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X-irradiation is modulated by reactive oxygen
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Abstract

Background: A discontinuous dose response relationship is a major characteristic of the anti-inflammatory effects of
low-dose X-irradiation therapy. Although recent data indicate an involvement of a variety of molecular mechanisms
in these characteristics, the impact of reactive oxygen species (ROS) production to give rise or contribute to these
phenomena in endothelial cells (EC) remains elusive.

Material and methods: HUVEC derived immortalized EA.hy926 cells were stimulated by tumor necrosis factor-a
(TNF-a, 20 ng/ml) 4 h before irradiation with doses ranging from 0.3 to 1 Gy. To analyse DNA repair capacity,
phospho-histone H2AX foci were assayed at 1 h, 4 h and 24 h after irradiation. ROS production and superoxide
dismutase (SOD) activity were analysed by fluorometric 2',7'-dichlorodihydrofluorescein-diacetate (H2DCFDA) and
colorimetric assays. A functional impact of ROS on yH2AX production was analysed by treatment with the scavenger
N-acetyl-L-cysteine (NAC).

Results: Irrespective of stimulation by TNF-a, EAhy926 cells revealed a linear dose response characteristic of yH2AX foci
detection at 1 h and 4 h after irradiation. By contrast, we observed a discontinuity in residual yH2AX foci detection at
24 h after irradiation with locally elevated values following a 0.5 Gy exposure that was abolished by inhibition of ROS
by NAC. Moreover, SOD protein expression was significantly decreased at doses of 0.5 Gy and 0.7 Gy concomitant with
a reduced SOD activity.

Conclusion: These data implicate a non-linear regulation of ROS production and SOD activity in EA.hy926 EC following
irradiation with doses < 1 Gy that may contribute to a discontinuous dose-response relationship of residual yH2AX foci
detection.
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Background

For decades an anti-inflammatory and analgetic effect of
low-dose X-irradiation (LD-RT) has been well estab-
lished in the treatment of a plethora of benign diseases
and chronic degenerative disorders [1,2] with empirically
identified single doses <1 Gy to be most effective in the
clinical setting [3-5]. Although the knowledge of the
underlying cellular and molecular mechanisms is still at
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an early stage, a modulation of endothelial cell (EC) activity
has already been proven to comprise a key element in the
therapeutic effects of LD-RT [6]. For instance, a hampered
adhesion of peripheral blood mononuclear (monocytes,
lymphocytes) and polymorphonuclear leukocytes (granulo-
cytes) to EC was shown to result from an elevated secretion
of the anti-inflammatory cytokine transforming growth fac-
tor 1 (TGF-B1), elevated levels of X-chromosome linked
inhibitor of apoptosis protein (XIAP) and transcription
factor nuclear factor-kB (NF-kB) DNA-binding and tran-
scriptional activity [7-10]. Moreover, a hampered adhesion
and consequently reduced immune cell infiltration [11] is

© 2014 Large et al, licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain

Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article,

unless otherwise stated.


mailto:franz.roedel@kgu.de
http://creativecommons.org/licenses/by/2.0
http://creativecommons.org/publicdomain/zero/1.0/

Large et al. Radiation Oncology 2014, 9:80
http://www.ro-journal.com/content/9/1/80

further supported by a lowered expression of the adhesion
molecule E-selectin with a local minimum following 0.3-
0.5 Gy exposure [9,12]. Strikingly, the mechanisms ex-
plored so far display comparable non-linear dose effect
relationships, a common hallmark of bystander and non
(DNA)-targeted effects of low-dose irradiation [13] and
the phenomenon of low-dose hypersensitivity reported for
cellular survival [14]. These mechanisms are supposed to
originate from an overlap of multiple molecular processes
that may be initiated at various dose thresholds [15].

Reactive oxygen species (ROS) like superoxide (O,7),
Hydroxyl (OH’) and Hydroperoxyl (HO,") ions formed as
natural by-product of the mitochondrial electron transport
chain and by NADPH oxidase activity display important
roles in the regulation of cell signalling, cellular homeosta-
sis, cell death and mutagenesis of DNA [16,17]. These
regulatory effects include reversible oxidation of serine/
threonine phosphatases and kinases, e.g. mitogen-activated
protein kinase (MAPK), metalloproteases and activation of
transcription factors like NF-kB and activating protein 1
(AP1) [18]. Moreover, following environmental stress, in-
cluding ionising radiation and heat exposure, ROS levels
increase dramatically resulting in significant damage to cel-
lular structures and induction of DNA double-strand
breaks (DSBs) [19].

A putative interrelationship between DNA damage re-
pair and a discontinuous dose response relationship fol-
lowing low-dose irradiation was recently suggested [20].
By assessing serine 139 phosphorylated histone yH2AX
foci induction, a marker of radiation-induced DSBs [21],
a biphasic behaviour of yH2AX foci induction with a
low-dose hypersensitivity in whole blood and less pro-
nounced for isolated T-lymphocytes after X-irradiation
was reported in line with a delayed repair with 40% of
initial YH2AX foci persisting 24 hours post-irradiation
[20]. A mechanistic involvement of ROS in the modula-
tion of these non-linear dose response effects, however,
remains to be established. Thus, in the present study we
analysed radiation effects with a particular focus on low-
dose (0.3 -1 Gy) irradiation of EA.hy926 EC with respect
to YH2AX foci induction, ROS production and SOD
activity.

Material and methods

Cell culture and stimulation of endothelial cells

The human endothelial cell (EC) line EA.hy926 was estab-
lished by fusion of human umbilical vein endothelial cells
(HUVEC) and the adenocarcinoma epithelial cell line A549
[22]. EA.hy926 cells were grown in Dulbecco’s modified
Eagle’s medium (DMEM,; Invitrogen, Karlsruhe, Germany)
supplemented with 10% foetal calf serum (FCS; PAA,
Colbe, Germany) and 50 U/ml penicillin and 50 pg/ml
(streptomycin) (Sigma-Aldrich, Munich, Germany). Pri-
mary HUVEC were isolated from umbilical vein vascular
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wall according to a technique described in [23], plated on
fibronectin-coated plates and cultured in DMEM supple-
mented with 5% endothelial cell growth supplement
(ECGS) (Invitrogen, Karlsruhe, Germany) and 1% penicil-
lin/streptomycin. Cell culture was performed at 37°C in a
5% CO, incubator with 95% humidity. For inflammatory
stimulation, cells were treated according to pilot experi-
ments with the cytokine TNF-a (Miltenyi Biotec, Bergisch-
Gladbach, Germany) at a concentration of 20 ng/ml at 4 h
before irradiation.

Treatment with ROS scavenger and irradiation procedure
ROS scavenger N-acetyl-L-cysteine (NAC) was applied at a
concentration of 10 mM 4 h before irradiation and main-
tained in the cultures during repair incubation (24 h). For
irradiation purposes, EAhy926 were exposed to single
doses of 0.3 to 1 Gy photons using a linear accelerator
(SL75/5, Elekta, Crawley, UK) with 6 MeV/100 cm focus-
surface distance and a dose rate of 4 Gy/min. Mock-treated
controls were kept in parallel at ambient temperature in
the accelerator control room.

Immunofluorescence quantification of phospho-histone
H2AX foci formation

EAhy926 EC were grown on glass coverslips in 6-well
plates for 48 h, treated with TNF-a, NAC or were mock-
treated and irradiated as described before. At 1 h, 4 h and
24 h post irradiation cells were fixed with 3.7% paraformal-
dehyde (15 min, AppliChem, Darmstadt, Germany) at room
temperature (RT), and permeabilization was performed
by addition of 0.25% Triton-X 100 in PBS for 15 min,
followed by blocking in 3% bovine serum albumin
(BSA) in PBS for 60 min. Next, EA.hy926 cells were in-
cubated with anti-phospho-histone H2AX specific
(YH2AX, 1:1000, Millipore, Darmstadt, Germany) and
anti-centromere protein F (CENP-F) primary antibodies
(1:2000, Santa Cruz, Heidelberg, Germany) to discriminate
cells in G1 and S/G2 cell cycle phases [24] followed by ap-
propriate Alexa-labelled secondary antibodies (Invitrogen,
Darmstadt, Germany). Subsequently, nuclei were counter-
stained with DAPI solution (Invitrogen) and coverslips
were mounted with Vectashield (Vector Laboratories,
Peterborough, UK). Images were taken using an Axiolma-
ger Z1 microscope, equipped with an Axiocam camera
and Axiovision 4.6 software (Zeiss, Gottingen, Germany).
For quantification of YH2AX foci formation 40 G1 and
40 S/G2 phase cells as differentiated by CENP-F signal in-
tensity were evaluated per experiment. At least three inde-
pendent experiments were performed for each data point.

Measurement of ROS levels and SOD activity assay

Intracellular ROS levels were determined by flow cytom-
etry using the cell membrane permeable dye 2',7'-
dichlorodihydrofluoresceindiacetate (H,DCFDA: DCF
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assay) as described in [25]. Prior to harvesting, cells were
incubated for 90 minutes with the dye at a concentration
of 2 uM in serum-free medium. At indicated times cells
were trypsinized on ice and analyses were performed
using a FACSCalibur® cytometer and Cellquest Pro soft-
ware (Becton Dickinson, Heidelberg, Germany). The
mean fluorescence of mock-treated cells was subtracted
to eliminate unspecific background intensity for every
sample. To assess SOD activity a colorimetric activity kit
(Sigma-Aldrich) was used according to the manufac-
turer’s instructions. Briefly, 3 x 10° cells per well were
plated in 96-well plates 24 h before irradiation. At indi-
cated time points (up to 24 h) medium was removed and
cells were incubated with 200 ul of working solution buf-
fer (WST, Sigma-Aldrich) and 20 pl of enzyme working
solution for 20 min. Absorbance was determined spectro-
photometrically at a wavelength of 450 nm using an
ELISA reader (Victor Wallac multilabel-reader, Perkin-
Elmer, Waltham, USA).

Immunoblotting

For Western immunoblotting, EA.hy926 cells were lysed in
radioimmunoprecipitation assay buffer (RIPA) as described
in [26]. Equal amounts of protein (20 pg) as determined by
a bicinchoninic acid (BCA) protein assay (Pierce, Rockford,
USA) were separated on 10% SDS polyacrylamide gels,
transferred to nitrocellulose membranes (GE Healthcare,
Munich, Germany), probed with anti-SOD-1 antibodies
(1:2000, Cell Signaling, Frankfurt am Main, Germany) or
anti-p-actin antibodies (1:10000, Sigma-Aldrich) diluted in
5% non-fat dry milk in Tris/Borat/Tween (TBS-T) buffer
and appropriate horseradish-peroxidase (HRP)-conjugated
secondary antibodies (Santa Cruz, Heidelberg, Germany).
Blots were subsequently developed by an enhanced
chemoluminescence detection system (Pierce ECL,
Thermo Scientific, Hudson, USA) and autoradiography
(Amersham Hyperfilm ECL, GE Healthcare). Densito-
metric analysis was performed using Image] software
(US National Institutes of Health, Bethesda, USA).

Statistical analysis

Experimental data are presented as mean + standard devia-
tions from at least three or more independent experiments.
To test statistical significance, a two-sided unpaired
Student’s t-test was performed using Excel® software
(Microsoft, UnterschleifSheim, Germany). Results were
considered statistically significant if a p-value of less
than 0.05 was reached.

Results

Phospho-histone H2AX foci detection in EA.hy926 EC
following low-dose irradiation

EAhy926 EC were plated onto glass coverslips, grown to
95% confluence and were stimulated with TNF-« (20 ng/ml)
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or mock treated 4 h before irradiation with single doses of
0.3, 0.5, 0.7 or 1 Gy. Induction of DNA DSBs was investi-
gated by quantifying YH2AX foci formation at 1 h and 4 h
and by counting residual foci at 24 h after irradiation.
Phospho-histone H2AX signals may differ in a cell-cycle
dependent manner with a doubled amount of DNA in the
G2 phase [24]. Thus, to improve accuracy of YH2AX foci
measurement, both cells in the G1 and G2 phase as differ-
entiated by the intensity of the centromere protein F
(CENP-F) signal (Figure 1A) were taken into consideration.
At early time points (1 h, 4 h) we observed, irrespective of
stimulation with TNF-q, a linear dose response relationship
of YH2AX foci induction (Figure 1B, C). By contrast, at 24 h
after irradiation the number of residual yH2AX foci was sig-
nificantly (p <0.05) elevated after a 0.5 Gy exposure and
TNF-a stimulation as compared to irradiation with doses of
0.3 Gy and 0.7 Gy (Figure 1D). As depicted in Additional file
1: Figure S1, these characteristics could be observed in both
G1 and S/G2 cells (with expected elevated numbers of
YH2AX foci) indicating that the discontinuity in YH2AX de-
tection at 24 h after low-dose irradiation is not related to
cell cycle distribution.

ROS expression and SOD activity in EA.hy926 EC
following low-dose X-irradiation

Induction of ROS is known to result in DSBs [27]. To in-
vestigate a relationship between ROS production and the
non-linear detection of YH2AX foci, EA.hy926 EC were
stimulated with TNF-a 4 h before irradiation or mock-
treatment and ROS levels were analysed using a flow cyto-
fluorometric DCF assay (Figure 2B). As a control forward/
side scatter analyses were performed (Figure 2A), indicat-
ing that neither irradiation nor stimulation with TNF-a
alters cellular morphology. As depicted in Figure 2C, a bi-
phasic appearance of DCF fluorescence with locally ele-
vated values following irradiation with 0.5 Gy became
evident at 24 h irrespective of inflammatory stimulation of
the EC by TNF-a.

To further explore underlying molecular mechanisms
implicated in the discontinuous induction of ROS fol-
lowing LD-RT, we next focused on the expression and
enzymatic activity of SOD, reported to be involved in
anti-oxidant defence by the conversion of superoxide
(O37) to HyO, and O, [28]. As shown in Figure 3A and
Figure 3B SOD activity and SOD-1 protein expression,
respectively, displayed a discontinuous dose dependency
with a relative minimum at 0.5 Gy as proven by colori-
metric assay and Western immunoblotting. Employing
densitometric analyses the relative amount of protein re-
duction was quantified. Exposure of EA.hy926 EC to
0.5 Gy and less pronounced to 0.7 Gy resulted in a 50%
and 30% reduction of SOD-1 expression in stimulated
ECs, as compared to mock-irradiated controls, respect-
ively (Figure 3C). Comparable results were exemplarily
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Figure 1 Dose and time kinetics of yH2AX foci detection in EA.hy926 EC following low-dose X-irradiation. EA.hy926 EC were plated
onto coverslips and grown to confluence. At 4 h before irradiation with the doses indicated, ECs were stimulated with TNF-a (20 ng/ml), while
mock-treated cells served as a control. At 1 h (B), 4 h (C) and 24 h (D) post irradiation, cells were fixed, stained for yH2AX, DAPI and CENP-F
(A) and data of a total of 80 nuclei (40 G1 and 40 S/G2) were combined for a single data point. Data represent means + SD from at least three
independent experiments. Asterisks indicate significant differences (p < 0.05) vs. 0.3 Gy and 0.7 Gy irradiated ECs.
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obtained by using primary HUVEC cells (Additional file 2:
Figure S2).

A discontinuous yH2AX foci expression is abolished by
treatment with the ROS scavenger NAC

Finally, to investigate an interrelationship between ROS
induction and discontinuous YH2AX foci detection at
24 h after LD-RT, EAhy926 EC were irradiated in the
presence of the ROS scavenger NAC. In pilot experi-
ments (Figure 4A) NAC treatment (10 mM) was proven
to result in a significant reduction in total ROS levels to
20% of mock-treated controls. As illustrated in Figure 4B,
the non-linear appearance of yH2AX foci was com-
pletely abolished upon pre-treatment with NAC, indicat-
ing a direct correlation between ROS production and
the biphasic behaviour of yH2AX detection.

Discussion

Although considerable progress has been achieved in the
understanding of immune modulatory effects of ionising ra-
diation, the underlying molecular mechanisms are presently
not fully resolved. In line with that, high dose exposure with
single doses exceeding 2 Gy displays a pronounced pro-
inflammatory effect [29] whereas irradiation with single
doses below 1 Gy experimentally and clinically reveal anti-
inflammatory properties [2,4,6]. This may implicate the
involvement of complex mechanisms of DNA damage re-
sponse and immune modulation differentially operating at
different dose levels. In that context, EC may comprise ideal
targets for modulatory properties of low-dose and high-

dose irradiation exposure due to their crucial role in
the regulation of the local inflammatory process both
by their ability to recruit leukocytes to the site of local
inflammation and by expressing a variety of cytokines/
chemokines essential for the inflammatory cascade [30].
Although recent data imply an involvement of a variety
of molecular mechanisms in the anti-inflammatory
characteristics of EC following low-dose irradiation [3],
the impact of ROS production to give rise or contribute
to these effects in EC remains elusive.

Here we show a linear dose response relationship for
YH2AX foci induction at 1 h and 4 h after irradiation irre-
spective of stimulation of the cells in a pro-inflammatory
manner by adding TNF-a. This may indicate that induc-
tion of DSBs and early DNA damage repair at low-dose ir-
radiation, at least in EA.hy926 EC, may not be altered in
an inflammatory surrounding characteristic for benign
diseases treated clinically with LD-RT. Moreover, DNA
damage repair response is considered to be linear with
dose [31,32], which is in agreement with our data on
the linearity of yH2AX induction at early times (1 h,
4 h) after irradiation. At later times (24 h), however, we
observed a discontinuous dose-response relationship of
residual YH2AX foci along with a non-linear detection
of ROS with elevated levels following a 0.5 Gy expos-
ure. This further confirms a close relationship between
intracellular ROS and the induction of histone yH2AX
foci as a marker of DNA damage [21]. In line with that,
cellular ROS production is tightly regulated by coordi-
nated activities of pro-oxidant and anti-oxidant defence
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Figure 2 ROS levels in EA.hy926 ECs following low-dose X-irradiation. (A) Representative flow cytometer dot plots forward scatter (FSC) vs
side scatter (SSC) for each treatment regimen. R-1 indicates the population of cells used for the analysis of 2/,7’-dichlorodihydrofluoresceindiacetate
(DCF) fluorescence. (B) Representative histograms showing an increase of DCF fluorescence as a marker of ROS production in TNF-a stimulated,
non-irradiated (blue line) and irradiated (0.5 Gy, red line) cells. Non-DCF treated cells (black line) served as a control and were subtracted in
every quantification. (C) Quantification of relative DCF-fluorescence in EA.hy926 ECs at 24 h after irradiation with the doses indicated. Data

mechanisms. To further elucidate mechanisms that
may contribute to the non-linear induction of yH2AX
foci, we thus analysed the activity of the detoxifying en-
zyme SOD that dismutates O, into H,O, with the latter
to be degraded into H,O and O, by catalase and glutathi-
one peroxidase activity [33]. Data on the expression of
SOD following low-dose irradiation, however, are contro-
versial at present. Similar to our findings, they include a
reduction in SOD activity in spleens of healthy BALB/C
mice following total body irradiation with a dose of 0.4 Gy
[34]. By contrast, they further comprise reports on

increased mRNA expression following irradiation with a
dose of 0.2 Gy or 0.5 Gy in splenic tissue of BALB/c or
C57BL/6NJcl mice suffering from hepatopathy or cold
brain injury [35,36]. These results pinpoint to a cell type
and environment related regulation of anti-oxidative de-
fence mechanisms that should be addressed in continu-
ative investigations on the role of SOD in low-dose
irradiation responses.

Notably, Kang et al. recently demonstrated that ROS in-
duction after treatment of osteosarcoma and mammary
epithelial cells with the radiation mimetic neocarzinostatin
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Figure 3 SOD activity and SOD1 protein expression in EA.hy926
cells following low-dose X-irradiation. (A) Relative SOD activity as
analysed 24 h after irradiation by using a colorimetric activity assay. Data
represent means + SD (n = 3). *p < 0.05 vs. 03 Gy and 0.7 Gy treated cells.
(B) Western immunoblots from total cellular proteins at 24 h after
irradiation using antibodies against SOD1 and (3-actin for loading control.
Data are displayed as one representative out of three independent
experiments. (C) Reduction of SOD1 protein expression normalized to
B3-actin control as determined by densitometric analysis using the ImageJ
software package from two independent experiments including data from
(B). *p < 0.05 vs. 03 Gy and 0.7 Gy irradiated cells.
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is, at least in part, mediated by YH2AX overexpression or
DNA damage triggered YH2AX accumulation. Moreover,
ROS induction by H2AX was abrogated by treatment with
NAC, knockdown of the NADP(H) oxidase Nox1 and by a
dominant negative Ras-related C3 botulinum toxin sub-
strate 1 (Racl) mutant (Rac1N17) indicating an involve-
ment of the Nox1 and Racl GTPase pathway [37]. These
findings thus point to a more complex and reciprocal regu-
lation of yH2AX and ROS production that may further
contribute to a discontinuous appearance of yH2AX foci in
EA hy926 ECs.

In this study we focused on the human endothelial cell
line EA.hy926 which has been established by fusion of
primary HUVEC with the adenocarcinoma epithelial cell
line A549 [22]. As we can’t exclude that the cancerous
fusion partner A549 may influence some properties of
EA.hy926 cells as shown for apoptosis induction [38],
we performed exemplary experiments on SOD expres-
sion and activity in primary HUVEC, showing a similar
dose response relationship (Additional file 2: Figure S2).
A comparability is further supported by studies indicat-
ing similarities between EA.hy926 ECs and HUVEC in
terms of adhesion properties and surface marker expres-
sion if stimulated with TNF-a [39]. Thus, we consider
that the EA.hy926 line may comprise a valuable system
to investigate the role of SOD and DNA damage re-
sponse following low-dose exposure.

A discontinuous regulation of ROS production follow-
ing X-irradiation in a comparable dose range between 0.3
and 0.6 Gy is also reported in stimulated murine RAW
264.7 macrophages when they mount an oxidative burst
[40]. However, as compared to elevated levels at a dose of
0.5 Gy in our investigation, a significant reduction of ROS
production was observed in these macrophages. This may
further indicate that the variety of regulatory effects ob-
served after low-dose X-ray exposure may reflect different
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Figure 4 NAC treatment abolishes the non-linear characteristics of yH2AX induction in EA.hy926 EC following low-dose X-irradiation.
EAhy926 EC were stimulated with TNF-a (20 ng/ml) or mock-treated and were irradiated in the presence of NAC (10 mM, applied 4 h before
irradiation). At 24 h after irradiation relative DCF-fluorescence (A) and yH2AX foci induction (B) were analysed as described before. Data represent
means + SD from at least three independent experiments. *p < 0.05 vs. 0.3 Gy and 0.7 Gy irradiated EC. **p < 0.01 vs. relative DCF controls.
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functional consequences that are specific for a given cell
type (ECs vs. macrophages) or cellular environment.

Applying DNA binding and transcriptional activity as-
says, we recently reported on a biphasic activity of the
transcription factor NF-«B in stimulated EA.hy926 ECs
at 24 h after irradiation with locally elevated values fol-
lowing a 0.5 Gy exposure [8]. Moreover, NF-kB activa-
tion has been shown to be regulated by ROS (H,O,) by
both the classical (canonical) and by alternative path-
ways including atypical inhibitor kBa (IkBa) phosphoryl-
ation independently of IkB kinase (IKK) [41]. Although
experimentally not proven at present, it is tempting to
speculate that elevated levels of ROS at a dose of 0.5 Gy
may further contribute to an increased NF-kB activity
and as a consequence to increased secretion of the cyto-
kine TGF-P1 and the anti-adhesive efficacy of LD-RT
[7,9]. This assumption is further supported by a very re-
cent report indicating that ROS comprises a regulator of
adhesion molecules very late antigen-4 (VLA-4) and vas-
cular cell adhesion molecule-1 (VCAM-1) mediated
monocyte/macrophage adhesion to EC following irradi-
ation with a dose of 0.5 Gy [42].

In conclusion our data implicate a non-linear regula-
tion of SOD activity and ROS production in EC follow-
ing irradiation with doses <1 Gy that may contribute to
a discontinuous dose-response relationship of phospho-
histone H2AX detection and a putative discontinuous
behaviour of DNA damage response. A mechanistic in-
volvement of DNA damage repair mechanisms in the
modulation of these non-linear dose response effects re-
mains to be established. However, one may assume that
a discontinuous detection of residual yH2AX foci in our
investigation is related to the phenomenon of low-dose
hyper-radiosensitivity (HRS) and induced radioresistance
(IRR), which have been reported for cellular survival at
doses below 0.3 Gy and in the dose range of 0.3 Gy to
0.6 Gy, respectively [14]. In this regard, accumulating ev-
idences exist on a reduced non-homologous end joining
(NHE]) repair response associated with HRS and persist-
ent RADS51 foci, an essential component of the homolo-
gous recombination (HR) pathway at late time points
after low-dose exposure [15]. This may indicate that a
deregulation of both repair pathways may contribute to
the non-linear induction of DSBs. Moreover, future in-
vestigations will further address a putative involvement
of accumulation of DSBs at stalled replication forks [43]
to contribute to the detection of residual yH2AX follow-
ing a low-dose exposure especially in S-phase cells.

Additional files

Additional file 1: Figure S1. Dose and time kinetics of yH2AX foci
detection in EAhy926 EC following low-dose X-irradiation differentiated
in G1- and S/G2-phase cells. At 4 h before irradiation EA.hy926 EC were
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stimulated with TNF-a (20 ng/ml), while mock-treated cells served as a
control. At 1 h, 4 h and 24 h post irradiation, cells were fixed, stained for
YH2AX and CENP-F to differentiate G1 and S/G2 cell cycle phases. Data
represent means + SD from three independent experiments and a total
of 40 G1- (A-C) and 40 S/G2-nuclei (D-F) per experiment. *p < 0.05 vs.
0.3 Gy and 0.7 Gy irradiated ECs.

Additional file 2: Figure S2. SOD activity and SOD1 protein expression
in primary HUVEC following low-dose X-irradiation. (A) Relative SOD
activity as analysed at 24 h after irradiation by using a colorimetric activity
assay. Data represent means + SD (n=3). *p < 0.05 vs. 0.3 Gy and 0.7 Gy
treated cells. (B) Relative SOD1 protein expression at 24 h after irradiation
normalized to -actin control as determined by densitometric analysis of
Western immunoblots (n = 2) using the ImageJ software package. *p <
0.05 vs. 0.3 Gy and 0.7 Gy treated cells.
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