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Abstract

Purpose: Stereotactic radiosurgery (SRS) alone is an increasingly common treatment strategy for brain metastases.
However, existing prognostic tools for overall survival (OS) were developed using cohorts of patients treated
predominantly with approaches other than SRS alone. Therefore, we devised novel risk scores for OS and distant
brain failure (DF) for melanoma brain metastases (MBM) treated with SRS alone.

Methods and materials: We retrospectively reviewed 86 patients treated with SRS alone for MBM from 2009-2014.
OS and DF were estimated using the Kaplan-Meier method. Cox proportional hazards modeling identified clinical
risk factors. Risk scores were created based on weighted regression coefficients. OS scores range from 0-10 (0
representing best OS), and DF risk scores range from 0-5 (0 representing lowest risk of DF). Predictive power was
evaluated using c-index statistics. Bootstrapping with 200 resamples tested model stability.

Results: The median OS was 8.1 months from SRS, and 54 (70.1 %) patients had DF at a median of 3.3 months.
Risk scores for OS were predicated on performance status, extracranial disease (ED) status, number of lesions, and
gender. Median OS for the low-risk group (0-3 points) was not reached. For the moderate-risk (4-6 points) and
high-risk (6.5-10) groups, median OS was 7.6 months and 2.4 months, respectively (p <.0001). Scores for DF were
predicated on performance status, ED status, and number of lesions. Median time to DF for the low-risk group

(0 points) was not reached. For the moderate-risk (1-2 points) and high-risk (3-5 points) groups, time to DF was
4.8 and 2.0 months, respectively (p <.0001). The novel scores were more predictive (c-index =0.72) than
melanoma-specific graded prognostic assessment or RTOG recursive partitioning analysis tools (c-index = 0.66
and 0.57, respectively).

Conclusions: We devised novel risk scores for MBM treated with SRS alone. These scores have implications for
prognosis and treatment strategy selection (SRS versus whole-brain radiotherapy).
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Introduction

Melanoma brain metastases (MBM) are a common
type of secondary intracranial neoplasm and will de-
velop in nearly half of patients with advanced cutane-
ous melanoma [1-3]. The rate of MBM is likely to
rise given the increasing incidence of melanoma and
advances in systemic disease control with targeted
therapies [4, 5]. The overall survival (OS) of these pa-
tients is generally poor, and many suffer a neurologic
death [2, 6, 7].

Radiotherapy treatment options for MBM include
whole-brain radiation therapy (WBRT) and stereotac-
tic radiosurgery (SRS) [8]. WBRT irradiates both the
known metastases and potential microscopic disease
— maximizing intracranial control but at the cost of
neurotoxicity [7, 9-14]. Focal SRS targets only the
visible disease and spares the remaining brain; how-
ever, there is an increased risk of new distant brain
metastases with SRS alone, which can independently
impact cognition [15-19]. While the optimal strategy
remains controversial, SRS alone is an increasingly
common treatment approach, particularly for patients
with a limited volume of metastatic disease [20].

In order to tailor treatment to individual patients,
several important prognostic tools have been created
for patients with brain metastases. In 1997, Gaspar
et al. [21] analyzed 1200 patients from three Radi-
ation Therapy Oncology Group (RTOGQG) trials. Using
recursive partitioning analysis (RPA), three classes
were devised which stratified patients based on sur-
vival. The RPA classes were further improved by
Sperduto et al. in 2008 with the creation of the
graded prognostic assessment (GPA) [22]. Neither
tool, however, was specific for primary disease hist-
ology. Recognizing the prognostic variances of differ-
ent tumor types, a set of disease-specific GPAs were
then devised [23]. These included a melanoma-GPA,
which identified performance status and number of
MBM as prognostic for survival. One limitation of
the melanoma-GPA is the widely heterogeneous
treatment approaches in the development cohort.
Patients were managed with WBRT alone, SRS alone,
WBRT plus SRS, surgery followed by WBRT, surgery
followed by SRS, or a combination of all three mo-
dalities. Importantly, the majority of patients were
treated with a strategy other than SRS alone. Even
with these existing tools, the ability to predict
survival in SRS patients remains poor [24].

Therefore, this study analyzed MBM patients treated
solely with SRS and sought to create risk scores for sur-
vival that could improve upon the existing melanoma-
GPA. Secondary aims included identifying predictors of
distant brain failure, potentially identifying patients who
may benefit from WBRT.
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Methods and materials

Data collection

With approval of the institutional review board, this
study retrospectively identified 86 consecutive patients
with intact MBM treated with SRS alone from 2009
to 2014 at the University of Pennsylvania. Patient,
disease, and treatment characteristics were retrieved
from electronic medical records and GammaPlan soft-
ware treatment records. Primary cutaneous melanoma
diagnosis was recorded at the first date of histologi-
cally confirmed melanoma. Mutation status was clas-
sified as BRAF wild-type (WT) or BRAF mutation,
including V600E, K601E, or V600K. Brain metastasis
diagnosis was defined as the date of first metastatic
disease on brain magnetic resonance imaging (MRI)
or computed tomography (CT).

Extracranial disease (ED) status was categorized as
active, stable, or absent based on CT scans of the
chest, abdomen and pelvis or positron emission tom-
ography/computed tomography (PET/CT) within two
months of SRS. Active ED indicated patients with
new or increasing burden of metastatic melanoma to
solid organs outside the brain, including patients with
newly diagnosed MBM with co-existing extracranial
metastases. Stable ED denoted patients with previ-
ously treated extracranial metastases with either a
partial response or stable size/metabolic activity. Ab-
sent ED indicated patients with no history of extra-
cranial metastases or previously treated extracranial
disease with complete radiographic response. RPA
class and melanoma-GPA score were assigned accord-
ing to Gaspar et al. [21] and Sperduto et al., [23]
respectively.

GammaPlan software was used to retrospectively
record MBM tumor volumes and SRS treatment vol-
umes. Tumor volumes of individual lesions were ob-
tained from the SRS planning T1-weighted, contrast-
enhanced MRI. To avoid inter-planner variability, a
single investigator (I.C.) with attending supervision
(M.A.B) — both blinded to OS and distant failure
(DF) data — retrospectively contoured each lesion.
Treatment volumes of individual metastases were de-
fined as the volume of brain tissue receiving at least
the prescribed marginal dose for each MBM. Total
tumor and treatment volumes were calculated by
summing all respective individual volumes. Systemic
therapy was classified as peri-SRS if administered at
the time of SRS or completed within two months of
SRS. Systemic therapy was alternatively designated as
post-SRS if administered during the interval between
SRS and DF, or if it was the first therapy given after
SRS in patients without DF. Dates of death were de-
termined from the Social Security Death Index, hos-
pice records, and local newspaper obituaries.
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Stereotactic radiosurgery

Radiosurgery was performed using the Model 4-C or
Perfexion GK (Elekta Inc., Stockholm, Sweden) with
GammaPlan software. A Leksell stereotactic headframe
was applied with local anesthesia, and high-resolution
brain MR images were taken at 1-mm slices with gado-
linium contrast. Additional new MBM discovered on the
planning images were targeted with SRS in the same ses-
sion. Per institutional standards, post-SRS follow-up
brain MRI was obtained approximately every 2 months
for 1 year and then every 3 months afterward.

Statistical analysis

All 86 patients were included in the OS analysis, with
living patients or those lost to follow-up censored at the
date of last clinical encounter. DF was analyzed in 77
(89.5 %) patients with follow-up imaging. The remaining
nine (10.5 %) patients died or were lost to follow-up
prior to first post-treatment intracranial imaging. DF
was defined as leptomeningeal disease or new parenchy-
mal MBM at sites other than previous treatment. Pa-
tients free of any failure were censored at the date of last
imaging showing intracranial control.

The median follow-up time was computed using the
inverse Kaplan-Meier method [25], while OS and time
to DF were estimated using the Kaplan-Meier method.
Variables with a p-value <0.10 on univariate analysis
were considered for multivariable analysis. For clinical
utility, continuous variables were categorized using pre-
viously described techniques [26]. Prior to modeling,
correlations between variables were checked for multi-
collinearity. Missing data points (ie., BRAF mutation
status, N=15) were addressed via multivariable
imputation.

Two different multivariable models were developed to
identify predictors of OS and DF. The first used all vari-
ables that demonstrated significance during univariate
Cox proportional hazards modeling, while the second
used a backwards, stepwise elimination procedure (exit
criteria: p >0.05) to identify the most parsimonious
model. Bootstrapping with 200 resamples was used to
test model stability and control for over-optimism.

Next, significant factors relative to each outcome of
interest were used to derive risk scores for OS and DF.
Point values were assigned to each risk factor based on
weighted regression coefficients from the Cox propor-
tional hazards model. Reference categories for each vari-
able were assigned zero points. Scores were tabulated
for each patient based on the presence of weighted risk
factors, and patients were then sub-classified into clinic-
ally useful risk groups. Patients were assigned to one of
three risk groups for OS based on similarities in survival
patterns. This process was repeated for DF risk; group
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assignments for DF risk were made independently of the
patient’s designation for OS risk.

Model discrimination was evaluated using the Harrell’s
concordance index (c-index) [27] for both OS and DF. A
c-index value of 0.5 indicates no predictive capacity,
while 1.0 indicates perfect discrimination. Harrell’s c-
indices were also calculated for the melanoma-GPA and
RPA for OS. These results were compared to the c-index
derived from our SRS-specific MBM OS risk scores.

Descriptive statistics were performed for all variables.
P-values <0.05 were considered statistically significant.
Statistical computations were performed utilizing IBM
SPSS, version 22 (IBM Corp., Armonk, NY) and SAS 9.3
(SAS Institute Inc., Cary, NC).

Results

Patient characteristics

Patient and disease characteristics are presented in
Table 1. The cohort was predominantly male (60.5 %)
with a Karnofsky performance status (KPS) >80 (91.8 %)
and a median age of 56 years at SRS. Mutation status
was obtained in 71 (82.5 %) patients and not available in
15 (17.4 %) patients. ED status was determined by CT in
48 (55.8 %) patients and PET/CT in 38 (44.1 %) patients
within a median of 2.64 weeks prior to SRS. Patients
underwent SRS to a median of two (interquartile range
[IQR] 1-4) metastases. Fifty (58.1 %) patients received
systemic therapy peri-SRS, while the remaining 36
(41.9 %) did not receive any at the time of SRS. Accord-
ing to previously devised prognostic tools for survival
[21, 28], the majority of patients were classified as RPA
class II (89.5 %), while melanoma-GPA categories were
more evenly distributed.

Overall survival

With a median follow-up of 37.4 (IQR 13.8-47.8)
months, median OS for the cohort was 8.1 (IQR 4.0-
19.2) months from SRS. On univariate analysis, factors
associated with worse OS included: KPS <80, presence
of any ED (absent vs. stable/active), presence of active
ED (absent/stable vs. active), 2-4 lesions, >4 lesions, and
not receiving post-SRS systemic therapy. Presence of a
BRAF mutation was not associated with worse OS com-
pared to BRAF WT. On multivariable analysis, KPS <80
(HR 8.1, P<.0001), presence of any ED (absent vs.
stable/active: HR 5.4, P=.05), presence of 2-4 lesions
(HR 2.6, P=.04) and >4 lesions (HR 3.2, P=.002),
remained significantly associated with worse OS
(Table 2). Although male gender was not significant on
univariate analysis, stepwise regression of all variables
identified gender as being significant (HR 1.8, P =.03),
even when subjected to bootstrapping. Therefore, male
gender was included as a component of the OS risk
score. RPA class and melanoma-GPA scores were not
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Table 1 Patient characteristics and treatment data

Characteristics No. of patients: ~ Median ~ Range
n=286 (%)
Age at GK, years 56 (24-90)
Gender
Male 52 (60.5)
Female 34 (39.5)
Extracranial Metastases
Active 64 (74.4)
Stable 13 (15.1)
None 9 (10.5)
Chemotherapy at SRS
Yes 50 (58.1)
Temozolmide 13 (15.1)
Ipilimumab 11 (128
BRAF-inhibitor 9 (10.5)
None 36 (41.9)
No. of lesions
1 27 (314)
2 25 (29.1)
3 9 (10.5)
4 5(58)
5 7 (8.1)
6 4 (4.7)
=7 9 (10.5)
KPS
<80 7 (8.1)
280 79 (91.8)
RPA Class
I 6 (6.9)
I 77 (89.5)
Il 3(35)
Melanoma-GPA points
3.5-40 22 (25.6)
25-30 35 (40.7)
1.5-20 26 (30.2)
0-1.0 3(35)
Mutation Status
BRAF WT 31 (36.0)
BRAF V60OE, K601E, V6OOK 37 (43.0)
c-kit 2 (23)
NRAS 1(1.2)
N/A 15 (17.4)
Total tumor volume, cc 1.5 0.01-344
<3 cc 61 (70.9)
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Table 1 Patient characteristics and treatment data (Continued)

23 cc 25 (29.1)
Marginal GK dose, Gy 21 12-22
Total treatment volume, cc 36 0.1-45.2
<7 65 (75.6)
>7 21 (244)

Abbreviations: GK Gamma Knife, KPS Karnofsky performance status, RPA
recursive partitioning analysis, Melanoma-GPA graded prognostic assessment
for melanoma, BRAF B-Raf proto-oncogene, BRAF WT B-Raf proto-oncogene
wild-type, c-KIT c-kit proto-oncogene, NRAS neuroblastoma RAS viral (v-ras)
oncogene homolog, Gy Gray, cc cubic centimeter

included in the multivariable analysis in order to avoid
collinearity.

Values for the scoring system were determined from
the weighted proportions of hazard ratios (Table 3). The
most heavily weighted risk factor was KPS <80, followed
by presence of any ED, number of lesions (2-4 or >4),
and gender. Total point values could range from 0-10,
with O representing best OS and 10 representing worst
OS. After tabulating individual scores, patients were
classified into 3 risk groups (low, moderate, and high)
based on similar survival patterns. OS differed signifi-
cantly between the groups (P <.0001 using the log-rank
test for all pairwise comparisons between groups). Me-
dian OS estimates for risk groups are represented in the
bottom portion of Table 3. A visual representation of OS
between the different risk groups is shown in Fig. 1,
panel a. The novel risk scores had a higher Harrell's C
index (c-index = 0.72) than the melanoma-GPA (c-index
=0.66) and the RPA (c-index = 0.57).

Distant failure

Of the 77 patients who had follow-up imaging, 54
(70.1 %) patients had DF at a median of 3.3 (IQR 1.8-7.1)
months from SRS. Median follow-up for these patients
was 13.8 (IQR 5.6-40.7) months. Factors associated with
DF on univariate analysis included: KPS <80, presence of
any ED (absent vs. stable/active), presence of active ED
(absent/stable vs. active), 2-3 lesions, and >3 lesions. On
multivariable analysis, KPS <80 (HR 4.4, P =.004), pres-
ence of any ED (HR 2.6, P =.008), 2-3 lesions (HR 2.3,
P=.032), and >3 lesions (HR 5.9, P<.0001) remained
significantly associated with DF (Table 4). Stepwise
regression confirmed these findings.

A methodological approach similar to the one used to
create the OS risk score was applied to calculate pa-
tients’ risk of DF. DF risk scores ranged from 0-5, with 0
representing the lowest risk of DF and 5 representing
the greatest risk for DF (Table 5). Risk groups for DF
(low, moderate, and high) had significantly different pat-
terns of recurrence (P <.0001 using the log-rank test for
all pairwise comparisons between groups). The median
time to DF for the risk groups are represented in the
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Table 2 Univariate and multivariable Cox proportional hazards analysis for overall survival
Prognostic factor Univariate analysis Multivariable analysis
Hazard ratio (95 % Cl) P value Hazard ratio (95 % Cl) P value

Age (continuous) 1.02 (1.00-1.03) 0.064
Age (>70 or < 70)° 1.52 (0.89-2.58) 0.123
Gender (female or male)° 1.3 (0.81-2.22) 0.241 0.034
KPS (>80 or < 80) 5.16 (2.55-1045) <.0001 8.09 (3.79-17.28) 0.001
Extracranial disease (absent vs. stable/active) 527 (1.64-16.94) 0.005 537 (1.65-17.48) 0.002
Extracranial disease (absent/stable vs. active) 231 (1.24-4.29) 0.008
No. of lesions

1 1.00

2-4 201 (1.09-3.71) 0.025 0.004

>4 298 (147-6.03) 0.002 0.002
BRAF (WT vs. mutation) 0.99 (0.57-1.70) 0.960
Metastases volume (<1 cc vs. =1 cc) 1.70 (1.02-2.82) 0.041
Treatment volume (<4 cc vs. 24 cc) 1.66 (1.02-2.70) 0.042
Peri-SRS systemic therapy (no vs. yes) 149 (0.92-2.43) 0.109
Post-SRS systemic therapy (no vs. yes) 0.41 (0.20-0.85) 0.016

Abbreviations: BRAF B-Raf proto-oncogene, C/ 95 % confidence interval, KPS Karnosfky performance status, peri-SRS at the time of stereotactic radiosurgery,
post-SRS after stereotactic radiosurgery, WT wild-type, *cut-off at the upper quartile of age; bstepwise regression of all variables identified gender as being

significant, therefore, it was included on multivariable analysis

bottom portion of Table 5. Similar to the OS risk model,
the risk groups derived from the DF model demon-
strated a high predictive capacity (c-index = 0.72). A vis-
ual representation of DF between the different risk

groups is shown in Fig. 1, panel b.

Table 3 Point scoring system of predictive factors and median overall survival by risk zones

Systemic therapy & adverse events

Systemic therapy analysis included the 77 patients with
follow-up imaging, of which 67 (87 %) patients received
systemic therapy, while 10 (13 %) patients did not. When
stratifying systemic therapy among the OS risk groups,

Prognostic factor Multivariable analysis hazard ratio (95 % Cl) Point score
KPS

>80 1.00 0

<80 8.09 (3.79-17.28) 4
Extracranial disease

absent 1.00 0

active/stable 537 (1.65-1748) 3
No. of lesions

1 1.00 0

2-4 261 (1.37-4.96) 15

>4 3.24 (1.56-6.72) 2
Gender

Female 1.00 0

Male 1.76 (1.04-2.97) 1
Risk zone Point ranges No. of patients (%) Median OS, mo (95 % Cl)
Low 0-3 15(174) not reached
Moderate 4-6 61 (71.7) 7.60 (3.73-11.47)
High 6.5-10 10 (11.6) 240 (1.79-3.01)

Abbreviations: C/ 95 % confidence interval, KPS Karnofsky performance status, OS overall survival
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Fig. 1 a Kaplan-Meier curves for overall survival for low-risk (0-3 points), moderate-risk (4-6 points) and high-risk (6.5-10 points) survival groups.
b Kaplan-Meier curves for distant failure for low-risk (O points), moderate-risk (1-2 points) and high-risk (3-5 points) distant failure groups

Months from GK until distant failure or censor

14 (93 %) patients in the low-risk group received post-
SRS systemic therapy, compared to 50 (89 %) and 3
(50 %) in the moderate- and high-risk groups, respect-
ively. It should be noted that 5 patients from the moder-
ate OS risk group and 4 patients from the high OS risk
group were lost to follow-up imaging and were not in-
cluded in systemic therapy analysis. Several therapies
were predominately administered: ipilimumab (40 %)
and/or temozolomide (33 %) in the low-risk group; tem-
ozolomide (23 %), vemurafinib (16 %) and/or ipilimumab
(14 %) in the moderate-risk group; and no therapy
(50 %) in the high-risk group. Univariate analysis

demonstrated significant association between OS and re-
ceipt of post-SRS systemic therapy (P =.016), but was
not significant after adjusting for other factors. There
was no univariate association of DF and post-SRS sys-
temic therapy (P=.066). Nine (11.7 %) patients with
intracranial disease only (no stable or active ED), had a
median OS of 21.8 months, 7 of which received post-
SRS systemic therapy (3 ipilimumab, 3 temozolomide,
and 1 vemurafenib).

Among the risk groups for DF, all the patients in the
low-risk group received post-SRS systemic therapy, with
50 % receiving temozolomide and 38 % receiving

Table 4 Univariate and multivariable Cox proportional hazards analysis for distant failure

Univariate analysis

Multivariable analysis

Prognostic factor Hazard ratio (95 % Cl) P value Hazard ratio (95 % Cl) P value
Age (continuous) 1.00 (0.98-1.02) 0.872
Age (>70 or < 70)° 0 (0.59-2.07) 0.760
Gender (female or male) 0.89 (0.52-1.53) 0.675
KPS (>80 or < 80) 320 (1.21-848) 0.019 4.37 (1.58-12.06) 0.004
Extracranial disease (absent vs. stable/active) 263 (1.04-6.68) 0.041 260 (1.29-5.27) 0.008
Extracranial disease (absent/stable vs. active) 2.58 (1.33-5.01) 0.005
No. of lesions
1 1.00
2-3 3(1.48-6.61) 0.003 230 (1.08-4.91) 0.032
>3 5.93 (2.65-13.26) <.0001 5.27 (240-11.57) <0001
BRAF (WT vs. mutation) 0.89 (049-1.63) 0.713
Metastases volume (<1 cc vs. 21 cc) 147 (0.85-2.54) 0171
Treatment volume (<4 cc vs. 24 cc) 1.70 (0.99-2.92) 0.054
Peri-SRS systemic therapy (no vs. yes) 148 (0.87-2.54) 0.150
Post-SRS systemic therapy (no vs. yes) 0.74 (0.29-1.89) 0.534

Abbreviations: BRAF B-Raf proto-oncogene, C/ 95 % confidence interval, KPS Karnosfky performance status, peri-SRS at the time of stereotactic radiosurgery,
post-SRS after stereotactic radiosurgery, WT wild-type; *cut-off at the upper quartile of age
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Table 5 Point scoring system of predictive factors and median time to distant failure by risk zones

Prognostic factor Multivariable analysis hazard ratio (95 % Cl) Point score
KPS

>80 1.00 0

<80 4.37 (1.58-12.06) 2
Extracranial disease

absent 1.00 0

active/stable 260 (1.29-5.27) 1
No. of lesions

1 1.00 0

2-3 230 (1.08-4.91) 1

>3 5.27 (240-11.57) 2
Risk zone Point ranges No. of patients (%) Median time to DF, mo (95 % Cl)
Low 0 8(9.3) not reached
Moderate 1-2 46 (53.4) 480 (3.87-5.73)
High 3-5 23 (26.7) 2.00 (1.50-2.50)

Abbreviations: C/ 95 % confidence interval, KPS Karnofsky performance status, DF distant failure

ipilimumab. In the moderate-risk group, an equal per-
centage (20 %) received ipilimumab, temozolomide, or
vemurafenib. An equal percentage (26 %) of high-risk
patients received either temozolomide or no therapy,
while 13 % of patients received ipilimumab. Among pa-
tients with follow-up, 7 (9.1 %) had symptomatic radi-
ation necrosis and 9 (11.7 %) patients had hemorrhagic
metastases.

Discussion

In this study, we devised novel risk scores for overall
survival and distant brain failure for patients with MBM
treated with SRS alone. In the survival risk score, per-
formance status, presence of any ED (active or stable),
number of lesions, and gender were clinical predictors
of survival in descending significance. Three risk zones
were defined (Table 3), partitioning patients into groups
with significantly different expected survival. The new
survival score had a higher Harrell’s C index than either
of the RPA classes or the melanoma-GPA (c-index =
0.72, versus 0.57 and 0.66, respectively). Those existing
tools were developed in patient cohorts treated predom-
inantly with strategies other than SRS alone; however,
patients selected for an SRS-only approach tend to have
unique characteristics such as high performance status
and low-to-moderate intracranial metastatic burden.
These cases may reflect an inherently different disease
biology compared to patients recommended for treat-
ment with WBRT or multimodality combinations, as
seen in the melanoma-GPA cohort.

In our distant brain failure score, performance status,
presence of any ED (active or stable), and number of le-
sions were factors associated with DF on multivariable
analysis. Three risk zones were defined (Table 5),

partitioning patients into groups with significantly differ-
ent expected intracranial failure rates. Prior investigations
of MBM support the inclusion of ED status [29, 30] and
number of metastases [30-32] as predictors of DF. Re-
cently, Huttenlocher et al. also developed a tool for esti-
mating DF in SRS-treated MBM [33]. Their final model
included ED status and number of lesions, but their
patient cohort was limited to cases with 1-3 metastases.
Recent evidence suggests that SRS may be appropriate for
greater than three metastases with low overall tumor
burden [29, 34-36], and our tool extends the ability of
clinicians to estimate DF for this population.

Despite existing prognostic tools, physicians are not
able to accurately judge survival for many patients
treated with SRS for brain metastases [24]. The current
study may improve this prognostic ability. Survival esti-
mates are important anticipatory information for pa-
tients and may assist in weighing the relative risks and
benefits of treatment. Furthermore, existing tools (i.e.
melanoma GPA and RPA) are only prognostic for OS.
However, assessing the risk of DF may be important
when considering whether to use SRS or WRBT [37]. In
our novel DF model, patients in the low-risk group may
benefit from SRS alone, which controls the index lesions
while minimizing the volume of irradiated brain. This
may prevent the neurocognitive side effects associated
with WBRT [38-40]. On the other hand, patients at high
risk of new metastases may benefit more from microme-
tastatic disease control with WBRT. Several studies have
reported that intracranial progression causes more se-
vere neurocognitive deficits than exposure to WBRT
[15-19]. Therefore WBRT may best preserve cognitive
functioning in the specific group of patients with high
risk of DF. Patients in the moderate risk-zone may
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require a more individualized treatment plan based on
the larger clinical picture. Since the use of SRS alone for
brain metastases is increasing [20], our OS and DF
models will help clinicians accurately assess prognosis in
a new era of treatment, while identifying a subset of
patients that may benefit more with WBRT than SRS
alone.

This study has several limitations, including the biases
inherent to a retrospective investigation. Additionally,
although both models were internally validated using
bootstrapping methodology, the risk scores were devel-
oped using a single institution cohort; therefore, a subse-
quent external validation is necessary to confirm the
generalizability of the findings. Furthermore, systemic
therapy is also rapidly evolving for melanoma, and it is
possible that newer agents (e.g., immune checkpoint and
BRAF inhibitors) could become part of standard treat-
ment in the future. Several phase II trials have shown
the potential activity of these inhibitors for MBM [41, 42].
Recent retrospective analyses suggest a benefit of combin-
ing SRS with Ipilimumab; for example, Kiess et al. demon-
strated that concurrent combination of Ipilimumab at the
time of SRS was associated with improved local control
and survival [43, 44]. These preliminary results are being
tested in phase III trials of Ipilimumab (clinicaltrials.gov
NCT01703507 and NCT01950195) and Debrafenib (clini-
caltrials.gov. NCT01721603) in conjunction with SRS.
Additionally, systemic therapy varied widely in our pa-
tients. Therefore, the model’s accuracy may be different in
cohorts with an alternative distribution of systemic ther-
apy. However, systemic therapy was not significantly asso-
ciated with OS or DF in this study, and our patient cohort
represents contemporary treatment trends. Finally, neuro-
cognitive data was not collected and thus hindered incorp-
oration of neurologic deaths into our analysis. Many of
these limitations will be addressed by an open phase III
randomized trial assessing MBM treated with SRS with or
without WBRT [45, 46].

Conclusion

In conclusion, this study developed novel risk scores for
survival and distant brain failure in patients with MBM
treated with SRS alone. The survival score demonstrated
a higher predictive capacity than existing tools such as
RPA class or melanoma-GPA, and the distant failure
score identifies a subset of patients who may benefit
from WBRT more than SRS.
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