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Mutant KRAS associated malic enzyme 1
expression is a predictive marker for radiation
therapy response in non-small cell lung cancer

Gaurab Chakrabarti1,2,3,4
Abstract

Background: Advanced non-small cell lung cancer (NSCLC) is an aggressive tumor that is treated with a combination
of chemotherapy and radiation if the patient is not a candidate for surgery. Predictive biomarkers for response to
radiotherapy are lacking in this patient population, making it a non-tailored therapy regimen with unknown outcome.
Twenty to 30 % of NSCLC harbor an activating mutation in KRAS that may confer radioresistance. We hypothesized
that mutant KRAS can regulate glutamine metabolism genes in NSCLC and maintain tumor redox balance
through transamination reactions that generate cytosolic NADPH via malic enzyme 1 (ME1), which may contribute
to radioresistance.

Findings: A doxycycline-inducible mouse model of KRASG12D driven NSCLC and patient data was analyzed from
multiple publicly accessible databases including TCGA, CCLE, NCBI GEO and Project Achilles. ME1 expression was found
to be mutant KRAS associated in both a NSCLC mouse model and human NSCLC cancer cell lines. Perturbing glutamine
metabolism sensitized mutant KRAS, but not wild-type KRAS NSCLC cell lines to radiation treatment. NSCLC survival
analysis revealed that patients with elevated ME1 and GOT1 expression had significantly worse outcomes after
radiotherapy, but this was not seen after chemotherapy alone.

Conclusions: KRAS driven glutamine metabolism genes, specifically ME1 and GOT1 reactions, may be a predictive
marker and potential therapeutic target for radiotherapy in NSCLC.
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Background and findings
Patients with locally advanced NSCLC that are not can-
didates for surgery are treated with a combination of
chemotherapy and radiation therapy [1]. Clinical trials
assessing the efficacy of radiation therapy in this patient
population have shown mixed results [2–4]. Further-
more, 20–30 % of all NSCLC harbor an activating muta-
tion in KRAS [5]. Interestingly, several studies have
demonstrated that the presence of mutant KRAS may
act as a marker for radioresistance in NSCLC, yet the exact
mechanism is not well understood [6–12]. Recent litera-
ture has demonstrated that mutant KRAS reprograms
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glutamine metabolism flux in pancreatic cancers through
cytosolic aspartate aminotransferase (GOT1) and malic
enzyme 1 (ME1) [13–18]. By synthesizing significant intra-
cellular pools of NADPH via ME1, KRAS-reprogrammed
pancreatic cancers rely on glutamine for redox balance in
the face of reactive oxygen species (ROS) production
from rapid proliferation and microenvironment stressors
(Fig. 1a) [16]. In this context, NADPH is an essential co-
factor to blunt ROS formation through the maintenance
of intracellular reduced glutathione and thioredoxin [19].
However, to date, there are no studies evaluating whether
mutant KRAS similarly reprograms glutamine metabolism
genes in NSCLC for redox balance and whether this may
be a potential mechanism to attenuate ionizing radiation
(IR)-induced ROS and DNA damage. Therefore, we
characterized glutamine metabolism genes in mutant vs
wild-type KRAS NSCLC both in vitro and in vivo, demon-
strated the necessity of ME1 in mutant, but not wild-type,
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Fig. 1 (See legend on next page.)
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Fig. 1 Mutant KRAS is associated with ME1 and GOT1 expression in NSCLC. a Model of mutant KRAS-reprogrammed glutamine utilization (red).
GLS1 = glutaminase 1; GLUD1 = glutamate dehydrogenase 1; GOT2 =mitochondrial aspartate aminotransferase; ASP = aspartate; GOT1 = cytosolic
aspartate aminotransferase; OAA = oxaloacetate; MDH1 =malate dehydrogenase 1; ME1 =malic enzyme 1; GSR = glutathione disulfide reductase.
b When fed doxycycline, the mice develop lung tumors that are dependent on constitutive KRASG12D expression [20]. Within 48 h of doxycycline
withdrawal, KRASG12D expression was extinguished and whole-genome gene expression analyses of lung tumors were performed. Consistent with
mutant KRAS-driven reprogramming of glutamine metabolism, ME1 and GOT1 levels were up-regulated when KRASG12D was induced vs 48 h
extinction with doxycycline withdrawl. c KRASG12D induction upregulated ME1 mRNA in mouse doxycycline inducible KRASG12D embryonic fibroblasts
derived from the transgenic mice. d mRNA expression of ME1 in mutant KRAS vs wild-type KRAS NSCLC cell lines. Mutant KRAS lines: A549, CALU6,
NCIH1155, NCIH1373, NCIH1385, NCIH1573, NCIH2030, NCIH2122, NCIH2347, NCIH460 and NCIH647. Wild-type KRAS lines: CALU3, HCC2108, HCC2279,
HCC2935, HCC4006, NCIH322, NCIH520, NCIH522, NCIH596, NCIH661 and NCIH838. e NSCLC cell line dependencies on ME1 based on ATARiS gene
phenotype value assessed from Project Achilles. Black bars =mutant KRAS cell. White bars = wild-type KRAS cell. Mutant KRAS lines: A549, CALU1,
CORL23, HCC44, NCIH1650, NCIH1792, NCIH2122, NCIH23 and NCIH441. Wild-type KRAS lines: HCC2814, HCC827, NCIH1299, NCIH1437, NCIH1975,
NCIH661, NCIH838 and HCC827GR5. f-g Seven day clonogenic survival assay of H522 and HCC44 with RNAi knockdown of ME1. h ME1 western blot in
H522; band at 64 kDa. All results were compared using Student’s t-tests as indicated. *p < 0.05; **p < 0.01; ***p < .001
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KRAS cell lines, and demonstrated that ME1 gene expres-
sion is a predictive marker in the treatment response to
radiation therapy in a cohort NSCLC patients.

Mutant KRAS is associated with ME1 and GOT1 expression
in NSCLC
Gene set enrichment analysis (GSEA) of wild-type vs
mutant KRAS NSCLC cell lines from the Cancer Cell
Line Encyclopedia (CCLE) revealed that genes involved
in glutamine dependent redox balance (ME1 and GOT1)
were significantly upregulated in mutant KRAS cell lines
with normalized enrichment scores (NES) >1.48 (Table 1,
Additional file 1: Figure S1A).
Next, we utilized gene expression data (GSE40606) of a

tetracycline operator-regulated Tet-op-KRASG12D; p53−/−

transgenic mouse model of NSCLC to examine mRNA
expression in the KRAS induced (“ON”) and extinguished
(“OFF”) states (Fig. 1b). When fed doxycycline, the mice
develop lung tumors that are dependent on constitutive
KRASG12D expression [20]. Within 48 h of doxycycline
withdrawal, KRASG12D expression was extinguished and
whole-genome gene expression analyses of lung tumors
were performed. Consistent with our cell line results,
ME1 and GOT1 levels were significantly upregulated
when KRASG12D (n = 4 mice) was induced vs 48 h extinc-
tion with doxycycline withdrawal (n = 4 mice) (Fig. 1b).
We found that KRASG12D induction similarly upregulated
ME1 and GOT1 mRNA in mouse doxycycline inducible
KRASG12D embryonic fibroblasts derived from the trans-
genic mice (Fig. 1c, Additional file 1: Figure S1B).
Table 1 GSEA results for mutant vs. wild-type KRAS NSCLC
cell lines

Name NES Genes NOM p-val

NITROGEN_METABOLISM 1.59 GLS .001

GLUTAMATE_METABOLISM 1.59 GOT1, GOT2, GLS .001

CARBON_FIXATION 1.48 ME1, ME3, GOT1,
GOT2, MDH1

.037
Next, we measured mRNA levels of ME1 and GOT1
in 11 mutant and 11 wild-type KRAS NSCLC cell lines
and found both genes to be significantly upregulated in the
mutant cell lines (Fig. 1d, Additional file 1: Figure S1C).
Next, to determine if mutant KRAS NSCLC cell lines re-
lied on ME1 for survival, we analyzed 17 NSCLC cell lines
from the Project Achilles database, an openly accessible
platform of large-scale functional RNAi screens of cancer
cell lines to identify genes that affect cell survival [21]. We
found that 7 out of 9 mutant KRAS cell lines relied on
ME1 for viability, while ME1 was dispensable in all but
one of the wild-type cell lines (Fig. 1e). To verify these re-
sults, we knocked down ME1 (Fig. 1h) in H522, a wild-
type KRAS line, and in HCC44, a mutant KRAS line.
Using clonogenic survival assays, we found that ME1 loss
rendered HCC44, but not H522, unable to form visible
colonies (Fig. 1f, g). Taken together, our analyses indicate
that mutant KRAS is associated with ME1 gene expression
in NSCLC and that ME1 is an essential viability gene in
mutant, but not wild-type, KRAS cell lines. In support of
this observation, ME1 is a known NRF2 transcriptional
target, which itself is positively regulated by mutant KRAS
signaling via the MAPK pathway [22, 23].

Targeting glutamine metabolism sensitizes mutant KRAS
NSCLC cell lines to radiation treatment
Mutant KRAS HCC44 and wild-type KRAS H522 cells
were grown in Gln-free or Gln-containing (2 mM) media
for 16 h, then exposed to ionizing radiation and allowed
to form colonies for 7 days. Short-term Gln deprivation
did not significantly alter clonogenic survival on its own,
but did sensitize HCC44 and not H522 cells to radiation,
at normally sub-lethal doses (Fig. 2a, b). Using this short
term glutamine deprivation protocol, we next screened
the mutant KRAS NSCLC cell lines H2009, H1573 and
A549; and the wild-type KRAS NSCLC cell lines H661,
H322 and H596 (Fig. 2c). Interestingly, we found that
upon glutamine deprivation, mutant, but not wild-type,
KRAS lines were sensitized to radiation (Fig. 2c). To
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Fig. 2 Targeting glutamine metabolism sensitizes mutant KRAS NSCLC cell lines to radiation treatment. a, b Seven day clonogenic survival of
HCC44 or H522 after radiation treatment after growth in either complete media or Gln deprived media for 16 h. c Clonogenic survival screen of
mutant KRAS (H2009, H1573 and A549) or wild-type KRAS (H661, H322 and H596) NSCLC cell lines grown in either complete media or Gln deprived
media for 16 h followed by treatment with 2 Gy of ionizing radiation. d Clonogenic survival of HCC44 and H522 pre-treated with 1 μM CB-839 for
48 h followed by treatment with various doses of ionizing radiation. All results were compared using Student’s t-tests as indicated. *p < 0.05; **p < 0.01;
***p < .001
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pharmacologically mimic these results, we pre-treated
HCC44 and H522 with the glutaminase 1 (GLS1) inhibi-
tor, CB-839 [24], for 48 h at 1 μM followed by radiation
treatment. Consistent with our glutamine deprivation re-
sults, HCC44, but not H522, was sensitized to radiation
treatment (Fig. 2d).

GOT1 and ME1 expression predicts response to radiation
therapy in NSCLC patients
To expand our in vivo and in vitro findings into a
clinical context, we analyzed mutant KRAS status, tumor
mRNA expression and RECIST outcomes data from the
TCGA in lung adenocarcinoma (LUAD) NSCLC patients
who were treated with IR (patient characteristics
Additional file 2: Table S1 and Additional file 3: Table S2,
https://tcga-data.nci.nih.gov/tcga/tcgaCancerDetails.jsp?
diseaseType=LUAD&diseaseName=Lungadenocarcinoma)
[25]. Of the 14 LUAD NSCLC patients who had a com-
plete response (CR) to IR treatment, ~93 % (13/14) of the
patient’s tumors were wild-type KRAS, while only ~7 %
(1/14) of the tumors were mutant KRAS, suggesting that
wild-type KRAS tumors may be more radiosensitive com-
pared to mutant KRAS tumors, consistent with previous
reports (Fig. 3a) [6–12]. ME1 and GOT1 expression levels
were significantly elevated in those patients who had pro-
gressive disease (PD) when treated with IR vs patients

https://tcga-data.nci.nih.gov/tcga/tcgaCancerDetails.jsp?diseaseType=LUAD&diseaseName=Lungadenocarcinoma
https://tcga-data.nci.nih.gov/tcga/tcgaCancerDetails.jsp?diseaseType=LUAD&diseaseName=Lungadenocarcinoma
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Fig. 3 GOT1 and ME1 expression predicts response to radiation therapy in NSCLC patients. a Percent of complete responders to ionizing radiation
(IR) in NSCLC patients separated based on KRAS status. Total number of complete responders in TCGA database = 14; wild-type KRAS = 13, mutant
KRAS responders = 1. OR = odds ratio. Results compared using Fisher’s exact test. b, c ME1 and GOT1 log2 mRNA expression levels with calculated
mean from TCGA NSCLC patients prior to radiation treatment with associated patient outcome after radiation treatment, CR = complete response,
disappearance of all target lesions; PD = progressive disease, >20 % increase in the sum of the longest diameter of target lesions. Multiple probes
integrated for each gene. d, e Kaplan-Meier overall survival curves in IR-treated NSCLC patients from KMPLOT database separated into high and
low GOT1 and ME1 expression. Total number of NSCLC patients analyzed = 73; number of patients with high expression: ME1 = 40, GOT1 = 45;
number of patients with low expression: ME1 = 33, GOT1 = 28. All results were compared using Student’s t-tests or a Cox regression analysis unless
otherwise stated. *p < 0.05; **p < 0.01; ***p < .001
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who demonstrated a CR after radiation therapy (Fig. 3b, c).
Furthermore, we assessed overall survival outcomes in
IR treated NSCLC patients (n = 73) grouped into high
or low GOT1 and ME1 expressers. Interestingly, we
found that patients with high expression of GOT1 or
ME1 had significantly worse prognosis over a 140 month
time period when compared to low GOT1 or ME1 ex-
pressers (Fig. 3d, e). Lastly, we did not observe a signifi-
cant median survival difference between high and low
GOT1/ME1 expressers in NSCLC patients who received
chemotherapy, but not IR (Additional file 4: Figure S2A, B).
Taken together, this suggests that ME1 and GOT1 are
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predictors to radiation, but not chemotherapeutic, re-
sponse in NSCLC.
Conclusions
This multi-database translational study is the first to iden-
tify mutant KRAS associated glutamine metabolism genes,
GOT1 and ME1, as potential radioresistance biomarkers in
NSCLC. Our study revealed that elevated expression of
GOT1 or ME1 is a highly predictive biomarker in radiation
treatment, but not chemotherapeutic, outcomes. Addi-
tionally, ~93 % of patients with a complete response to IR
treatment harbored wild-type KRAS in their tumors. To
explain these observations, we hypothesize that KRAS-re-
programmed glutamine flux through GOT1 and ME1 is
critical to maintain cytosolic NADPH levels for redox bal-
ance and lipid synthesis in NSCLC. In the face of ROS
stress, as observed with IR treatment, NADPH is preferen-
tially used to maintain reduced glutathione and thiore-
doxin 1 to protect cells from ROS damage [19]. In this
context, KRASmay reprogram NSCLC glutamine metabol-
ism similar to that observed in pancreatic cancer to main-
tain redox balance, thus providing an oncogene driven
mechanism of radioresistance. While there are currently
no known specific inhibitors of ME1 or GOT1, targeting
upstream glutamine utilization via glutaminase 1 (GLS1,
Fig. 1a) inhibition (with BPTES or CB-839) may blunt
downstream utilization of glutamine/glutamate through
GOT1 and ME1, thus depleting tumor, but not normal tis-
sue, NADPH/GSH production, leading to tumor-specific
radiosensitivity while sparing normal tissue [24].
Materials and methods
Databases
GSEA of mutant vs wild-type KRAS NSCLC cell lines was
completed using the Broad Institute’s publically available
Cancer Cell Line Encyclopedia (CCLE) (http://www.
broadinstitute.org/ccle) [26]. Transgenic mouse data
was obtained through GEO Series accession number
GSE40606 at Transgenic mouse data was obtained through
GEO Series accession number GSE40606. We obtained
NSCLC expression, mutation, treatment and outcomes pa-
tient data from The Cancer Genome Atlas (TCGA) using
the lung adenocarcinoma (LUAD) dataset (https://tcga-
data.nci.nih.gov/tcga/tcgaCancerDetails.jsp?diseaseType=
LUAD&diseaseName=Lung adenocarcinoma) [25]. Level
2, tumor somatic mutation data was obtained for KRAS
for each patient in the analysis (Fig. 3a). Level 2, nor-
malized gene expression data was obtained for GOT1 and
ME1 for each patient in the analysis (Fig. 3b, c). Patient
characteristics are shown in Additional file 2: Table S1 and
Additional file 3: Table S2. Cell line gene dependency data
was obtained from Broad Institute’s Project Achilles
(http://www.broadinstitute.org/achilles) [21].
Kaplan-Meier statistics
Survival analysis in radiation treated NSCLC patients
(n = 73) was conducted using the Kaplan-Meier Plotter
webtool (kmplot.com) [27]. Briefly, kmplot segregates
each gene into percentile of expression between the
lower and upper quartiles and the best performing
threshold is used as the final cutoff in a univariate Cox
regression analysis. Kaplan-Meier survival plot and the
hazard ratio with 95 % confidence intervals and logrank
P value is calculated with the Bioconductor package in R.

Ethical approval and consent
All human data is sourced through The Cancer Genome
Atlas (http://cancergenome.nih.gov/), no patients were
approached for this study. No consent and no ethical ap-
proval were required to utilize this database.

Survival assay
For clonogenic survival assays, cells were trypsinized and
plated onto 6-well plates at 100, 500, or 1000 cells per well
in 2 ml of complete media, Gln deprived media for 16 h
or complete media containing 1 μM CB-839 for 48 h.
Cells were then exposed to IR (at various doses as indi-
cated), allowed to grow for 7 days, washed with PBS and
stained with crystal violet solution. Colonies with >50
normal appearing cells were counted and percent survival
calculated and graphed with dose.

RNAi transfection
For siRNA transfection, cells were plated in 10 cm plates
at 2 × 105 cells per plate and transfected with either con-
trol siRNA or siRNA against ME1 for 48 h followed by
clonogenic survival assay.

Additional files

Additional file 1: Figure S1. (A) Raw GSEA data of mutant vs wild-type
KRAS NSCLC cell lines. Red = overexpressed across all cell lines; blue =
under expressed across all cell lines. Absolute top row indicates specific
cell lines used in analysis. Gray = mutant KRAS; yellow = wild-type KRAS.
(B) KRASG12D induction upregulated GOT1 mRNA in mouse doxycycline
inducible KRASG12D embryonic fibroblasts derived from the transgenic
mice. (C) mRNA expression of GOT1 in mutant KRAS vs wild-type KRAS
NSCLC cell lines. Same cell lines as in Fig. 1d.

Additional file 2: Table S1. TCGA lung adenocarcinoma patient
description.

Additional file 3: Table S2. GOT1 and ME1 expression in TCGA lung
adenocarcinoma patient tumors with treatment response after IR.

Additional file 4: Figure S2. (A, B) Kaplan-Meier overall survival curves in
chemotherapy treated NSCLC patients from TCGA database separated into
high and low GOT1 and ME1 expression. Total number of chemotherapy
treated NSCLC patients analyzed = 176; number of patients with high
expression: ME1 = 69, GOT1 = 127; number of patients with low expression:
ME1 = 107, GOT1 = 49. Logrank p-values not significant.
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