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Abstract

Background: The main objective of this study was to evaluate the efficacy of integrating the blood oxygen level
dependent functional magnetic resonance imaging (BOLD-fMRI) and diffusion tensor imaging (DTI) data into radiation
treatment planning for high-grade gliomas located near the primary motor cortexes (PMCs) and corticospinal tracts (CSTs).

Methods: A total of 20 patients with high-grade gliomas adjacent to PMCs and CSTs between 2012 and 2014 were
recruited. The bilateral PMCs and CSTs were located in the normal regions without any overlapping with target volume
of the lesions. BOLD-fMRI, DTI and conventional MRI were performed on patients (Karnofsky performance score≥ 70)
before radical radiotherapy treatment. Four different imaging studies were conducted in each patient: a planning
computed tomography (CT), an anatomical MRI, a DTI and a BOLD-fMRI. For each case, three treatment plans (3DCRT,
IMRT and IMRT_PMC&CST) were developed by 3 different physicists using the Pinnacle planning system.

Results: Our study has shown that there was no significant difference between the 3DCRT and IMRT plans in terms of
dose homogeneity, but IMRT displayed better planning target volume (PTV) dose conformity. In addition, we have
found that the Dmax and Dmean to the ipsilateral and contralateral PMC and CST regions were considerably decreased
in IMRT_PMC&CST group (p < 0.001).

Conclusions: In conclusion, integration of BOLD-fMRI and DTI into radiation treatment planning is feasible and
beneficial. With the assistance of the above-described techniques, the bilateral PMCs and CSTs adjacent to the target
volume could be clearly marked as OARs and spared during treatment.

Keywords: High-grade gliomas, Blood oxygen level dependent functional magnetic resonance imaging (BOLD-fMRI),
Diffusion tensor imaging (DTI), Three-dimensional conformal radiation treatment (3DCRT), Intensity-modulated radiation
therapy (IMRT), Radiation treatment planning
Background
Gliomas, which contain oligodendroglia, astrocytic and
ependymal lesions are the most common primary intracra-
nial tumors. High-grade gliomas, which make up 35 to 45%
of all newly diagnosed primary brain tumors worldwide,
have a very poor prognosis [1]. The three-dimensional
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conformal radiotherapy (3DCRT) has been considered as
the standard therapy for patients with high-grade gliomas
and intensity-modulated radiotherapy (IMRT) is becoming
increasingly used to improve dose conformity and spare
critical normal tissues. However, the risk of radiation-
induced brain injury increases with the increase of radi-
ation dose [2-4]. The strenuous endeavor has been made to
diminish radiation complications.
With the assistance of conventional magnetic resonance

imaging (MRI) and planning computed tomography (CT)
data, many critical intracranial structures, such as lens,
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Figure 1 T1-weighted MR imaging and the corresponding axial
CT after registration.
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optic nerves and optic chiasm are well demarcated. How-
ever, it is difficult to accurately locate eloquent cortices
and fiber connections in the white matter of the brain by
routine neuroimaging. Excessive irradiation of eloquent
cortices and white matter fiber tracts is unavoidable. Blood
oxygen level dependent functional magnetic resonance
imaging (BOLD-fMRI) and diffusion tensor imaging (DTI)
have recently been used to identify the primary motor cor-
texes (PMCs) and corticospinal tracts (CSTs). These im-
aging techniques have been implemented in modern
neuronavigation systems and used to guide the surgical re-
moval of critically located intracranial lesions [5,6]. The
purpose of our study was to evaluate whether the incorp-
oration of BOLD-fMRI and DTI data into the 3D treat-
ment planning process could spare the healthy brain and
sensitive parts of the brain from high doses of radiation.

Methods
Ethical Approval was obtained from the General Hospital
of Ningxia Medical University Review Board and written
informed consent was obtained from patients. The study
was conducted with strict adherence to the Declaration of
Helsinki Principles.

Subjects
A total of 20 patients with high-grade gliomas adjacent
to PMCs and CSTs between May 2012 and February
2014 were recruited from the General Hospital of
Ningxia Medical University, China. Eleven male patients
and 9 female patients aged from 24 to 66 year-old were
enrolled in this study.
The glioma tissues in our study included 14 astrocyto-

mas (WHO Grade III) and 6 glioblastomas (WHO Grade
IV). The bilateral PMCs and CSTs were located in the nor-
mal regions without any overlapping with target volume
of the lesions. BOLD-fMRI, DTI and conventional MRI
were performed on patients (Karnofsky performance
score ≥ 70) before radical radiotherapy treatment.

Data acquisition and analysis
Four different imaging studies were conducted in each
patient: a planning CT for radiosurgery treatment and
target tracking during radiation therapy treatment deliv-
ering; an anatomical MRI to deliver a complete set of
morphological MR data; a DTI to provide white matter
tractography and a BOLD- fMRI to provide brain activa-
tion maps. Axial CT images (3-mm slice thickness) were
taken by a wide-bore Siemens Somatom Sensation Open
CT scanner (Siemens, Germany). MRI volumes were ac-
quired using a Signal HDx 3.0 T MRI scanner (General
Electric Company, USA).
BOLD fMRI data were obtained using fat-saturated

single-shot gradient echo planar imaging (EPI) (TE = 35 ms,
TR = 3,000 ms, acquisition matrix = 64 × 64 pixels, FOV=
240 mm×240 mm2, flip angle = 90°, NEX= 1, 3 mm thick-
ness). A block design paradigm (5 cycles, 30 sec on and
30 sec off) was utilized. Functional areas relevant to each
treatment region were probed by Somatosensory tasks
(finger tapping with audio cue). Following the acquisition of
the functional data, gadolinium-enhanced high-resolution
images were acquired (TR/TE = 450/14, flip angle = 90°,
matrix = 256 × 256, FOV= 240 mm×240 mm2, and slice
thickness 3 mm skip 0 mm). After the images were taken,
data were transferred to the Matlab workstation for analysis.
The DTI data acquisition sequence was a spin echo-echo
planar imaging (SE-EPI) sequence with TR = 10,000 ms,
TE = 98.8 ms, acquisition matrix = 128 × 128 pixels; FOV=
240 mm×240 mm2; slice thickness = 3.0 mm. Diffusion-
weighted imaging with b factor of 1,000 mm2/s was taken
along 25 noncollinear directions. The acquisition time of
DTI sequence was 280 seconds. DTI data was analyzed on-
line by the advantage workstation of the MR scanner (AW
4.4). For CST analysis, a seed region of interest (ROI) and a
target ROI were placed on the posterior limb of the internal
capsule and pons (anterior blue portion on the color map).
Fiber tracking employed fractional anisotropy (FA) threshold
of 0.2 and a tract angular change of 30°. The color-coded FA
maps were merged with the anatomical MRI images. Re-
gions of interest were drawn on the fused FA maps.
The fused fMRI activation maps and the white matter

tracts overlaid on the anatomical MRI volume were
exported as separate grayscale dicom images and loaded
onto Pinnacle planning system software version 9.2 (Phi-
lips Medical Systems, Netherlands). The anatomical MRI
images were registered with the CT volume for each pa-
tient. Figure 1 shows the anatomical MRI images were
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registered with the corresponding axial CT planes for a
glioma case.

Treatment planning
The target and organs at risk (OARs), i.e., optic nerves,
optic chiasm and brain stem were precisely described using
CT/anatomical MRI images. Both eyes were protected to
avoid beam damage during treatment planning. The PMCs
and the CSTs situated near the target were defined by a
radiologist and a neurosurgeon, using the tractography im-
ages and the fused activation maps. Gross tumor volume
Figure 2 Axial isodose distribution in a patient with high-grade gliom
IMRT_ PMC&CST, respectively. (orange) ipsilateral PMC (red square symbol)
symbol) contralateral CST.
(GTV) was described as the operative cavity with any
remaining contrast-enhancing tissue on T1-weighted mag-
netic resonance imaging or as unresected enhancing tumor.
The initial clinical target volume (CTV1) was defined as the
T2 hyper intensity area (edema) with a 20 mm expansion.
An initial planning target volume (PTV1) was created by
adding a 30 mm expansion to the CTV1 to account for
setup uncertainties. A second clinical target volume (CTV2)
was defined as the contrast enhancement region in T1 with
an additional 25 mm margin. A PTV2 was generated by
adding a 30 mm expansion to the CTV2.
a. The A, B and C show the dose distributions for 3DCRT, IMRT and
contralateral PMC (pink square symbol) ipsilateral CST (green square



Table 1 Comparison of target volume coverage between
3DCRT and IMRT

3DCRT IMRT t p

PTV1 (50 Gy)

Dmax (Gy) 65.06 ± 0.46 64.88 ± 0.66 1.461 0.160

Dmean (Gy) 59.78 ± 0.77 59.91 ± 0.85 −0.551 0.588

CI 1.219 ± 0.054 1.071 ± 0.025 10.492 <0.001*

HI 0.210 ± 0.008 0.213 ± 0.012 −1.177 0.254

PTV2 (60 Gy)

Dmax (Gy) 65.06 ± 0.46 64.88 ± 0.66 1.461 0.160

Dmean (Gy) 62.46 ± 0.39 62.36 ± 0.53 1.301 0.209

CI 1.178 ± 0.082 1.055 ± 0.049 5.552 <0.001*

HI 0.086 ± 0.022 0.082 ± 0.016 0.809 0.429

*Significant difference.

Table 2 Comparison of OAR sparing between 3DCRT and
IMRT

3DCRT (Gy) IMRT (Gy) t p

Ipsilateral lens Dmax 1.99 ± 1.00 2.67 ± 1.67 −1.938 0.068

Ipsilateral lens Dmean 1.52 ± 0.75 1.98 ± 1.45 −1.454 0.162

Contralateral lens Dmax 1.71 ± 0.74 2.38 ± 1.97 −1.885 0.075

Contralateral lens Dmean 1.34 ± 0.55 1.84 ± 1.69 −1.585 0.129

Ipsilateral optic nerve Dmax 12.54 ± 17.85 12.32 ± 13.38 0.156 0.877

Ipsilateral optic nerve Dmean 8.55 ± 11.99 8.57 ± 9.40 −0.014 0.989

Contralateral optic
nerve Dmax

7.55 ± 8.94 7.02 ± 7.68 1.025 0.318

Contralateral optic
nerve Dmean

5.14 ± 5.92 4.59 ± 4.76 1.364 0.188

Optic chiasm Dmax 12.53 ± 15.50 12.76 ± 13.53 −0.241 0.812

Optic chiasm Dmean 9.22 ± 11.64 8.28 ± 8.70 1.060 0.302

Brainstem Dmax 14.78 ± 14.77 14.04 ± 11.62 0.523 0.607

Brainstem Dmean 7.09 ± 8.31 6.52 ± 6.99 0.711 0.486
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For each case, three treatment plans were developed by
3 different physicists using the Pinnacle planning system.
The first physicist created conventional 3DCRT plans
(3DCRT) and the PMCs and the CSTs situated near the
target were not taken in account by the physicist. The tar-
get and standard morphological OARs were considered in
this plan. The second physicist developed IMRT plans
(IMRT) and the PMCs and the CSTs situated near the tar-
get were not considered by the physicist. The third physi-
cist developed IMRT plans (IMRT_PMC&CST), and the
PMCs and the CSTs situated near the target were consid-
ered. Figure 2 shows the axial isodose distribution of a pa-
tient with high-grade glioma.
The treatment plans met the requirement that at least

95% of the PTV receives the prescribed dose. Cumula-
tive doses to the lenses, optic nerves, optic chiasm, and
brainstem were limited to a maximum dose of 54 Gy for
the last three structures and as low as practically achiev-
able for the former. For conventional 3DCRT treatment,
the prescribed dose was 50 Gy to the PTV1, immediately
followed by 10 Gy to the PTV2, with a total cumulative
dose of 50 Gy to the PTV1 and 60 Gy to the PTV 2 both
at 2 Gy per fraction. For IMRT plans, the prescribed
dose was 50 Gy to the PTV1 and 60 Gy to the PTV2,
which were delivered concurrently over 30 daily frac-
tions, with a fractional dose of 2 Gy to the PTV2.

Comparison criteria for the radiation treatment plans
The dose volume histograms (DVH) data were obtained
from each patient. The dose coverage was analyzed accord-
ing to the mean dose (Dmean), maximum dose (Dmax), con-
formity index (CI) and homogeneity index (HI). The CI was
defined as follows [7]: CI =VRI/PTV, where VRI represents
the volume covered by the prescription dose. A CI value of
1.0 indicates that the volume of the prescription isodose sur-
face is equal to that of the PTV. The HI was defined as fol-
lows [8]: HI = (D2−D98)/D50, where Dx% represents the
dose delivered to x% of the PTV. Lower HI values indicate a
more homogeneous target dose. OARs (e.g., brainstem, optic
chiasm, optic nerves, and lenses) and PMCs and CSTs were
compared based on the values of Dmax and Dmean.

Statistical analyses
The comparison of parameters between different plans was
analyzed by the paired two-tailed Student t test. Differences
were considered statistically significant at p < 0.05.

Results
Comparison of target volume coverage and OAR sparing
between 3DCRT and IMRT
Parameters related to dose coverage planning for
3DCRT and IMRT are presented in Tables 1 and 2. The
results indicated that there was no significant difference
between the 3DCRT and IMRT plans in terms of dose
homogeneity, but IMRT displayed better PTV dose con-
formity. Regarding the comparison of PTV1 Dmax,
PTV1 Dmean, PTV2 Dmax and PTV2 Dmean, there
was no significant difference between the 3DCRT and
IMRT plans. The dosimetric details of brainstem, optic
chiasm, optic nerves, and lenses revealed no significant
differences between the two plans and all of these organs
were strictly maintained within the dose limitations. The
Dmax and Dmean of PMCs and CSTs were observed in
both 3DCRT and IMRT plans (Table 3); however no sig-
nificant difference was found between the two plans.
Comparison of target volume coverage and OAR sparing
between IMRT and IMRT_PMC&CST
Treatment plan parameters are shown in Tables 4 and 5.
According to the data presented, both PTV1 and PTV2



Table 5 Comparison of OAR sparing between IMRT and
IMRT_PMC&CST

IMRT (Gy) IMRT_PMC&CST
(Gy)

t p

Ipsilateral lens Dmax 2.67 ± 1.67 2.76 ± 1.64 −1.574 0.132

Ipsilateral lens Dmean 1.98 ± 1.45 2.03 ± 1.50 −1.294 0.211

Contralateral lens Dmax 2.38 ± 1.97 2.43 ± 1.95 −1.063 0.126

Contralateral lens
Dmean

1.84 ± 1.69 1.89 ± 1.72 −0.940 0.359

Ipsilateral optic nerve
Dmax

12.32 ± 13.38 12.44 ± 13.91 −0.599 0.556

Ipsilateral optic nerve
Dmean

8.57 ± 9.40 8.78 ± 10.08 −1.126 0.274

Contralateral optic
nerve Dmax

7.02 ± 7.68 7.07 ± 7.71 −0.353 0.728

Contralateral optic
nerve Dmean

4.59 ± 4.76 4.66 ± 4.95 −0.729 0.475

Optic chiasm Dmax 12.76 ± 13.53 12.49 ± 13.20 1.488 0.153

Optic chiasm Dmean 8.28 ± 8.70 8.20 ± 8.63 0.573 0.573

Brainstem Dmax 14.04 ± 11.62 13.56 ± 11.08 1.260 0.223

Brainstem Dmean 6.52 ± 6.99 6.46 ± 7.05 0.790 0.439

Table 3 Comparion of radiation dose between 3DCRT and
IMRT

3DCRT (Gy) IMRT (Gy) t p

Ipsilateral PMC Dmax 46.50 ± 8.65 46.54 ± 7.77 −0.050 0.960

Ipsilateral PMC Dmean 28.45 ± 7.78 27.67 ± 8.06 1.429 0.169

Contralateral PMC Dmax 24.86 ± 9.89 21.40 ± 10.94 1.542 0.140

Contralateral PMC Dmean 14.73 ± 6.02 14.11 ± 7.57 0.390 0.701

Ipsilateral CST Dmax 51.26 ± 4.24 50.61 ± 4.72 1.801 0.088

Ipsilateral CST Dmean 36.51 ± 6.63 36.06 ± 7.57 0.893 0.383

Contralateral CST Dmax 35.64 ± 10.15 36.11 ± 10.05 −0.859 0.401

Contralateral CST Dmean 20.97 ± 7.43 18.90 ± 7.45 1.454 0.162
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(Dmax, Dmean, CI and HI) were analyzed and showed no
significant differences between two groups. The Dmax
and Dmean to these conventional OARs (e.g., brainstem,
optic chiasm, optic nerves, and lenses) showed no signifi-
cant differences between the two plans. The Dmax to the
ipsilateral and contralateral PMC and CST regions was
considerably decreased by 28.7%, 24.5%, 20.2% and 37.6%,
respectively. The Dmean to the ipsilateral and contralat-
eral PMC and CST regions was considerably decreased by
27.8%, 30.4%, 23.1% and 33.4%, respectively (Table 6).
Discussion
Radiation therapy is commonly applied to the brain tu-
mors due to its ability to control cell growth; however,
radiation therapy can have detrimental effects on the
central nervous system causing neurological complica-
tions. The response of cerebral tissue to radiation can
lead to the deficits in neural functions [9,10]. The extent
of neurologic deficit is associated with the location and
size of radiation-induced brain injury [11,12]. Efforts
dedicated to the precise division of brain lesions have
been made to reduce the risk of neurological complica-
tions caused by the radiation therapy.
Table 4 Comparison of target coverage between IMRT
and IMRT_PMC&CST

IMRT IMRT_PMC&CST t p

PTV1 (50 Gy)

Dmax (Gy) 64.88 ± 0.66 65.04 ± 0.70 −0.806 0.430

Dmean(Gy) 59.91 ± 0.85 59.85 ± 0.68 0.633 0.534

CI 1.071 ± 0.025 1.073 ± 0.024 −1.077 0.295

HI 0.213 ± 0.012 0.209 ± 0.016 0.911 0.374

PTV2 (60 Gy)

Dmax (Gy) 64.88 ± 0.66 65.04 ± 0.70 −0.806 0.430

Dmean (Gy) 62.36 ± 0.53 62.41 ± 0.56 −0.287 0.777

CI 1.055 ± 0.049 1.039 ± 0.047 1.643 0.117

HI 0.082 ± 0.016 0.089 ± 0.016 −1.646 0.116
The DTI and BOLD-fMRI have recently been used to
identify the white-matter pathways and functional struc-
tures of the brain. In our previous study, we proposed a
clinically feasible protocol of integrating BOLD-fMRI
and DTI to optimize the extent of resection involving
the cortical motor areas and subcortical white matter
tracts in patients with brain gliomas. Those information
helped neurosurgeons resected the maximum amount of
tumor while still preserving the most critical cortices of
the brain, thus resulting in enhanced postoperative quality
of life for patients [13]. The incorporation of this informa-
tion for radiosurgery planning has also been suggested.
Liu et al. has reported a novel method to integrate the
fMRI brain activation map with treatment planning for
stereotactic radiosurgery (SRS). Direct irradiation of the
eloquent cortices was avoided by multiple radiation arcs
or static radiation beams in SRS planning, and the average
Table 6 Comparion of radiation doses betweeen IMRT
and IMRT_PMC&CST

IMRT (Gy) IMRT_PMC&
CST (Gy)

t p

Ipsilateral PMC Dmax 46.54 ± 7.77 33.20 ± 11.13 7.304 <0.001

Ipsilateral PMC Dmean 27.67 ± 8.06 19.99 ± 8.78 7.150 <0.001

Contralateral PMC Dmax 21.40 ± 10.94 16.16 ± 9.07 5.250 <0.001

Contralateral PMC Dmean 14.11 ± 7.57 9.82 ± 5.62 5.276 <0.001

Ipsilateral CST Dmax 50.61 ± 4.72 40.37 ± 6.55 9.233 <0.001

Ipsilateral CST Dmean 36.06 ± 7.57 27.72 ± 8.87 8.032 <0.001

Contralateral CST Dmax 36.11 ± 10.05 22.52 ± 10.36 6.959 <0.001

Contralateral CST Dmean 18.90 ± 7.45 12.59 ± 5.51 6.362 <0.001
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dose reduction to the eloquent cortices was 32% [14]. In
addition, it has been reported that the risk of radiation-
induced neuropathy was minimized by the integration of
tractography of the brain white matter with DTI into radi-
ation treatment planning of radiosurgery using Gamma
Knife [15]. Moreover, Pantelis et al. has demonstrated that
critical structures of brain could be marked and spared
with the aid of the integration of BOLD-fMRI and DTI
into CyberKnife stereotactic radiosurgery [16].
In this study, BOLD-fMRI and DTI were used to localize

the bilateral PMCs and CSTs and the information obtained
from these two technologies were integrated into radiation
treatment planning. The first part of our study (3DCRT
versus IMRT) indicated that there was no significant
reduction in the dose to bilateral PMCs and CSTs between
the 3DCRT and IMRT plans. The critical structures adja-
cent to the target volume marked as OARs can be better
spared during the IMRT planning process due to a steep
dose gradient and a high conformity [17,18]. The second
part of our study (IMRT versus IMRT_ PMC&CST), has
shown that a significant reduction in the dose to bilateral
PMCs and CSTs regions can be achieved without com-
promising the coverage of planning target volume and the
limiting dose to these conventional OARs.
Sparing of the bilateral PMCs and CSTs does not repre-

sent any significant breakthrough in the treatment of brain
tumors, but we have demonstrated that it is feasible to re-
duce the irradiation of critical structures adjacent to the
target volume. The development of the most appropriate
IMRT plan for the patient could be achieved by the identi-
fication of the important functional structures of the brain
tissues proximal to the tumors. Sparing these vital func-
tional structures is important to maintain quality of life,
even in those patients with restricted life expectancy. The
current study has shown that the DTI examination and
MR Spectroscopy are valuable tools to differentiate the
postoperative recurrent glioma from the radiation injury
for patients with a glioma [19,20].
We are currently investigating paradigms for Broca’s

and Wernicke’s areas (speech center), Broadmann-17
functional structures (visual center) and optic tracts.
The application of the fMRI in low grade cases has also
been validated.

Conclusions
In conclusion, integration of BOLD-fMRI and DTI into
radiation treatment planning is feasible and beneficial.
With the assistance of the above-described techniques, the
structures adjacent to suspicious cancerous lesions could
be clearly marked as OARs and spared during treatment.
However, a wider investigation and the longer-term
clinical follow up are required to further validate the
effect of the integration of BOLD-fMRI and DTI on spar-
ing normal tissues.
Abbreviations
BOLD-fMRI: Blood oxygen level dependent functional magnetic resonance
imaging; DTI: Diffusion tensor imaging; 3DCRT: Three-dimensional conformal
radiation treatment; PMCs: Primary motor cortexes; CSTs: Corticospinal tracts;
CT: Computed tomography; OARs: Organs at risk; IMRT: Intensity-modulated
radiation therapy; IMRT_ PMC&CST: Intensity-modulated radiotherapy
planning with PMC and CST information; WHO: World Health Organization;
MRI: Magnetic resonance imaging; SE-EPI: Spin echo-echo planar imaging;
ROI: Region of interest; GTV: Gross tumor volume; CTV1: Initial clinical target
volume; PTV1: Initial planning target volume; CTV2: Second clinical target
volume; PTV2: Second planning target volume; DVHs: Dose volume
histograms; Dmax: The maximum dose; Dmean: Mean dose; CI: Conformity
index; HI: Homogeneity index.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
XDW, HCX, XYH and XXJ conceived the study and draft the manuscript.
MLW and XDW performed the statistical analysis and drafted the manuscript.
HM, YHG, XSX, YLG and HH participated in the analysis of the treatment of
radiotherapy plans and draft this manuscript. YX edited this manuscript. All
authors read and approved the final manuscript.

Acknowledgements
This work was supported by the Natural Science Foundation of China
(Grant No. 81260373) and the Natural Science Foundation of Ningxia
(Grant No. NZ11269).

Author details
1Department of Radiology, General Hospital of Ningxia Medical University,
Yinchuan, China. 2Ningxia Key Laboratory for Cerebrocranial Diseases,
Yinchuan, China. 3Department of Neurosurgery, General Hospital of Ningxia
Medical University, Yinchuan, China. 4Department of Radiation Oncology,
General Hospital of Ningxia Medical University, Yinchuan, China. 5Department
of Radiology, Xi’an NO.1 Hospital, Xi’an, China. 6Tissue Organ Bank & Tissue
Engineering Centre, General Hospital of Ningxia Medical University, Yinchuan,
Ningxia, China. 7Tissue Repair and Regeneration Program, Institute of Health
and Biomedical Innovation, Queensland University of Technology, Kelvin
Grove, QLD, Australia.

Received: 28 October 2014 Accepted: 19 February 2015

References
1. Chang J, Narayana A. Functional MRI for radiotherapy of gliomas. Technol

Cancer Res Treat. 2010;9(4):347–58.
2. Bleehen NM, Stenning SP. A Medical Research Council trial of two

radiotherapy doses in the treatment of grades 3 and 4 astrocytoma. The
Medical Research Council Brain Tumour Working Party. Br J Cancer.
1991;64(4):769–74.

3. Butler JM, Rapp SR, Shaw EG. Managing the cognitive effects of brain tumor
radiation therapy. Curr Treat Options Oncol. 2006;7(6):517–23.

4. Roman DD, Sperduto PW. Neuropsychological effects of cranial radiation:
current knowledge and future directions. Int J Radiat Oncol Biol Phys.
1995;31(4):983–98.

5. Kamada K, Todo T, Masutani Y, Aoki S, Ino K, Takano T, et al. Combined use
of tractography-integrated functional neuronavigation and direct fiber
simulation. J Neurosurg. 2005;102(4):664–72.

6. Pirotte B, Voordecker P, Neuroschl C, Baleriaux D, Wikler D, Metens T, et al.
Combination of functional magnetic resonance imaging-guided
neuronavigation and intraoperative cortical brain mapping improves
targeting of motor cortex stimulation in neuropathic pain. Neurosurgery.
2008;62(6 Suppl 3):941–56.

7. Feuvret L, Noël G, Mazeron JJ, Bey P. Conformity index: a review. Int J Radiat
Oncol Biol Phys. 2006;64(2):333–42.

8. Hodapp N. The ICRU report 83: prescribing, recording and reporting
photon-beam intensity-modulated radiation therapy (IMRT). Strahlenther
Onkol. 2012;188(1):97–9.

9. Keime-Guibert F, Napolitano M, Delattre JY. Neurological complications of
radiotherapy and chemotherapy. J Neurol. 1998;245(11):695–708.



Wang et al. Radiation Oncology  (2015) 10:64 Page 7 of 7
10. DeAngelis LM, Delattre J-Y, Posner JB. Radiation-induced dementia in
patients cured of brain metastases. Neurology. 1989;39(6):789–96.

11. Flickinger JC, Kondziolka D, Lunsford LD, Kassam A, Phuong LK, Liscak R,
et al. Development of a model to predict permanent symptomatic
postradiosurgery. Int J Radiat Oncol Biol Phys. 2000;46(5):1143–8.

12. Voges J, Treuer H, Sturm V, Büchner C, Lehrke R, Kocher M, et al. Risk
analysis of linear accelerator radiosurgery. Int J Radiat Oncol Biol Phys.
1996;36(5):1055–63.

13. Jia XX, Yu Y, Wang XD, Ma H, Zhang QH, Huang XY, et al. fMRI-driven DTT
assessment of corticospinal tracts prior to cortex resection. Can J Neurol
Sci. 2013;40(4):558–63.

14. Liu WC, Schulder M, Narra V, Kalnin AJ, Cathcart C, Jacobs A, et al.
Functional magnetic resonance imaging aided radiation treatment
planning. Med Phys. 2000;27(7):1563–72.

15. Maruyama K, Kamada K, Shin M, Itoh D, Aoki S, Masutani Y, et al. Integration
of threedimensional corticospinal tractography into treatment planning for
gamma knife surgery. J Neurosurg. 2005;102(4):673–7.

16. Pantelis E, Papadakis N, Verigos K, Stathochristopoulou I, Antypas C, Lekas L,
et al. Integration of functional MRI, white matter tractography in stereotactic
radiosurgery clinical practice. Int J Radiat Oncol Biol Phys. 2010;78(1):257–67.

17. Moretto F, Rampino M, Munoz F, Ruo Redda MG, Reali A, Balcet V, et al.
Conventional 2D (2DRT) and 3D conformal radiotherapy (3DCRT) versus
intensity-modulated radiotherapy (IMRT) for nasopharyngeal cancer
treatment. Radiol Med. 2014;119(8):634–41.

18. Arbea L, Ramos LI, Martinez-Monge R, Moreno M, Aristu J. Intensity-
modulated radiation therapy (IMRT) vs. 3D conformal radiotherapy (3DCRT)
in locally advanced rectal cancer (LARC): dosimetric comparison and clinical
implications. Radiat Oncol. 2010;5:17.

19. Xu JL, Li YL, Lian JM, Dou SW, Yan FS, Wu H, et al. Distinction between
postoperative recurrent glioma and radiation injury using MR diffusion
tensor imaging. Neuroradiology. 2010;52(12):1193–9.

20. Rabinov JD, Lee PL, Barker FG, Louis DN, Harsh GR, Cosgrove GR, et al. In
vivo 3-T MR spectroscopy in the distinction of recurrent glioma versus
radiation effects: initial experience. Radiology. 2002;225(3):871–9.
Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit


	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Subjects
	Data acquisition and analysis
	Treatment planning
	Comparison criteria for the radiation treatment plans
	Statistical analyses

	Results
	Comparison of target volume coverage and OAR sparing between 3DCRT and IMRT
	Comparison of target volume coverage and OAR sparing between IMRT and IMRT_PMC&CST

	Discussion
	Conclusions
	Abbreviations
	Competing interests
	Authors’ contributions
	Acknowledgements
	Author details
	References

