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Abstract

and ImageJ alone.

Automated analysis, Batch-mode, Colocalization

Background: The quantitative analysis of foci plays an important role in many cell biological methods such as
counting of colonies or cells, organelles or vesicles, or the number of protein complexes. In radiation biology and
molecular radiation oncology, DNA damage and DNA repair kinetics upon ionizing radiation (IR) are evaluated by
counting protein clusters or accumulations of phosphorylated proteins recruited to DNA damage sites. Consistency
in counting and interpretation of foci remains challenging. Many current software solutions describe instructions for
time-consuming and error-prone manual analysis, provide incomplete algorithms for analysis or are expensive.
Therefore, we aimed to develop a tool for costless, automated, quantitative and qualitative analysis of foci.

Methods: For this purpose we integrated a user-friendly interface into ImageJ and selected parameters to allow
automated selection of regions of interest (ROls) depending on their size and circularity. We added different export
options and a batch analysis. The use of the Focinator was tested by analyzing y-H2.AX foci in murine prostate
adenocarcinoma cells (TRAMP-C1) at different time points after IR with 0.5 to 3 Gray (Gy). Additionally, measurements
were performed by users with different backgrounds and experience.

Results: The Focinator turned out to be an easily adjustable tool for automation of foci counting. It significantly
reduced the analysis time of radiation-induced DNA-damage foci. Furthermore, different user groups were able
to achieve a similar counting velocity. Importantly, there was no difference in nuclei detection between the Focinator

Conclusions: The Focinator is a costless, user-friendly tool for fast high-throughput evaluation of DNA repair foci. The
macro allows improved foci evaluation regarding accuracy, reproducibility and analysis speed compared to manual
analysis. As innovative option, the macro offers a combination of multichannel evaluation including colocalization
analysis and the possibility to run all analyses in a batch mode.

Keywords: Open-source tool, Foci count, lonizing radiation, DNA repair foci, y-H2.AX, Imagel, Table sheet export,

Background

Radiotherapy (RT) is a mainstay in modern cancer treat-
ment. To evaluate the efficacy of IR alone or in combin-
ation with chemotherapy or drugs inducing DNA
damage and targeting DNA repair, radiation biologists
usually count fluorescence-labeled protein-foci in the
nucleus using fluorescence microscopy. For this purpose
the proteins of interest or their specific phosphorylated
isoform are visualized by immunofluorescence using
protein-specific (e.g. p53 binding protein 1 (53BP1)) or
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phospho-protein-specific (e.g. phospho-histone 2.AX
(y-H2.AX)) antibodies directly linked to a fluorophore or
detected by using a secondary fluorophore-labeled anti-
body. Another possibility is to fuse the proteins of inter-
est with fluorescent proteins, such as green fluorescence
protein GFP [1]. This method takes advantage of the fact
that many repair proteins and repair associated proteins,
such as y-H2.AX, 53BP1 and RAD51, accumulate and
co-localize at the site of DNA damage [2-8]. To evaluate
formation and processing of these DNA damage foci, a
reliable and accurate image analysis is required.

Due to the wide use of methods retrieving images of
foci and cells, multiple evaluation procedures have been
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developed. However, the programs currently available
for counting and analysis of nuclei are often based on
manual analysis. Several publications showed that man-
ual counting of foci is time consuming, frequently in-
accurate and subjected to investigator-related bias.
Conversely, automated computer-based foci analysis is
considered to yield better sensitivity, comparability and
consistency of the data [9-13]. However, some current
software solutions for automated analysis are unsatisfac-
tory as they provide limited algorithms, are stand-alone
tools or are simply expensive [13, 14]. For example,
Bocker et al. developed a software based on a cost-
intensive program, ImageProPlus (Media Cybernetics Inc.,
US) [12]. Another commercially available package is
IMARIS (Bitplane AG) [13, 15]. Moreover, not all existing
tools support the complete range of file formats com-
monly used for image acquisition [16]. The FociCounter, a
freely available, non-customizable stand-alone tool, does
not support all formats, for example files used by Zeiss
(CZI and ZVI) and by Leica (LIF). Moreover, the Foci-
Counter only allows manual selection of cells [17]. How-
ever, integration of automated cell selection and a batch
mode performing automated analysis of various pictures
would result in desirable time-saving steps for data ana-
lysis. TRI2 and CellProfiler are stand-alone tools written
with the programming language Python [18—20]. One dis-
advantage of stand-alone tools can be the lack of updates
by an established platform. In contrast, the platform of
Image] offers support, frequent updates and the possibility
to change the source code or to link it with additional pro-
gramming tools [9-13, 21, 22]. Image]-based solutions
have already been described by several authors and in-
stitutions, but these solutions frequently provide in-
complete algorithms or macros not suited for immediate
use [23, 24]. For example, Cai and colleagues published
the source code for an Image] macro without interface,
like a menu and buttons [25], and Du and colleagues de-
veloped a tool for foci picking without batch mode and au-
tomated foci selection [26]. The FindFoci plugin for
Image] supports self-learning parameters but does not
support multi-channel analysis [10]. Thus, there was a de-
mand for the development of easy-to-use, customizable
and reliable software solutions with an intuitive interface
combined with an automated open-source platform, like
Image] [13]. To overcome these limitations, we have de-
veloped an automated, adjustable and user friendly macro
based on Image] named “Focinator” for quantitative and
qualitative analysis of nuclei, y-H2.AX foci and other
biological foci with the possibility of easy data export
and processing. In addition, we integrated an option for
multi-channel analysis, e.g. 53BP1 foci and y-H2.AX
foci in one image file and implemented the option for
colocalization studies. This option enables the deter-
mination of absolute numbers and the percentages of
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colocalized foci. We used Image] as an established
platform, as it is an image processing software that
is routinely used by many investigators to analyze
western blots, fluorescence cell images [13, 27], im-
munohistochemical probes [28], DNA double strand
break repair [29], cell size [30] and to quantify soft
tissue in tomography images [21] or wound healing
[31]. We adapted the Focinator based on algorithms
published by the Light Microscopy Core Facility -Duke
University and Duke University Medical Center by
adding additional setting preferences [24, 25]. To
further facilitate data analysis, a program for auto-
mated analysis and data export into a spreadsheet
was integrated.

Materials and methods

Chemicals, antibodies and drugs

Antibodies linked with Alexa Fluor 647 against y-H2.AX
protein were obtained from Becton Dickinson (Heidelberg,
Germany). Hoechst 33342 from Invitrogen (Eugene, USA)
and DAKO Fluorescent mounting medium from Dako
North America Inc. (Carpinteria, USA) were used. All
other chemicals were purchased from Sigma-Aldrich
(Deisenhofen, Germany) if not otherwise specified.

Cell culture and irradiation

TRAMP-C1 murine prostatic adenocarcinoma cells
(p53-/-, androgen-independent) were purchased from
the ATCC (Bethesda, Maryland, USA). Cells were cul-
tured in Dulbecco’s Modified Eagle Medium (DMEM)
(Life Technologies, Germany) supplemented with 10 %
(v/v) fetal calf serum (FCS; Biochrom, Berlin, Germany)
and maintained in a humidified incubator at 37 °C and 5 %
CO, (C200, Labotect Incubator, Goettingen, Germany).
Cells were irradiated using an X-RAD 320 X-Ray Biological
Irradiator with a MIR-324 X-ray tube (Precision X-Ray Inc.,
North Branford, USA). Cell number and viability was quan-
tified by counting cells using CASY cell counter (Innovatis,
Reutlingen, Germany).

y-H2.AX immunofluorescence

Cells were irradiated with 3 Gy and fixed and perme-
abilized (3 % para-Formaldehyde (PFA) and 0.2 % Triton
X-100 in PBS buffer; 15 min; room temperature) at dif-
ferent time points (30 min, 1, 2, 4, 6, 8 and 24 h) after ir-
radiation. After washing, cells were blocked overnight
with 2 % goat serum in PBS buffer. Staining with the
Alexa Fluor 647-conjugated anti-y-H2.AX antibody was
performed for one hour at a 1:75 dilution in blocking
buffer. Samples were washed three times with PBS and
stained for 30 min in the dark with 0.2 % (w/v) Hoechst
33342 in PBS. Samples were again washed three times
with PBS, mounted with DAKO mounting medium and
stored at 4 °C in the dark. Single layer fluorescence
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images were taken with a Zeiss AxioCam MRm (1388 x
1040 pixels) mounted at a Zeiss Axio Observer Z1 fluor-
escence microscope with Plan-Apochromat 63x/1.40 Oil
M27 lens, 49 DAPI filter, 78 HE ms CFP/YFP filter (y-
H2.AX AF-647 detection) and “ApoTome” transmission
grid (High Grid: PH/VH with 5 phase images) (Carl
Zeiss, Goettingen, Germany). Images were taken with
exposure times of 500 ms for the DAPI channel and
1500 ms for the Alexa Fluor 647 antibody. The pictures
were saved as 16-bit Zeiss Vision Image ZVI files with
no further editing.

Software and programming

The macro “Focinator” was programmed as a macro for
automated quantitative and qualitative analysis of foci
with the open-source software Image], a public domain
Java image processing program developed at the National
Institutes of Health (NIH) [14, 32]. Image] is designed
with an open architecture and provides extensibility via
Java plugins and automation with macros. Custom-built
tools can be developed to solve image processing or ana-
lysis problems. [21, 22]. Image] is available for Windows,
Mac OS, Mac OS X and Linux. It has its own Image]
macro language that is able to control Image] procedures
and the automation of action series including variables
and user-defined functions. The macro, instructions and
support are obtainable at http://www.focinator.oeck.de.

In addition, a tool for batch mode and import of data
from foci-count and ROI analysis was developed: the
batch mode was programmed using R, a free software
environment for programming [33]. The R-script allows
automated opening of images, foci evaluation and the
direct export of foci data in a Microsoft Excel spread-
sheet. Excel spreadsheets enable further statistical ana-
lysis as well as easy export into other statistical software.

Foci analysis methods

For evaluations of foci counting, the respective groups
counted y-H2.AX foci formed in TRAMP-C1 cells at
different time points after exposure to 3 Gy. Addition-
ally, one experiment was performed with 0.5 to 3 Gy. In
total 24,858 nuclei in 3361 images were counted. Two
trained investigators performed manual foci-counting
using a standard manual counter and two trained inves-
tigators analyzed foci with Image]. Three different user
groups (in total 6 investigators) tested the Focinator’s
user-friendliness: two programmers of the Focinator
with prior knowledge of Image] and image processing
software, two biologists with basic knowledge of image
processing in a scientific context and two users without
scientific background or prior knowledge of image pro-
cessing. All investigators used the same workstations.
The investigators did not receive any prior training in
this software, but had to read the software’s instruction
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manual (Additional file 1: Supplement). The images were
fully blinded before analysis; therefore investigators had
no information about exposure details, dose, time points
or type of analyzed cells. Manual counting, analysis with
Image] and the Focinator were performed independently.
Results from manual counting were not available for the
investigators performing computational counting.

The software-based analysis for accuracy, comparabil-
ity, validity and velocity was done by the primary devel-
opers of the Focinator (SO and NMM). Consequently,
these people had prior knowledge of the image process-
ing software.

Statistical analysis

Data represent mean values of at least 3 independent ex-
periments + standard deviation (SD). Data analysis was
performed by two-way ANOVA test with Bonferroni two
pair comparison post-test and determination coefficient
calculation using Prism5TM software (Graph pad Inc., La
Jolla, USA). P values < 0.05 were considered as significant.

Results and discussion

The Focinator

To develop the Focinator as a tool for automated quantita-
tive and qualitative analysis of foci with Image], we first in-
tegrated a user-friendly interface. The interface (Fig. 1)
includes eight buttons, a menu as well as nine shortcuts for
the following commands < F1 > Automated Mode, <F2 >
Options, <F3 > Thresholding, <F4 > Separation, <F5 > Select-
ing ROIs, <F6 > Thresholding and Selecting ROIs, <F7 >
Analyzing - Foci Count, <F8>Open Next Image in the
folder. The menu also includes further information under
About The Focinator and an instruction manual under
Help. The second step for the development was an auto-
mated selection of the regions of interest (ROIs), such as
cells or nuclei, depending on their appearance (Fig. 2).
Moreover, automated detection of foci and the analysis of
ROIs and foci were included (Fig. 3).

When running the Focinator, the selected ROIs are
measured, including the area as well as mean, minimal
and maximal grey values within the selection. The foci
are detected based on the “Find maxima...” command of
Image]. [24] Using the “Find maxima...” command, Image]J
identifies signal peaks of the 16-bit grey scale of an image
compared to the grey scale values of the surrounding
pixels. Testing of the Focinator was performed by cap-
turing fluorescence images for detection of yH2AX
foci. In this case higher fluorescence intensities of a pu-
tative focus correlate with an incensement of grey
values in the image file. Importantly, the thresholds or
contrasts of the foci images are not altered. The user
might add a value for the noise level to the “Find
maxima...” command, to disregard lower grey values
caused by background noise. Background noise can be


http://www.focinator.oeck.de

Oeck et al. Radiation Oncology (2015) 10:163 Page 4 of 11

4 WT 3Gy 30minzvi Ch0 (75%) =] [=a] R
13881040 pixels; 16-bit. 2.8MB

4 Image)
‘Fl!e Edit Image Process Analyze Plugins Window Help
Bolz|o|«|4|+[x|Ala|o]2]].

4 WT 3Gy 30minzvi Ch1 (75%)

13881040 pixels; 16-bit. 2.8MB ‘Menu 4
= |
4 WT 3Gy 0minzvi Ch2 (75%) SIEIEES
7
¢ Focinator Options. é Focinator Options DS
T Automated Mode F1
older Settings - PICTURE SETTINGS -
Output Folder C:/Focinator/ Options F2
Image Input Folder |C:\Foci files\ Thresholding F3
Output Filename [FocinatorCountxls
channel for ROl selection: [background channel, 3rd Separation F4
OutputMeans  [allleans xis
1stfoci channel: [middle channel, 2nd  ~ Selecting ROIs F5
noise level Settings. Thresholding and Selecting ROIs F6
2ndfoci channel: [front channel, 1st -
change noise level for selecting foci |20 Analyzing - Foci Count F7
noise level channel2 [30 -ROI SETTINGS - Open Next Image F8
Open All Images F9
. A ¥ automated threshold for selecting areas (ROIs) About The Focinator 1.0
alculation Settings g
: Auto Threshold Method [Default - Hel
Cutoff Channel 1 [100 ™ lelp

Cutoff Channel 2 [200
Area Correction Factor [100

I™ Use percentile to delete outiiers.

percentie 4 [ |
I” Colocalization
Tolerance for Colocalization |3
4 OK | cancel

or setthreshold (values between 0 and 255)

lower threshold [30
upperthreshold [255

¥ Exclude Cells on Image Edge

Dl

size filter for selecting areas (ROIs)

minimum size |4000
maximum size |999999

choose circularity of objects selected (ROls)

circularity: lower value [0
circularity: uppervalue [1
- ADDITIONAL SETTINGS -

[V UseFillHoles ¥ Use Watershed [~ Check Selection [~ Invertimage

3 ok | o
]

Fig. 1 The ImageJ-based interface of the Focinator offers options to adapt the evaluation parameters to distinct image characteristics. Figure 1
shows Image] with the Focinator macro installed as start-up macro after opening a multi-channel image. This microscope image with the file
format ZVI 16-bit includes three fluorescence channels. The main window of the Focinator is implemented into the ImageJ window. It consists of
a menu (2), buttons (1) and Focinator Options (3 and 4). The Focinator Options windows offer several preferences for the user to adapt the
macro’s behavior to individual requirements. Picture Settings: First step is to tell the macro, the input folder and if there is a multi-channel image
or more single pictures will be opened. In the second step you choose in which channel the foci have to be counted and where the ROIs should
be selected. In our example, the y-H2.AX foci are in channel number 2 (on top after opening the image). The macro will use the setting “1st foci
channel = front channel” for all pictures automatically. If no second foci channel is used the setting should be changed to “inactive”. ROI
Settings (3): Depending on image quality, size and magnification, it is recommended to set the threshold and the size filters for ROIs. Alternatively, the
choice of automated thresholding is possible. It is possible to exclude objects that are partially outside of the image. If there are objects to exclude
because they are not circular enough or too small, it is possible to exclude them via circularity filters or size filters. “Use fill holes” should be activated, if
the ROI selection left holes in the cells. Overlapping ROIs (cells, nuclei) might be separated by choosing “watershed”. Regarding the batch mode “check
selection” offers the possibility of stopping during the selection process. “Invert images” should be checked when working with images with light
background. For the automated batch (4) mode, output directories need to be chosen to save the results. An important step of evaluation is to choose
the right noise level. Noise level values can be set independently in multi-channel analysis to exclude background artifacts. By defining the cut off, foci
with intensities below a certain value are deleted, which excludes background noise. The value for area correction is dependent on the mean size of
the analyzed nuclei. The factor corrects the foci number divided by the individual area of each nucleus. The usage of the percentile option enables the
user to delete the outliers, such as cells with false y-H2.AX foci induced by replication. Colocalization analyses are also possible. This option compares the
localization of two foci in two different channels with a selectable tolerance

caused by unspecific staining due to unspecific anti-
body binding, insufficient blocking or washing. The
maximal, mean and minimal densities as well as the
localization and determination of ROIs size and inten-
sity are also measured (Fig. 3).

The Focinator can either be run in an automated mode
or in a semi-automated mode (shortcuts < F3 > to < F8>),
respectively, with the possibility of manual addition or de-
letion of ROIs for better control and adjustments. After
starting the Automated Mode via the button or < F1>, the
macro selects the ROIs automatically using a preset
threshold. When choosing “active separation”, it separates
the cells. After this, the foci are counted and the results

are saved in the chosen directory (Fig. 1.1 and 1.2). After
having tested and adjusted the parameters on several pic-
tures, it is possible to run a batch mode. We recommend
testing parameters on multiple pictures before running
the batch mode [10]. The batch mode analyzes all pictures
in a selected folder including all subfolders. After comple-
tion of the batch analysis all retrieved values are summa-
rized and means are calculated.

Adjusting preferences in Focinator options

Preferences of the Focinator can be changed in Options <
F2 > (Fig. 1.3). At first, the analysis mode has to be chosen,
e.g. multi-channel analysis or separated pictures for each
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Fig. 2 The macro automates the setting of the threshold and the contains an automated ROI selection. Figure 2 shows the calculation process
frozen at the point of completed ROI selection. The ROI selection is necessary for the measurement of ROl area, intensity information (mean,
maximum and minimum) and the foci count of each ROI (e.g. nucleus). Adjusting the threshold is the first step of ROI selection. The ROIs are
marked by signal intensity-triggered selection of the areas. This selection and ROl marking is based on ImageJ “Create Selection” algorithm with
options including filters for edge ROl exclusion, minimum and maximum size, watershed for overlapping objects and consideration

channel. The basic multi-channel analysis uses one chan-
nel for ROI selection and one or two foci channels, e.g.
based on different stainings. The criteria for ROI selection
can be defined in ROI Settings, a sub-paragraph of the Op-
tions window. The aforementioned window also includes
preferences for the threshold level of the picture, the
size and circularity of included particles, separation of
overlapping cells or exclusion of areas being cut by the
frame. For detection of foci a suitable noise level can be
set. Finally, the last two dialogs of the options window
offer the opportunity to change the saving directory and
the file format.

For data export, we chose MS Excel because this pro-
gram is widely used for spreadsheet calculation including
the scientific context. Moreover, it enables further statis-
tical analysis, presentation in graphs and charts, as well as
easy export into other statistical software.

Comparison of the Focinator to manual analysis and
counting with ImageJ without automation

We tested the Focinator by counting radiation-induced
y-H2.AX foci in TRAMP-C1 cells at different time

points after exposing the cells to 3 Gy. The results of the
Focinator-analysis were compared to manual analysis as
visual method and ImageJ-based counting via manual
ROI marking and “Find Maxima” function as described
by the Light Microscopy Core Facility -Duke University
and Duke University Medical Center (Fig. 4) [24].
Manual counting of foci from images was chosen in the
present study. By processing 35 multi-channel images, we
counted 439 nuclei. Our software significantly reduced the
analyzing time by a factor of approximately 23, from
132.07 + 13.44 min for manual analysis to 5.61 + 0.67 min
with the Focinator (Fig. 4a). Surprisingly, evaluation with
Image] without automation via macro needed more time
than analysis with the Focinator or even the manual ana-
lysis (Fig. 4a). Nevertheless, analysis by Image] allowed the
acquisition of more information about foci and nuclei than
manual analysis. Importantly, there was no difference in
nuclei detection between Image]J-based methods and man-
ual counting (Fig. 4b). Image acquisition was not part of
the analyzing time; as fluorescent stainings are not stable,
it is necessary to save image files for permanent documen-
tation of the results with different counting methods,
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Fig. 3 The Focinator counts foci for each pre-selected ROl automatically. Figure 3 demonstrates the calculation process stopped at the automated
foci finding step for all ROls. The image shows the selected foci in ROI 4. This part of the automation is based on the user's noise level settings
and on the previously marked ROIs, which are directly imported to the foci channel. Foci counting is followed by the closing of all channels and
the immediate export into data files. The ROIs information will be imported into the export files in the order they were displayed in the ROI

manual and automated. Moreover, image files can be used
for more convenient manual foci counting with the option
to mark counted foci with the software to avoid mistakes.
Manual counting from images was chosen in the present
study. In their routine protocol, Moquet et al. reported
1.5 h for counting non-irradiated cells and thus 4.68 s per
cell to 6.1 h for irradiated cells and thus 19.06 s per cell
for scoring of 20 cells in 96 samples. Thus, in comparison
to Moquet et al. our manual scoring took about 59 min
longer with an average of 30 s per cell. One explanation
for our slower manual scoring is the higher radiation dose
used - 3 Gy in our study compared to 0.5 to 1.0 Gy used
by Moquet et al. and therefore a higher foci number per
cell that amounted up to 70 foci per cell in our study com-
pared to an average of 7 foci per cell in irradiated cells in
the study of Moquet et al. Nevertheless, the Focinator
would still be 13 times faster compared to the manual
count of Moquet et al. [34].

The time for automated scoring in the Focinator’s
batch mode and automated mode is mainly dependent
on the computer performance. The batch mode can be
executed in the user’s absence. Valente et al. reports
about 30 s for loading setting parameters, the batch

mode of the Focinator can be started after around 20 s.
[19]. These data reveal that the new macro allows for
highly accurate ROI selection, meaning that the nuclei
or cells were selected in a valid and fast way. Moreover,
we provide evidence that the Focinator excels manual
analysis concerning time, effort for image processing
and informative content, thereby corroborating with
findings by others. However, the integration of an auto-
matic ROI selection proved to be a valid and time-saving
step, which is what makes the Focinator superior com-
pared to other software solutions [13, 17, 20].

Validation of the Focinator

For validation of the Focinator, TRAMP-C1 cells were
irradiated with 3 Gy and foci were analyzed before and
0.5, 1, 2, 4, 6 and 24 h after irradiation. Again, the results
of the Focinator were compared to ImageJ-based ana-
lysis and manual counting. All three methods showed a
uniform time-dependent decrease of y-H2.AX foci after
the initial maximum at 30 min post-irradiation, proving
the validity of the developed macro for reliable foci-
counting (Fig. 5a). Counting of foci after irradiating cells
with different doses (0.5, 1.5 and 3 Gy; 30 min after
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Fig. 4 Use of the Focinator macro reduces counting times compared
to ImageJ-based counting and manual evaluation. TRAMP-C1 cells
were irradiated with 3 Gy. The cells were fixed and permeabilized for
15 min with 3 % PFA and 0.2 % Triton X-100 at different time points
after irradiation. The nuclei were stained with Hoechst 33342. DSB
foci were labeled with Alexa Fluor 647-linked anti- y-H2.AX
antibodies. The evaluation time for the same 35 multi-channel
images containing 439 nuclei was compared between the analysis
with the Focinator, ImageJ-based counting via manual ROI marking
and “Find Maxima..."” function or manual counting. a Evaluation
times using the different counting methods. b Comparison of
detected nuclei numbers by ImageJ-based analysis, Focinator batch
mode and manual counting shown as overall ROl count

irradiation) was performed to validate the use of the Foci-
nator at different amounts of DNA damage. The dose re-
sponse curve shows a linear relationship between the
number of foci per cell and the clinically relevant radiation
doses used in the present study, thereby concurring with
previously published literature [35-38]. Moreover, there
was a strong similarity of foci numbers counted in 439 nu-
clei manually or with the Focinator (Fig. 5c, R = 0.9670).
The comparison of Image]J-based analysis with the Foci-
nator achieved also high correlation indicating that the
results of both analysis programs were very similar
(Fig. 5d, R* = 0.9914). Though a slight underestimation
of counted foci was observed one hour after irradiation
when using Image]J and the Focinator compared to man-
ual analysis, this effect was not significant. A similar
phenomenon has previously been described by others
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and has been attributed to the increasing amount of
overlapping foci at high foci numbers per nucleus, as
well as at high irradiation doses and shorter repair times
yielding increased foci size [12]. However, it has been
suggested that the falsification of the results by high
numbers of overlapping foci can be minimized when
considering an additional analysis of foci intensity [25].
In contrast to manual analysis, the Focinator provides
the opportunity to quantify the nuclei size as well as the
minimal, mean and maximal intensity of the foci and
the nuclei, and is thus superior to manual analysis. An-
other advantage of the Focinator is the opportunity to
measure the ROIs area size. Accordingly, foci can be
counted per area and not only per nucleus.

Our results support the conclusion that computational
analysis is well suited to replace manual analysis with
high accuracy; moreover it is time-saving and offers
the opportunity to acquire further valuable parame-
ters, such as nuclei size or the intensity of the foci.
These values can be used for further normalization as
explained in other publications [18, 25, 39]. In con-
trast, manual analysis is highly dependent on the ex-
perience of the investigator and requires extensive
training [9-13]. Potential errors in manual analysis
include multiple counting of single foci, counting of
regions without foci and rare selection of less intense
foci. [10] Finally, manual counting is not always re-
producible [9-11]. Therefore, we and others recom-
mend automated analysis to overcome the limitations of
manual evaluation [9-13].

Moreover, manual analysis provides only a quantifica-
tion of the number of foci, and there is no possibility of
gathering additional information such as the size of nu-
clei or the intensity of the foci.

Applicability of the Focinator for different users

To prove the Focinator’s user-friendliness, the macro
was tested by three different Focinator user groups,
namely by the programmers of the Focinator (n =2), by
biologists (n =2) and by users with no scientific back-
ground (n =2) (Fig. 6). For the evaluation of applicabil-
ity, all groups counted y-H2.AX foci generated in
response to different radiation doses in TRAMP-C1 cells
at different time points post-irradiation using predefined
parameters adjusted by an experienced scientist. In total
24,858 nuclei in 3361 images were counted. All users
were able to use the Focinator after reading the soft-
ware’s instruction manual. The data obtained by the pro-
grammers of the Focinator, the biologists and the users
with no scientific background did not vary significantly
in the mean evaluation times (Fig. 6). While the pro-
grammer needed 1.2 s per nucleus, the biologist needed
1.0, the users with no scientific background needed
1.54 s per nucleus (Fig. 6).
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Fig. 5 The Focinator’s accuracy is comparable to manual counting and evaluation only with Imagel. ImageJ-based, manual counting and the usage of
the Focinator macro were compared. To evaluate the repair time-dependent decrease of y-H2.AX foci after irradiation TRAMP-C1 cells were irradiated
with 3 Gy, incubated at 37 °C and fixed 0.5, 1, 2, 4, 6 and 24 h after irradiation. The cells were permeabilized and stained with an Alexa 647-linked

anti- y-H2.AX antibody. A total number of approximately 40 nuclei per time point was evaluated. a Development of the mean foci count per nucleus
form three independent experiments at stated time points after irradiation. b A dose response curve depicts foci count after different doses (0.5, 1.5
and 3 Gy) 30 min after irradiation. A direct correlation between the different scoring methods with respective correlations value (R?) at the time points
0.5,1,2,4,6 and 24 h after irradiation is shown for Focinator-based evaluation in comparison to using ImageJ alone in (c) and compared to manual

Users with no scientific background needed 21 min
for counting 553 nuclei in 90 images in the first try.
However, after the second analysis round, the untrained
user needed only 14 min and 7 s for 653 nuclei in 80
images. The fastest analysis was executed in 10 min
and 1 s for 461 nuclei in 82 images and was performed
by the programmers. Although the measurements were
performed by users with different professional back-
grounds all investigators were able to successfully per-
form the analysis rapidly and particularly faster than by
manual analysis.

The results obtained were rather similar, confirming the
reproducibility of data. Evidently the Focinator achieves
user-friendliness by redundancy of controls, like buttons
and shortcuts, as well as by a menu and an implemented
manual instruction as shown in Fig. 1.1 and 1.2.

Taken together, the Focinator is a user-friendly pro-
gram. Moreover, a high comparability and consistency is
achieved by automated computer analysis at increased
velocity. This is achieved by automated analysis inde-
pendent of the investigator’s prior knowledge if param-
eter setting is performed by an experienced researcher.

Actual limitations of the Focinator and potential solutions
As outlined above, the Focinator is a valid open-source
tool based on Image] for both the non-experienced and
experienced user of scientific image processing alike.
The Focinator offers advantages over manual analysis
and already established software solutions. However,
there are also limitations to its application. Since foci
size and number varies depending on radiation dose and
repair time, detection of overlapping foci can be difficult,
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Fig. 6 The Focinator is a user friendly method that can be used
without long term training. In Fig. 6, three different groups of users
are compared. Programmers of the Focinator (n = 2), Biologist (n = 2)
and users with no scientific background (n = 2) evaluated ten different
cell lines. For each cell line about 80 pictures containing a total of
about 500 nuclei were evaluated by the different users with the
Focinator. The graph shows the calculated evaluation times per
nucleus including a correction based on the numbers of pictures
that had to be opened

a problem also recognized in manual analysis or when
using an alternative software [12]. Because computa-
tional analysis offers measuring of qualitative parame-
ters, a correction of these overlapping foci is possible by
taking the intensity of foci into account. The Focinator
counts foci based on signal intensity. This provides the
opportunity to set a noise level to exclude foci with low
intensity for further calculation, thereby strengthening
the results [12, 25]. Cai and colleagues also suggested to
include watershedding of foci to separate overlapping foci
[25]. Watershedding is a procedure offered by Image],
which can be used for the segmentation of overlapping
objects, like cells or even foci, in greyscale images [40].
We decided against this procedure, because watershed-
ding of foci requires 8-bit formatting, which would
cause the information about the signal intensity to be
lost. Plugins such as 3D Object Counter [41], top-hat
filter in Fast Filters [42] and FociPicker 3D [26] are
alternative approaches to solving the problem of over-
lapping foci by taking size, intensities and algorithms
into account. Though these options are more suited for
the advanced user, implementation of the FociPicker 3D
into the Focinator’s source code is feasible. Neverthe-
less, it is still possible that a single focus is too small to
be detected with a confocal microscope, because the
resolution of the microscope might be too low to dis-
play small foci separately [12, 43, 44]. To counter this
problem, the macro offers the option of noise level
adjustment. Lowering the noise level might result in
higher foci numbers, due to noise artifacts been recog-
nized as foci. The real number of foci can be validated
by measuring the intensities of foci and taking these
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into consideration. As other authors have shown, not
only the foci count, but also their intensity plays an im-
portant role and correlates well with the absorbed radi-
ation dose. [12, 25] The use of an implemented cut off
can further improve the results by deleting foci with a
value below a chosen intensity to eliminate background
signals. Intensities and XY-localization of each focus are
exported into Excel. Setting a cut off for each channel
and performing colocalization analyses are possible with
these exported values.

Another limitation of the Focinator can be high cell
density, which might result in overlapping cells and,
thus, in overlapping nuclei. Therefore, it is not recom-
mended to use overcrowded images. The result without
use of watershedding or manual correction of the selec-
tion would combine two overlapping cells into one ROI
with a larger area size. However, when using the Focina-
tor the overall foci count will not be affected by a high
cell density, because the foci count can be normalized by
the area of the ROL

However, it is not currently possible to analyze three
dimensional or multilayer images with the Focinator/
Image] while the IMARIS software (Bitplane AG) offers
this possibility [13, 15].

Though being intuitive, the user needs to adjust pa-
rameters, such as the noise level, on their own, in con-
trast to FindFoci, where the program is able to learn the
parameters on its own [10]. Although it is possible to
perform analysis with predefined settings and an auto-
mated threshold, parameter setting for the individual cell
type is a major step and can only be validly performed
by people with sufficient background knowledge e.g. of
the specific foci-related protein of interest. Parameters
are supposed to be set according to image quality and
the corresponding values found in published data such
as 15-19 foci per nucleus per 1 Gy [35-38].

Another limitation of our macro is the restriction of
multi-channel analysis to three channels only. This limits
the macro to two foci channels with distinct fluorescence
labeling (for example. using y-H2.AX and 53BP1 anti-
bodies with different secondary antibodies) since one
channel is needed to select the ROI (e.g. using DAPI,
4’,6-diamidino-2-phenylindole to mark the nucleus).

Advantages of Focinator-based foci evaluation

The Focinator is an inexpensive alternative to commercial
packages. In contrast to the limited file formats accepted
by some of the commercially available software solutions,
the Focinator supports all file formats of Image] including
TIFFE, PNG, GIF, JPEG, BMP, DICOM and FITS, as well as
raw formats. It is also possible to use stacked images and
device-specific formats such as Zeiss’ AxioVision ZVI or
Leica’s LIF [16].
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The Focinator provides the possibility of adjusting
multiple parameters for better image processing. Auto-
mated selection of cells or nuclei as ROIs is possible. For
advanced users with prior knowledge of image process-
ing who wish to adjust their analysis, the software offers
further preferences and the choice of running the ana-
lyses in an automated mode or a semi-automated mode
with the possibility of adding or deleting ROIs manually.
It is even possible to analyze overlapping ROIs, a prob-
lem occurring in other automated solutions [13, 20].

Adjustability of the Focinator parameters is achieved
without manipulating the images. The Focinator Image]J
macro exports the intensity and XY-localization of each
focus. This step allows further processing of exported
foci values, such as setting a cut off for each channel
and colocalization. The raw data of the pictures are not
changed for analysis by filters like changing of contrast,
blurring or sharpening. This prevents the results from
being manipulated [45]. We consider counting of one
ROI per time and displaying the results as advantage
and improvement in quality. Moreover, it is possible for
the user to observe problems or incorrect preferences in
selecting ROIs or foci counts. [13, 15] Being developed
as a macro for Image], the Focinator allows the imple-
mentation of new algorithms in order to customize the
macro [14]. This is an important advantage of the Foci-
nator compared to the standalone solutions. Due to the
open-source nature of Image]J, it is also possible with the
macro to change the source code, to use the functions
and plugins of Image], and to program additional
macros to solve the array of problems associated with
image processing in a scientific context [13, 21, 22].

Further advantages compared to other established soft-
ware solutions include the option to run the analysis in
a batch mode and a data export into Microsoft Excel
spreadsheet for further statistical and graphical evalu-
ation. The Focinator Batch is programmed with R enab-
ling modification by the user.

The possibility of observing the tool while selecting
ROIs and foci in the batch mode, is very useful for fur-
ther analysis security. This enables the user to recognize
aberrant data and to adjust the settings accordingly.

Conclusions

The Focinator is a costless, reliable and user-friendly
open-source tool for fast automated high-throughput
quantitative and qualitative analysis of DNA damage-
induced foci formed by repair-associated proteins such
as y-H2.AX at the DNA damage sites with high accuracy
and reproducibility. The Focinator is based on Image]
with additional data export to Microsoft Excel. In com-
parison to manual analysis, it overcomes investigator-
related bias and significantly reduces analyzing time.
Moreover, it delivers a valid, fast and automated selection
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of nuclei and cells. Furthermore, it enhances the speed
and reliability of analysis, and provides additional options
for qualitative foci analysis like area size of nuclei and the
intensity of foci. Importantly, the Focinator offers analysis
of multi-channel pictures and colocalization. Its self-
explanatory features make it possible to use the Foci-
nator without prior training and the batch mode en-
ables the user analyzing data in his absence. Data
export into different output files with consecutive
export into a spreadsheet is available, thus enabling
further data processing and analysis. With the option
to run data analysis in a batch mode, we think that the
Focinator is a valid tool for efficient preclinical testing
of the efficacy of new drugs targeting DNA repair alone
and in combination with radio(chemo)therapy. For differ-
ing scientific aims, using further functions and plugins of
Image] or programming of additional macros is possible.

Additional file

Additional file 1: Supplement. The Supplement includes a detailed
description of the Focinator's functions and commands. Moreover, it
serves as an instruction describing installation, initialization and
procedures.
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