The EORTC has launched a phase Il trial to assess safety and efficacy of SBRT for centrally located
NSCLC: The EORTC 22113-08113—Lungtech trial. Due to neighbouring critical structures, these tumours remain
challenging to treat. To guarantee accordance to protocol and treatment safety, an RTQA procedure has been
implemented within the frame of the EORTC RTQA levels. These levels are here expanded to include innovative
tools beyond protocol compliance verification: the actual dose delivered to each patient will be estimated and
linked to trial outcomes to enable better understanding of dose related response and toxicity.

Method: For trial participation, institutions must provide a completed facility questionnaire and beam output audit
results. To insure ability to comply with protocol specifications a benchmark case is sent to all centres. After
approval, institutions are allowed to recruit patients. Nonetheless, each treatment plan will be prospectively
reviewed insuring trial compliance consistency over time. As new features, patient’s CBCT images and applied
positioning corrections will be saved for dose recalculation on patient’s daily geometry. To assess RTQA along the
treatment chain, institutions will be visited once during the time of the trial. Over the course of this visit, end-to-
end tests will be performed using the 008ACIRS-breathing platform with two separate bodies. The first body carries
EBT3 films and an ionization chamber. The other body newly developed for PET- CT evaluation is fillable with a
solution of high activity. 3D or 4D PET-CT and 4D-CT scanning techniques will be evaluated to assess the impact of
motion artefacts on target volume accuracy. Finally, a dosimetric evaluation in static and dynamic conditions will be
performed.

Discussion: Previous data on mediastinal toxicity are scarce and source of cautiousness for setting-up SBRT
treatments for centrally located NSCLC. Thanks to the combination of documented patient related outcomes and
CBCT based dose recalculation we expect to provide improved models for dose response and dose related toxicity.
Conclusion: We have developed a comprehensive RTQA model for trials involving modern radiotherapy. These

procedures could also serve as examples of extended RTQA for future radiotherapy trials involving quantitative use
of PET and tumour motion.
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Background
SBRT of early stage non-small cell lung cancer (NSCLC)
has demonstrated high local control rates approximating
90 % and overall survival rates competing with those after
surgical resection for patients refusing surgery [1, 2]. While
for peripheral pulmonary lesions, mainly surrounded by
lung tissue, SBRT with hypo-fractionation and high dose
per fraction can be very well tolerated with low risk of
treatment-related toxicity, centrally located tumours re-
main challenging to treat. Several studies have reported un-
acceptable severe life threatening toxicity [3, 4] due to
lesion proximity to mediastinal serial organs. However,
thanks to the recent advancements in image guidance and
beam delivery different risk adapted SBRT approaches for
patients with centrally located NSCLC have been reported
to reveal promising local control with modest toxicity [5,
6] thus demonstrating the feasibility of such treatments.
Nonetheless, the inhomogeneity among treatment parame-
ters and associated results worldwide [7] has raised a need
for prospective large-scale multi-centre studies to investi-
gate the safety and the efficacy of image guided SBRT of
centrally located lesions. In response, the EORTC has re-
cently launched a European single arm phase II trial for pa-
tients with early stage, centrally located, inoperable
NSCLC: The EORTC 22113-08113 Lungtech trial. The
primary endpoint of the study is freedom from local pro-
gression at three years judged on serial CT scans and in
case of suspicion of recurrence additional **FDG PET-CT
and if possible biopsy. In addition toxicity is scored accord-
ing to the Commun Terminology Criteria for Adverse
Events (CTCAE. V4) and classified as acute if occurring
within 90 days from treatment and as late after 90 days.
The trial presently includes 23 institutions from seven
European countries. Anticipating the possible broad type
of techniques and installations resulting from the inter-
national multi-centre setting, a comprehensive radiation
therapy quality assurance (RTQA) procedure has been de-
veloped. This procedure aims to assess differences in
treatment between institutions, which may induce varia-
tions affecting trial outcome [8] and limiting generalisa-
tion of the results. Thus, with this comprehensive RTQA
program we aim to generate reliable dose—effect and
dose-toxicity data, which could be the basis for, improved
NTCP and TCP models. We hereby present the RTQA
procedures incorporated in this trial. These procedures
could also serve as an example of extended RTQA for fu-
ture radiotherapy trials involving - as in this present trial -
tumour motion and a quantitative use of PET data.

Method

Protocol and RTQA guidelines

Trial protocols and guidelines may be seen as a first
level of quality assurance as they define the main objec-
tives and boundaries of a trial [9].
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Since 2006, RTQA requirements for sites participating
in EORTC trials have been sorted into five different
levels ranging from the minimum procedures, which are
required to all trials to trial-specific credentialing imple-
mented depending on the complexity of the technologies
involved and the trial aims [10]. As trials become in-
creasingly internationally oriented, harmonisation of
RTQA aspects expands as well. From individual to na-
tional and finally worldwide RTQA, procedures have
been standardized into 10 procedures [11]: facility ques-
tionnaire, beam output audit, benchmark case, dummy
run, complex treatment dosimetry check, virtual phan-
tom, individual case review (ICR), review of patients’
treatment records, protocol compliance, and dosimetry
site visit. The Lungtech RTQA procedure follows five
levels defined by the EORTC, which are compliant
with these global harmonisation group documents.
Moreover, to easily compare dosimetry across patient
datasets from the different institutions, a standardized
nomenclature is used for target and OAR delineation.
Names are compliant with the convention proposed
by Santanam et al. [12].

In the following paragraphs the specific RTQA proce-
dures as being performed in the Lungtech trial are out-
lined; beyond the current standardized RTQA
procedures, new QA procedures for 3D or 4D PET-CT
and for collection and evaluation of CBCT data for the
purpose of dose reconstruction within this trial are
described.

Lungtech trial specific implementations and EORTC RTQA
levels

EORTC RTQA level 1

The EORTC RTQA level 1, non trial specific, represents
the minimal security level in order to insure state of the
art radiotherapy treatments can be used . A facility ques-
tionnaire defining the type of treatment devices and
treatment planning system used must be filled out and
results of a beam output audit have to be provided.

In regard to the Lungtech trial, facility questionnaires
have been scanned for trial specific requirements; a
modern treatment device equipped with a volumetric
image guidance system allowing on-line corrections is
mandatory (exception made for tracking and gating de-
vices where 2D image guidance systems are allowed).
For target definition a 3D or 4D PET-CT to assess
tumour volume and also a CT with 4D-CT option to ac-
count for target motion in the planning strategy are
required.

Differences between dose calculation algorithms in the
various treatment planning systems may reach 30 % in
individual cases [13, 14] and have lead in some trials to
create algorithm specific prescriptions [15]. These differ-
ences are mainly linked to whether the algorithm
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Table 1 Combinations of treatment planning systems,
treatment devices and motion management options present
within the institutions in which a site-visit has been performed.
For some centres several combinations are possible according
to their facility questionnaire and preferred combination will be
known during the site visit

Treatment planning system Treatment device 4D option*
Accuray Multiplan Accuray Cyberknife Tracking (1)
Brainlab Iplan Varian Novalis Gating (1)
Varian Eclipse Varian Truebeam TV (3)
Varian Eclipse Varian Clinac TV (2)
Elekta Monaco Elekta Synergy TV (1)
Accuray Tomotherapy Accuray Tomo HD TV (1)
Philips Pinnacle Elekta Synergy TV (1)

* number of centres using this combination is given between brackets

considers changes in lateral electron transport. As the
type B algorithms have demonstrated their superiority
and are nowadays widely available, the Lungtech trial
has set their use as a requirement to ensure limited dif-
ference in dose calculation.

An overview of results from the facility questionnaire
presenting the combinations of treatment devices, TPS
and target motion management techniques used within
the trial is given in Table 1.

EORTC RTQA level 2: The benchmark case
The benchmark case procedure involves downloading a
set of DICOM images of an example patient with rele-
vant patient medical details. Investigators then create a
treatment plan according to the protocol instructions-
Benchmark case submissions are graded for their con-
formity to protocol. Plans within tolerance thresholds
are considered as demonstrating sufficient competence
for trial participation while those with unacceptable vari-
ations are not and need to be redone. Radiation oncolo-
gists and medical physicists reviewers are blinded to the
institutions. Reviews are conducted using VodcaRT™
software integrated in the EORTC RTQA platform [16].
The lungtech protocol follows the promising results of
VUmc [5] that treated central tumours with the same
hypofractionated approach of applying 8 fractions of
7.5 Gy delivered in an overall time of 2.5 weeks.

Table 2 Trial dose specification
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The maximum dose inside the PTV should be between
110 % and 130 % of the prescription dose and 95 % of
the PTV should at least receive 60 Gy. 99 % of the PTV
should receive 90 % prescription dose. In case OAR dose
constraints are exceeded two options are considered as
acceptable variations: reduction of the prescription dose
to 8 times 7 Gy or partial PTV underdosage (Table 2).

The review consists of verification of 1) organs at risk
delineation 2) dose specifications (Table 2), please note,
the normal tissue constraints used in this trial are dis-
cussed in a separate article [17] 3) the use of a motion
compensation strategy for target delineation.

Results of the Benchmark case study will be presented
elsewhere. Up to date (08/10/2015) twelve centres have
submitted their benchmark case study. Eleven were
graded satisfactory whereas one centre did not submit a
satisfactory case yet .

Site activation is conditioned by the completion of the
EORTC first two levels as well as authorization from na-
tional ethics commitees. At this cut-off date four centres
have been activated.

EORTC level 4: Prospective individual case review

Prior to treatment every plan will be reviewed according
to the RTQA guidelines. This review is newly to a large
extent automated in VodcaRT™. Performed by a trial
specific script, it checks the DICOM-RT files for trial
specific requirements as: CT slice thickness not exceed-
ing 3 mm, existence of all mandatory structures and
DVH constraints. Only then the plan is made available
to the reviewers. They review the delineations and dose
distribution and provide feedback using a protocol spe-
cific online standardised ICR report form.

Unacceptable variations need to be adjusted and cen-
tral re-evaluation will be performed. When there are no
further deviations, treatment plan acceptance confirm-
ation — that is required to start they treatment - will be
provided to the site within three working days.

This partial automation of the review should speed-up
the reviewer time and shorten the time between plan
submission by one institution and approval or rejection
from the EORTC thus, allowing a real and complete
prospective review.

Ideal solution 8 x 7.5 Gy

Reduced prescription to meet OARs constraints 8 X 7 Gy

Underdosed PTV to meet OARs constraints

8x75 Gy
Volume 99 % 95 % 99 % 95 % 99 % 95 %
PTV 254 Gy (90 %) 260 Gy (100 %) =504 Gy (90 %) 256 Gy (100 %) NA 248 Gy (80 %)
v NA NA 254 Gy (90 %) 260 Gy (100 %)
GV NA NA Acceptable variation

66-78Gy (110-130 %)
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film insert
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Fig. 1 a CIRS 008A body - b rod simulating a breathing lung - ¢ 15 mm diameter sphere ionization chamber insert - d 15 mm diameter sphere

The EORTC level 3 consists in a rapid, prospective or
retrospective review of a limited amount of cases — a
lighter version of the level 4 - therefore not presented in
this manuscript.

Extended EORTC level 4: New implementation -
Retrospective dose recalculation

Conebeam CT (CBCT) images before and after each
fraction will be collected at the EORTC together with
the performed couch shifts. Based on these data, dose
will be recalculated retrospectively accounting for the
day-to-day set up inaccuracy and patient geometrical de-
formations. All deformed dose distributions will be
transformed back to the original CT acquired for treat-
ment planning and accumulated. Trial specific password
protected upload links are available to the institutions.

EORTC level 5: Complex Dosimetry check and new
implementations

A complex dosimetry check is performed in all the insti-
tutions by means of a site visit. All tests are performed
in a logical order from image quality used for treatment
planning, treatment plans and finally accuracy of plan
delivery. The complete procedure allows us to quantify
the uncertainty in each step of the treatment chain in
each institution. A standardised report will be provided
to the institutions containing detailed results and

anonymised comparisons with other participating insti-
tutes. These observations may be used by the institu-
tions to e.g., further improve their scanning protocols or
planning and delivery techniques. No pre-set pass or fail
limits were defined for these tests as there was too lim-
ited data on clinical useful limits for the required 4D
PET accuracy and 4D dose delivery. As no limits were
set beforehand, this procedure might be regarded as a
quality improvement procedure rather than a quality as-
surance step.

Phantom details For this study the CIRS 008A model
(Computerized Imaging Reference Systems, Norfolk,
Virginia, USA) will be used. This dynamic thoracic
phantom is an anthropomorphic phantom with two lung
shaped regions with lung equivalent density material, a
water-equivalent mediastinum and a vertebral structure.
A lung equivalent density rod inserted in the phantom’s
right lung contains a spherical target of water equivalent
density simulating a lung lesion. A motion actuator
moving the target according to a respiratory signal speci-
fied by the user can drive the rod. The rod may be used
with different type of dosimetric inserts. In this study a
film insert and a set for a 0.04 cm® ionization chamber
are used. The micro-chamber inserts are machined to
receive the dosimeter at the centre of the target volume.
Regarding the film inserts, to allow the placement of the

sphere simulating a lung lesion

Fig. 2 a Customized PET CIRS phantom plugged on the breathing platform - b PET rod simulating the lung compartment - ¢ 15 mm diameter

~
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Table 3 Combination of breathing parameters
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Test 1: Spheres
15 and 25 mm

Test 2: Spheres
15 and 25 mm

Test 3: Sphere

15 mm

Breathing Period (s) 6
Peak to peak Amplitude (mm) 15

3 4
15 25

gafchromic EBT3 films in the middle plane of the
spheres, the spheres are constructed as two one-half
spheres (Fig. 1).

In addition to this anthropomorphic body a custo-
mised PET-CT body has been developed in collaboration
with CIRS (Fig. 2). Positioned on the same breathing
platform the PET body consists in a fillable thorax body
of 18 ¢m length and a fillable cylinder in which a hollow
sphere can be inserted which can be filled with a higher
activity-mimicking tumour '*FDG uptake. Two sphere
diameters of 15 and 25 mm will be used. To simulate
the breathing motion, the equation proposed by Lujan
et al. [18] is used with n set to 3 (equation 1).

t
s(t) = so + A- cos™” (ﬂ— + d)) (1)

T
Several studies have reported breathing cycles for lung
cancer patients varying between t=3 and 6 s [19-21].

Both 15 and 25 mm longitudinal peak-to-peak amplitude
(A=7.5 and 12.5 mm) will be tested. Due to phantom

Table 4 PET stored parameters

mechanical limitations, the combination of a 3 s breath-
ing cycle with 25 mm amplitude is not possible. This
combination has therefore been replaced by 25 mm
amplitude with a breathing cycle of 4 s (Table 3).

PET-CT credentialing No '*FDG fixation threshold has
been set in this trial for target contouring, but PET-CT
images are used as an informative tool in target delinea-
tion. Moreover *FDG PET-CT is planned to monitor
treatment response as translational endpoint, including
staging comparison between 3D and 4D - as applicable
- FDG PET-CT assessment. Although PET scans are
widely available, their use in multicentre clinical trials is
challenging. Differences in quantitative values between
PET images from different institutions may simply occur
due to differences in scanner performance as a result of
using different reconstruction settings [22].

Not all centres participating in this trial are EARL
accredited http://earl.eanm.org/cms/website.php?id=/en/

PET Static 15 mm/3's 15 mm/6 s 25 mm/4 s
Type 3D 4D:10.phases 4D:10 phases 4D:10 phases
Acquisition time 12:30 12:48 13:04 13:20

TOF YES

Binning type X Phase binning

Number of bed position 2 1

Overlap bed 90 mm

Time per bed position 2 min 10 min

Data corrected for:
attenuation corrected
scatter corrected
dead time corrected

randoms corrected

decay corrected : aquisition start time

Type of reconstruction algorithm
Energy window

Slice thickness

Image matrix

FOV

non-uniform radial sampling corrected
detector normalizationu

BLOB-OS-TF

440-665 KeV

4 mm

144 x 144

903 mm
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(the most distant sphere positions) PET-CT images - (b) Average PET-CT
o

Fig. 3 CIRS phantom with the 15 mm sphere size animated with a 15 mm/6 s breathing signal (a) Superposition of 10 % and 40 % phases

projects/fdg_pet_ct_accreditation.htm therefore it is of
interest to investigate SUV consistency among these
institutions.

This RTQA procedure will allow us to pool data from
23 institutions using the same phantom replicating bio-
logical fixation rates in respectively mediastinum, lung
and tumour compartments and to analyse recovery coef-
ficients using different scanner brands and different re-
construction algorithms and parameters. In addition the
procedure evaluates the impact of several breathing mo-
tions on SUV values.

The PET phantom body, cylinder and sphere are filled
with homogeneous solutions of water and *FDG pro-
duced locally. The activity concentrations are set using
the institution prescription for an average patient of
70 kg and recalculated for the phantom weight (6 kg)
with a lesion-to-background ratio of 10 [23, 24] to simu-
late lung lesions. After filling the phantom, activity con-
centrations of each compartment are sampled and
checked for absolute measurements.

PET-CT images are reconstructed using institution
settings and the parameters described in Table 4 are
saved. Recovery coefficients are calculated for each
sphere size and each motion.

Several recovery coefficients are derived using different
uptake parameters: maximum, average and volume re-
covery coefficients.

Maximum recovery coefficients (RCmax) are calculated
using the maximum pixel value compared to the absolute
activity concentration measured on the samples.

RCmax — aximum pixel value inside the sphere

Measured activity concentration

(2)

The average recovery coefficients (RC50) are calcu-
lated for a sphere size using 50 % of the maximum pixel
value on the static PET-CT as threshold to draw on each
phase an isocontour VOI50. The average pixel value

PET-CT Big bore

Fig. 4 Volume recovery coefficients VRC50 (VRC50 = VOI50/VOI static) expressed in % of VOI static. Single site results aquired on a Gemini TF

m 15mm/3sec VRC50
® 15mm/6sec VRC50
u 25mm/4sec VRC50



http://earl.eanm.org/cms/website.php?id=/en/projects/fdg_pet_ct_accreditation.htm

Lambrecht et al. Radiation Oncology (2016) 11:7

Page 7 of 10

1.2

u static

H average

"0%

15mm/3Sec 15mm/6sec

PET). Single site results aquired on a Gemini TF PET-CT Big bore

RCmax| RC50 | RC70 |RCmax| RC50 | RC70 |[RCmax| RC50 | RC70 RCmaxI RC50 | RC70

Fig. 5 Activity recovery coefficients (RCmax, RC50, RC70) of the 15 mm sphere calculated in static and dynamic conditions (static PET and 4D

=10%
u20%
u30%
"40%
150%
" 60%
u70%
" 80%

25mmdsec static =90%

J

inside this VOI50 is then as previously compared to the
measured activity.

RC50 — Average pixel value inside the V OI50

Measured activit j 3)
'y concentration

Finally the VOI50 of each phase and on the average
PET-CT are compared to the VOI50 derived from the
static image and result in volume recovery coefficients
(VRC50).

VOI50x
VRC50 = ————— 4
V OI50 statique 4)

The same process is repeated with 70 % of the
maximum SUV giving respectively the RC70 and the
VRC 70.

Examples of saved parameters and 4D PET-CT calcu-
lated recovery coefficients are presented in Table 4 and
Figs. 3, 4 and 5.

Credentialing of 4D-CT scan techniques Institutions
are required to take motion into account in their plan-
ning strategy. They are nonetheless free to use the solu-
tion of their choice; ITV, mid-position, tracking or
gating. The accuracy of theses strategies all depend on

the 4D-CT imaging quality (Fig. 6). We thus developed a
test procedure to evaluate the impact of motion on the
target volume and motion as determined using the avail-
able binned CT data. The same static and dynamic con-
dition as presented in Table 3 are used when scanning
the anthropomorphic thorax phantom on the CT scan-
ner used for planning. Knowing the exact volume of the
sphere, the HU threshold on the static CT, which results
in the true volume, will be used for autocontouring the
4D-CT datasets. The threshold is applied on each of the
phases of the 4D-CT thus the volume can be calculated
on each phase (Fig. 7). Then the centre of mass of the
auto-segmented contour in each phase is used to calcu-
late the motion amplitude captured by computed tom-
ography. This result will be evaluated and compared to
the known motion amplitude (Table 5).

Credentialing of radiotherapy delivery Treatment
plans will be made by the institutions based on the trial
protocol dose specifications for the two spheres in static
conditions and for the 15 mm diameter sphere for the
15 mm/3 s breathing motion. These plans will be mea-
sured twice successively using both EBT3 film and a
0.04 cm3 ion chamber. The static measurements should
agree within 3 %/3 mm with the calculated dose based on

c coronal

Fig. 6 Average 4DCT of the CIRS phantom with the 25 mm sphere animated with a 15 mm/6 s breathing motion a transversal b sagittal
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50

40

30

20

m 15mm/3s

10 +

0 =
Average 10% 20% 30% 40%

50% 60% 70% 80% 90%

M 15mm/6s
W 25mm/4s

-10

-20

-30

Fig. 7 Volume variation induced by the three breathing motions and expressed in per cent of the static volume for the 15 mm sphere. Single
site results aquired on a Gemini TF PET-CT Big bore using a phase binning approach

a gamma analysis using the dose values above 20 % of the
prescription dose. The analysis will be performed using
the absolute dose, corrected for daily output changes and
with the calculated dose as the reference dose.

Discussion

Several studies have reported a need for prospective
multi-center data for centrally located lung tumours
[25]. Previous data on mediastinal toxicity are scarce
and source of extreme cautiousness for setting-up SBRT
treatments for centrally located lung tumours. We hope
that the here presented intense RTQA procedure with
individual dose recalculation will provide the data to de-
rive robust TCP and NTCP model parameter (e.g., using
Lyman-Kutcher-Burman and log-logistic models) [26].
This will aid the safe further spread of these treatments
to other clinics. The primary end point of the trial is
local control, which will be assessed on CT by evaluating
the tumour size . In case of equivocal results an FDG
PET-CT will be performed. Huang et. al. have defined a
set of criteria to assess recurrences on PET and CT im-
ages. They proposed an SUVmax > 5 as threshold for re-
currences [27, 28]. This threshold would be valid for
PET-CT scanners, which are EARL accredited. However
since not all centres within the Lungtech trial are EARL
accredited a modified Huang criteria was defined, as

Table 5 True peak to peak amplitude of the 15 mm diameter
sphere versus measured on CT from one of the participating
institutions

LAT ANT-POST SUP-INF

true  Measured true  Measured  true  Measured
A15 mm 0 0.02 0 0.04 1.5 14
C3s
A15 mm 0 0.06 0 0.01 1.5 087
C6s
A25 mm 0 0.07 0 0.07 25 2.21
C4s

“focal FDG accumulation significantly above the medias-
tina blood pool”. Nonetheless thanks to the quantitative
analysis of the RTQA we will have information regarding
the variability of the SUV values within the institutions,
which may allow us to validate the Huang criteria as re-
sponse criteria for multi-center studies. The trial will
also intensively investigate acute and late toxicities. Tox-
icities will be rated according to the “common termin-
ology criteria for adverse events” v.4 and these data will
be correlated to the recalculated dose for each OAR. We
also will evaluate toxicity in relation to institution spe-
cific techniques and equipment [29].

Other already closed or on-going SBRT lung cancer tri-
als differ in their requirements and RTQA methodology.
As for example, the RTOG 0813 phase I/II SBRT trial for
early stage, centrally located, NSCLC in medically inoper-
able patients aims to determine the maximum tolerated
dose. An extensive RTQA procedure has been set to en-
sure an acceptable safety level, comprising 5 steps as well.
However, a dummy run instead of a benchmark case test
is used in the RTOG trial (in a dummy run procedure in-
stitutions plan accordingly to protocol one patient case of
their own). This not only makes comparisons between in-
stitutions more difficult, but it can be expected that insti-
tutions will send for review one “convenient” patient of
theirs and not one chosen by the trial's RTQA committee.
Also, 3D image guidance is not mandatory in that trial,
preventing the possibility to recalculate the given dose
based on CBCT data.

Conclusion

We have developed a comprehensive RTQA program
for trials involving modern lung radiotherapy including
4D imaging. This program should not only largely pre-
vent non-compliant protocol treatments, but also enable
calculation of treatment uncertainty and CBCT based
dose recalculation. Thanks to the combination of well
documented patient related outcomes and CBCT based
dose reconstructions, we expect to provide improved
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models for dose response and dose related toxicity in
the challenging context of centrally located NSCLC
treated with SBRT.

The EORTC RTQA program has been implemented
for the Lungtech trial. As the new procedures are opti-
mally harmonised to global RTQA trial procedures, in-
corporating a 4D PET-CT QA phantom and including
full retrieval of 3D CBCT data, we believe this program
can act as a template for many future trials.
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