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Abstract

Background: Our previous data demonstrated that targeting non-homologous end-joining repair (NHEJR) yields a
higher radiosensitivity than targeting homologous recombination repair (HRR) to heavy ions using DNA repair gene
knockouts (KO) in mouse embryonic fibroblast (MEF). In this study, we determined if combining the use of an
NHEJR inhibitor with carbon (C) ion irradiation was more efficient in killing human cancer cells compared with only
targeting a HRR inhibitor.

Methods: The TP53-null human non-small cell lung cancer cell line H1299 was used for testing the radiosensitizing
effect of NHEJR-related DNA-dependent protein kinase (DNA-PK) inhibitor NU7026, HRR-related Rad51 inhibitor BO2,
or both to C ion irradiation using colony forming assays. The mechanism underlying the inhibitor radiosensitization
was determined by flow cytometry after H2AX phosphorylation staining. HRR-related Rad54-KO, NHEJR-related
Lig4-KO, and wild-type TP53-KO MEF were also included to confirm the suppressing effect specificity of these

inhibitors.

MEF in both irradiations.

end-joining repair, Radiosensitization

Results: NU7026 showed significant sensitizing effect to C ion irradiation in a concentration-dependent
manner. In contrast, B02 showed a slight sensitizing effect to C ion irradiation. The addition of NU7026
significantly increased H2AX phosphorylation after C ion and x-ray irradiations in H1299 cells, but not B02.
NU7026 had no effect on radiosensitivity to Lig4-KO MEF and B0O2 had no effect on radiosensitivity to Rad54-KO

Conclusion: These results suggest that inhibitors targeting the NHEJR pathway could significantly enhance
radiosensitivity of human cancer cells to C ion irradiation, rather than targeting the HRR pathway.

Keywords: Carbon ion irradiation, DNA double-strand breaks, Homologous recombination repair, Non-homologous

Background

Recently, carbon (C) ion radiotherapy has become an in-
creasingly available option for the treatment of various
malignancies due to a superior dose distribution and a
high relative biological effectiveness (RBE) [1-4]. C ion
irradiation can induce a variety of DNA toxic lesions
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including double-strand breaks (DSBs), which are the
most lethal as an accumulation of misrepaired or unre-
paired DSBs can lead to a massive loss of genetic infor-
mation and cell death [5-7]. However, there are two
major pathways in mammalian cells to repair a DSB:
non-homologous end-joining repair (NHEJR) and hom-
ologous recombination repair (HRR) [8, 9]. Heavy ion
irradiations induce more complex DSB damages and/or
clustered damages around the break sites [10, 11] and are
often repaired less efficiently compared with traditional
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x-ray radiotherapy [12]. Although recent work from our
laboratory demonstrated that the repair of DSBs induced
by heavy ions is slower than those induced by irradiation
with x-rays [13], it is believed that these DSB repairs also
contribute to radiation resistance in human cancer cells.
Therefore, it is essential to identify new targets in DSB
repair pathways and develop inhibitors to enhance the
effect of C ion radiotherapy.

NHEJR is an error-prone and “quick” process com-
pared with HRR, often associated with small insertions
or deletions at the repaired break site [8, 14, 15] and is
the dominant DSB repair pathway throughout the cell
cycle [16, 17]. In contrast, HRR is an error-free repair
pathway and only occurs in the late S/G, phase of the
cell cycle when the sister chromatid is in close proxim-
ity. This is because HR repair requires undamaged hom-
ologous DNA sequences as the repair template to rejoin
the broken ends precisely [9, 14, 15].

The catalytic subunit of DNA-dependent protein kin-
ase (DNA-PKcs) plays a critical role in the NHEJR path-
way [18, 19]. After end recognition by the Ku70/Ku80
heterodimer, DNA-PKcs is rapidly recruited to the DSB
damages and is phosphorylated at the Thr2609 and
Ser2056 clusters by ataxia telangiectasia mutated (ATM)
and itself, respectively [20, 21]. The recruitment and
phosphorylation of DNA-PKcs contributes to processing
and direct ligation of broken DNA ends by ligase 4
(Lig4) [14]. In response to DSB damages, Rad51 family
proteins are recruited to the nucleoprotein filaments by
Mrel1-Rad50-Nbsl (MRN) complex, as specific HRR
proteins for homologous pairing and strand transfer of
DNA. In addition, several studies have reported that
DNA-PK inhibitors have potential to enhance the radi-
ation sensitivity to photon beams in different tumors such
as colon, breast, and prostate cancer [22—-24]. Our previ-
ous data showed that targeting NHEJR yielded a higher ra-
diosensitivity than targeting HRR to heavy ion irradiations
using TP53-null DNA repair gene knock-out (KO) mouse
embryonic fibroblast (MEF) cell lines [25]. However, little
is known about these DNA repair inhibitors as related to
the effects of C ion irradiation in human cancer cells.

This study aims to assess the combined effects of C ion
irradiation with the DNA repair inhibitors on cell killing
in human cancer cells to determine the primary target for
further enhancement of the effects of C ion radiotherapy
and improvement on existing therapeutic strategies.
Therefore, we studied the sensitizing effect of NHEJR and
HRR inhibitors to C ion irradiation in H1299, A172,
U251MG, and TP53-null DNA repair gene KO MEF.

Methods

Cells

Human non-small cell lung cancer (NSCLC) H1299
(TP53-null) cells (population doubling time was 17 h)
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were provided by Dr. Moshe Oren (Weizmann Institute
of Science, Rehovot, Israel). TP53-KO MEF (population
doubling time was 12 h) Lig4"/,Rad54/_ (Rad54-KO),
Lig4™/_Rad54* /. (Ligd4-KO), and Lig4*/, Rad54*/, (wild-
type) were provided by Dr. Frederick W. Alt (Harvard
Medical School, Boston, MA). Human glioblastoma
A172 (population doubling time was 31 h) (wild-type
TP53: wtp53) and U251MG (population doubling time
was 21 h) (mutated TP53: mp53) were purchased from
ATCC (VA, USA). All cells were cultured in Dulbecco’s
modified Eagle’s medium (D-MEM) (Wako, Osaka,
Japan) with high glucose and L-glutamine and supple-
mented with 10 % heat-inactivated fetal bovine serum
(FBS), penicillin (100 U/ml), streptomycin (100 pg/ml)
and HEPES (10 mM) at 37 °C in a humidified atmos-
phere of 5 % CO.,.

Irradiations

Exponentially growing cells were irradiated with C ions
or x-rays. X-ray irradiations were completed using a
200-kVp x-ray generator (TITAN-225S, Shimadzu,
Kyoto, Japan), operated at 14.6 mA with a total filtration
of 0.5-mm Aluminum plus 0.5-mm Copper or using a
150-kVp x-ray generator (MBR-1520R-4, Hitachi, Tokyo,
Japan), operated at 20 mA, with a 0.5-mm Aluminum
plus 0.3-mm Copper filtration. The x-ray dose rate was
about 1.3 Gy/min and 1 Gy/min, respectively. C ion irra-
diations were performed at the Gunma University Heavy
Ion Medical Center using the same beam specifications
used in clinical settings (energy of 290 MeV/nucleon
and a dose-averaged linear energy transfer (LET) of
approximately 50 keV/pum at the center of the spread-
out Bragg peak (SOBP)). Monolayer cells were placed in
the center of the SOBP with a length of 6 cm [26]. The
cells used for DNA damage analysis were irradiated sep-
arately from cells used for colony forming assays.

Treatments

Cells were treated with either the DNA-PK inhibitor
NU7026 (Calbiochem, Darmstadt, Germany), Rad51 inhibi-
tor B02 (Calbiochem), or a vehicle (dimethyl sulfoxide
(DMSO)) control beginning 6 h prior to irradiation. All in-
hibitors were removed 18 h after irradiation and the cells
were cultured with fresh medium after irradiation for colony
forming assays, but not for flow cytometry analysis (Fig. 1).

Colony forming assays

Cell survival was defined using a standard col-
ony forming assay. Cells were trypsinized and seeded
into T-25 flasks at defined densities 24 h before ir-
radiation. After the cells were transferred to fresh
media, at about 5 days for MEF, 7 days for H1299 cells, 6-9
days for U251 and A172 cells, the surviving colonies
were fixed with methanol and stained with 5 % Giemsa
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solution (Fig. 1). The number of colonies containing at
least 50 cells were counted and surviving fractions (SF)
were calculated from the number of colonies formed
in the irradiated flasks compared with the number
formed in the un-irradiated control, in which the plat-
ing efficiency (PE) was defined as the percentage of
cells plated that form colonies in un-irradiated flasks.
Specifically, the SF was defined as the number of col-
onies formed, divided by the number of cells plated
multiplied by the PE. Each point in the corresponding
figures represents the mean surviving fraction calcu-
lated from three independent experiments done in
triplicate for each treatment condition, and the error
bars represent the standard deviation (SD). A sensitization
ratio (SR) for the inhibitors was calculated to quantify dif-
ferences between survival curves. The SR was defined as
the radiation dose resulting in a 10 % survival rate divided
by the radiation dose resulting in a 10 % survival rate for
inhibitor-treated cells.

DNA damage analysis

After treatment as described above, H2AX phosphoryl-
ation was analyzed in cells derived from monolayer
cultures following incubation with trypsin-EDTA. Cells
were pelleted by centrifugation, then fixed in 70 % etha-
nol and stored at -20 °C. Fixed cells were washed one
time with phosphate-buffered saline (PBS) containing
1 % bovine serum albumin (BSA) and blocked with 10 %
horse serum and 0.5 % Tween20 in PBS at room
temperature for 15 min. Cells were incubated with a
mouse monoclonal antibody against human yH2AX
(1:300; Millipore, Billerica, MA) in PBS with 1 % BSA
and 0.5 % Tween20 at room temperature for 1 h. After
one wash with PBS with 1 % BSA, cells were incubated
with an Alexa Fluor 488-conjugated goat anti-mouse
IgG antibody (1:400; Molecular Probes) at room
temperature for 1 h. Cells were washed two times and
subsequently permeabilized with 400-ul PBS containing
0.1-mg/ml PI, 0.1 % Triton X-100, and 400-ul (0.8 mg)

DNase-free RNaseA at room temperature in the dark
for 30 min, then kept on ice. Samples were measured
using a FACSCalibur (BD, Franklin Lakes, NJ). Data
were analyzed with FlowJo software (Digital Biology,
Tokyo, Japan).

Statistical analysis
All values were expressed as the mean + SD. Data were
analyzed using a Student’s ¢ test with a p <0.05 consid-
ered as significant.

Results

Sensitizing effect of NU7026 and B02 to C ion and x-ray
irradiations

Colony forming assays were conducted following 24 h
exposure to graded concentrations of NU7026, B02 or
two-drug combination. H1299 cells exposed to a
NU7026 concentration of < 20 pM resulted in nearly no
cytotoxicity, and the surviving fraction was approxi-
mately 90 %. The B02 and two-drug combination
concentrations of < 10 pM resulted in minimal cytotox-
icity (Fig. 2a). The independent cytotoxicity of NU7026
was lower than B02 in A172 cells and U251MG cells
(Additional file 1: Fig. S1). To clarify if these inhibitors
could enhance sensitivity to C ion irradiation, we exam-
ined the surviving fraction at a concentration of 10 uM
and it did not show independent cytotoxicity. Exposure
of H1299 cells to 10 uM B02 resulted in a slight increase
in radiosensitivity to the C ion and x-ray irradiations
with a SR of 1.34 and 1.21 (Table 1), respectively, at the
10 % survival dose (Dj). H1299 cells exposed to 10 uM
NU7026 enhanced the sensitivity of cells to both irradia-
tions significantly. However, the two-drug combination
did not show an additive effect (Fig. 2b and ¢). In
addition, targeting NHEJR in A172 and U251MG cells
greatly sensitized the cells to the C ion irradiation, but
targeting HRR in these cells resulted in a slight change
in the sensitivities, and the SR value of 10 pM NU7026
for A172 and U251MG cells at the D;, from the C ion
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Fig. 2 Survival curves after NU7026, BO2 treatment and radiation exposure for human H1299 cells. NU7026 alone, B02 alone and both
concentration-dependent changes (a). C ion irradiation dose-dependent changes (b) and the x-ray irradiation (c) when treated or not
treated with 10 uM inhibitors. The presented results are the mean and SD of three independent experiments. Data were statistically evaluated
with student’s t test with comparisons between irradiation alone and other treated groups (* p < 0.05; ** p < 0.01)
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irradiation was 1.87 and 1.52, respectively (Additional
file 2: Fig. S2). Building on the results of our previous
work on DNA repair-KO MEF, this study investigated
graded concentrations of NU7026 to clarify if the sensi-
tizing effect of NU7026 to C ion irradiation occurred in
a concentration-dependent manner. NU7026-sensitized
H1299 cells to the C ion and x-ray irradiations (Fig. 3a
and b) in a concentration-dependent manner. Inciden-
tally, the RBE of the C ion irradiation was 2.4 at the D,
indicating a stronger ability to induce DNA damage rela-
tive to x-rays. Additionally, although the SR value of
NU7026 for H1299 cells at the D,y from C ion irradi-
ation was slightly lower than the value for x-rays (about
66 % less), NU7026 dramatically increased the SR to
both C ion and x-ray irradiations in a concentration-
dependent manner (Fig. 3c) (Table 2), indicating that
targeting NHEJR is more effective in enhancing the
sensitivity of human tumor cells to C ion irradiation
than HRR.

DNA DSB repair ability in H1299 cells after exposure to
NU7026, B02, and irradiation

Effects of NU7016, B02, and irradiation on DNA damage
accumulation in H1299 cells was analyzed using flow

Table 1 Dy, values and sensitization ratios for B02, NU7026, and
combination of both in H1299 cells

Dio Sensitization ratio

Cions X-rays Cions X-rays
Irradiation alone 547+035 883+0.76 1.00 1.00
B0O2 (10 uM) 4.07+0.23 7.28+048 1.34 1.21
NU7026 (10 puM) 263+0.31 3.77£032 2.08 2.34
B02 + NU7026 247+032 3.80+026 221 232

Do dose giving a survival of 10 %; C ions carbon ions

cytometry after yH2AX staining. Histone YH2AX is an
important marker protein for detecting DNA DSB ex-
pression. The combination of 10 uM NU7026 and ir-
radiation with C ion or x-ray irradiation markedly
increased the H2AX phosphorylation at 24 h after ir-
radiation relative to irradiation alone (Fig. 4a); but the
combination of B02 and irradiation did not affect the
H2AX phosphorylation (Fig. 4b), indicating suppres-
sion of DNA repair ability and the accumulation of
unrepaired lethal DNA damage in the cells after
NU7026 treatment, but not B02.

Radiosensitizing effect of NU7026 and B02 in MEF with a
specific NHEJR-KO and HRR-KO

To confirm the suppressing specificity of these inhibi-
tors, the radiosensitizing effect of NU7026 and B02 were
analyzed using colony formation assays in HRR-related
Rad54-KO, NHE]JR-related Lig4-KO, and wild-type cells.
Exposure of wild-type cells to 20 pM NU7026 and B02
resulted in an increase in radiosensitivity to C ion
and x-ray irradiations. However, NU7026 had no ef-
fect on radiosensitivity of Lig4-KO cells and B02 had
no effect on radiosensitivity of Rad54-KO cells in
both irradiations (Fig. 5).

Discussion

NHEJR is the dominant DSB repair pathway and is a
more severe threat to survival than HRR exposed to
low-LET radiation [15, 27]. However, the primary repair
pathway for DSBs in high-LET heavy ion irradiations has
remained elusive. In this study, cellular radiosensitivity
to C ion and x-ray irradiations after treatment with in-
hibitors targeting NHEJR and HRR was determined
using human cancer cells. This study demonstrated that
NU7026 is more effective for enhancing the sensitivity
of human tumor cells to C ion irradiation. In contrast,



Ma et al. Radiation Oncology (2015) 10:225

Page 5 of 9

Surviving fraction

® Irradiation alone C
A 5uM
o 10
v 20 uM

X-rays

uM | NU7026
u

Sensitization ratio
[}
-

(o4

0 L

C ions (Gy)

I 05 I 20
X-rays (Gy)

Fig. 3 Survival curves after NU7026 and radiation exposure and sensitization ratio of NU7026 for human H1299 cells. C ion irradiation dose-dependent
changes (a) and the x-rays (b) when treated or not treated with 5-20 uM NU7026. NU7026 concentration-dependent sensitization ratio values to C ion
and x-ray irradiations (c). The presented results are the mean and SD of three independent experiments. Data were statistically evaluated with student’s
t test with comparisons between irradiation alone and other treated groups (* p < 0.05; ** p < 0.01; *** p < 0.001)
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B02 did not demonstrate increased sensitivity at the con-
centration studied without independent cytotoxicity, and
the two-drug combination showed no additive effect.
These findings are consistent with our previous report
using repair-KO MEF [25]. In addition, similar results
have been recently reported in repair-KO Chinese ham-
ster cell lines using proton and C ion irradiation [28].
The results of radiosensitizing effect of NHE]JR inhibitor
are also consistent with other studies involving low-LET
irradiations [29-33]. Furthermore, this suggests that the
major target leading to enhanced radiosensitivity of
tumor cells to high-LET radiation is NHEJR rather than
HRR, and similar to low-LET radiation. In contrast,
HRR-deficient, but not NHEJR inhibited, tumor cells
showed markedly increased radiosensitivity to low-LET
proton irradiation accompanied with reduced phosphor-
ylation of DNA-PKcs after proton irradiation compared
with photon irradiation [34]. The reason for this differ-
ence may be related to the inherent differences between
radiation quality from proton and C ion irradiation. In
addition, our previous report demonstrated that NHEJR
is the dominant target for sensitizing cells to C ion ir-
radiation regardless of LET values using MEF cells [25].
NU7026-sensitized 7P53-mull H1299 cells, wtp53 A172

Table 2 D, values and sensitization ratios for different
concentrations of NU7026 in H1299 cells

NU7026 (uM)  Dio

Sensitization ratio

Cions X-rays Cions X-rays
0 327+035 793 +045 1.00 1.00
5 260+ 0.69 493 +067 1.26 1.61
10 1.67 £0.06 320£0.10 1.96 248
20 1.20+£0.17 210053 2.73 3.78

Do dose giving a survival of 10 %; C ions carbon ions

cells, and mp53 U251MG cells to C ion irradiation. This
suggests that the sensitizing effect of the NHEJR in-
hibitor to both irradiations is TP53-independent. The
independent cytotoxicity of NU7026 was lower than
B02. This suggests that administration of NU7026 at
a concentration without systemic cytotoxicity to pa-
tients may be possible. Consequently, although the SR
value of NU7026 for H1299 cells to the C ion irradi-
ation at Djy was slightly lower than that of x-rays,
NU7026 dramatically increased the SR to both irradi-
ations in a concentration-dependent manner. It has
been reported that NHEJR is suppressed by high-LET
radiation, because high-LET radiation results in accumu-
lation of short DNA fragments (<40 base pairs) along the
beam track and these short fragments bind to Ku proteins,
which are the sensor of DSBs in the NHEJR pathway
[35—-37]. Therefore, the SR of NU7026 to the C ion
irradiation is slightly lower than that of x-rays.

In contrast, as NHEJR is suppressed by high-LET radi-
ation and high-LET radiation-induced short fragments
of linear DNA do not affect the HRR sensor MRE11
protein, it has been reported that the dominant repair
pathway during high-LET radiation is HRR using DNA
repair-KO Chinese hamster cells, MEFs, and chicken
DT40 cells [35, 36]. Moreover, high-LET radiation-
induced DSBs are too complex with dirty broken ends
to repair efficiently by NHEJR [12]. However, NHE]JR in-
hibition showed a high SR to C ion irradiation relative
to HRR inhibition in human cancer cells. This point sug-
gests that high-LET radiation only partly suppresses
NHEJR despite the suppression of the Ku-dependent
NHEJR pathway. High-LET radiation-induced short
DNA fragments suppression in the Ku-dependent
NHEJR pathway, but not in the PARP-1-dependent
NHEJR pathway [35], in support of this suggestion.
Moreover, a possible explanation for this difference may
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be that the proliferation ratio of Chinese hamster and
chicken cells is higher than human cells because of the
shorter doubling time compared with human cells [38].
This means that the contribution of HRR in these cells
is higher than in human cells, because the late S/G,
phase is more populous. HRR can repair DSBs using the
undamaged DNA homologue as a template in the late
S/G, phase.

DNA repair ability of H1299 cells after treatment with
NHEJR inhibitor and HRR inhibitor was examined using
flow cytometry. The combination of NU7026 and both
irradiations markedly increased H2AX phosphorylation
at 24 h after irradiation, but B02 did not affect the
H2AX phosphorylation. This result suggests that the
suppression effect of DNA repair capacity by NHEJR
inhibition is stronger than HRR inhibition at a concen-
tration without independent cytotoxicity. The DNA re-
pair suppression effect of NHEJR inhibition in this study
is consistent with similar studies involving photon low-
LET irradiation [31, 32].

DNA-PKcs is a multifunction protein kinase, necessary
for NHEJR, telomere regulation, and mitosis [39]. This
study determined the specificity of the inhibitors of
interest to DNA repair pathways using repair-KO MEF
cells. NU7026 had no effect on radiosensitivity of
NHEJR-related Lig4-KO cells and B02 had no effect on
radiosensitivity of HRR-related Rad54-KO cells in both
irradiations. This suggests that the DNA-PKcs inhibitor
NU7026 and Rad51 inhibitor BO2 sensitized cancer cells
to the C ion irradiation via suppression of the NHEJR
and HRR pathways, respectively. In contrast, telomeres
are specialized DNA-protein structures that cap the ends
of a chromatid, protecting the end of the chromosomes
from deterioration or from fusion with neighboring
chromosomes. Critically short telomeres may results in
chromosome aberrations, inducing a DNA damage re-
sponse or cell death [40, 41]. Consequently, Zhou et al.
reported that DNA-PKcs inhibition sensitizes cancer
cells to irradiation with C ion irradiation via telomere
capping disruption, but not via NHEJR inhibition [42].



Ma et al. Radiation Oncology (2015) 10:225

Page 7 of 9

Wild-type Lig4-KO Rad54-KO
. a _ b NS c

0.3
=)
g
3 01
£ 020 0 20
g
s d e
Z
j=]
n
0.3
0.1

(M)
f

groups (* p <0.05; ** p <0.01; NS, non-significant)

0 20 0 20 0 20 0 20 (Bg%)
u
& £ & )
D D D D
O A oS 400

Fig. 5 Survival fraction after radiation exposure with NU7026 or BO2 treatment in MEF. 20 uM NU7026 treatment (a—c), 20 uM BO02 treatment (d—f).
Wild-type cells (a and d), Lig4-KO cells (b and e), Rad54-KO cells (c and f). The presented results are the mean and SD of three independent
experiments. Data were statistically evaluated with the student’s t test with comparisons between irradiation alone and other treated

This increased sensitivity is due to NU7026 and if the
cells of interests had shorter telomeres, even with
complete recovery of C ion-induced potentially lethal
damage within 24 h of incubation after irradiation,
DNA-PKcs inhibition could continue to lower cell sur-
vival [42]. Moreover, suppression of DNA-PKcs by small
interfering RNA (siRNA) sensitizes cells to x-rays
through disruption of mitotic progression after irradi-
ation, without affecting DSB repair [43]. The difference
in radiosensitizing mechanism between DSB repair sup-
pression and telomere capping disruption may be ex-
plained through mitochondrial DNA damages repaired
within 24 h after the irradiation [42], which did not in-
clude nucleus DNA damages. It was not possible to con-
firm if DNA damages in the nucleus have been repaired.
Furthermore, the difference in radiosensitizing mechan-
ism between DNA-PKcs inhibitor and siRNA effects are
likely due to inhibition of the kinase activity by inhibitor
blocking of the DSB repair in both non-dividing and
dividing cells, though siRNA mainly affects dividing
cells [43].

Targeting NHEJR may be of greater clinical risk than
targeting HRR during radiation therapy [15] and may
also increase risks of immunosuppression as the NHEJR

pathway is an integral part of the V(D)] immune recom-
binational pathway [44, 45]. Nevertheless, C ion radio-
therapy in combination with a low concentration of a
NHEJR inhibitor offers superior dose distribution and
shorter total treatment time (early stage NSCLC is just 4
fractions, in a week) compared with traditional photon
radiotherapy [3]. Furthermore, the suppression of error-
prone NHEJR by NHEJR inhibitors may reduce the risk
of secondary cancers after radiation therapy due to mul-
tiple DSBs generated in cells with an intact NHEJR path-
way giving rise to high frequencies of misjoining,
genomic rearrangements, chromosomal translocations,
and genetic instability [46—48]. In addition, cancer stem
cells (CSC) are a major cause of recurrence, metastasis,
and resistance to radiation [49-51]. The repair of DNA
damage in dormant CSC occurs predominantly through
the NHEJR pathway but not HRR pathway [52]. There-
fore, complete recovery may be expected through com-
bination of NHEJR inhibitors and C ion radiotherapy to
kill the CSC.

Conclusions
Our findings demonstrated that although the sensitizing
effect of NHEJR inhibitor to C ion radiotherapy was
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slightly lower compared with traditional x-ray radiother-
apy, NHEJR inhibition increases radiosensitivity of
human tumor cells to irradiation with C ions more effi-
ciently relative to HRR inhibition. This also supports the
hypothesis that NHEJR is the dominant repair path-
way in high-LET radiation as well as in low-LET radi-
ation and offers new treatment strategies in C ion
radiotherapy.

Additional files

Additional file 1: Figure S1. Survival curves after radiation exposure
with NU7026 or BO2 treatment in human glioblastoma cells. A172 cells
(A and B), U25TMG cells (C and D). NU7026 treatment (A and C), B02
treatment (B and D). The presented results are the mean and SD of
three independent experiments. Data were statistically evaluated with
student’s t test with comparisons between inhibitor alone and other
treated groups (* p <0.05; ** p <0.01; *** p <0.001). (PDF 122 kb)

Additional file 2: Figure S2. Radiosensitization with NU7026 or B02
treatment in human glioblastoma cells. Survival curves (A and B),
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cells (B and D) after exposure to C ion irradiation. The presented results are
the mean and SD of three independent experiments. Data were statistically
evaluated with the student’s ¢ test with comparisons between irradiation
alone and other treated groups (* p < 0.05; ** p < 0.01). (PDF 119 kb)
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