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Purpose: We aim to evaluate the effects of multileaf collimator (MLC) leaf width (5 mm vs. 2.5 mm) on the
radiosurgery planning for the treatment of spine lesions according to the modulated techniques (intensity-
modulated radiotherapy [IMRT] vs. volumetric-modulated arc therapy [VMAT]) and the complexity of the target

Methods: For this study, artificial spinal lesions were contoured and used for treatment plans. Three spinal levels
(C5, T5, and L2 spines) were selected, and four types of target shapes reflecting the complexity of lesions were
contoured. The treatment plans were performed using 2.5-mm and 5-mm MLCs, and also using both static IMRT
and VMAT. In total, 48 treatment plans were established. The efficacy of each treatment plan was compared using
target volume coverage (TVQ), conformity index (Cl), dose gradient index (Gl), and V3.

Results: When the 5-mm MLC was replaced by the 2.5-mm MLC, TVC and Gl improved significantly by 5.68% and
6.25%, respectively, while CI did not improve. With a smaller MLC leaf width, the improvement ratios of the TVC
were larger in IMRT than VMAT (8.38% vs. 2.97%). In addition, the TVC was improved by 14.42-16.74% in target type
4 compared to the other target types. These improvements were larger in IMRT than in VMAT (27.99% vs. 6.34%).
The V309, was not statistically different between IMRT and VMAT according to the MLC leaf widths and the types

Conclusion: The smaller MLC leaf width provided improved target coverage in both IMRT and VMAT, and its
improvement was larger in IMRT than in VMAT. In addition, the smaller MLC leaf width was more effective for

Keywords: Multileaf collimator, Intensity-modulated radiotherapy, Volumetric-modulated arc therapy,

Background

Spine metastasis can cause intractable pain, and when it
damages the spinal cord, it can lead to motor and/or
sensory dysfunction. Consequently, spine metastasis is
the primary cause of deterioration in the quality of life
of cancer patients [1,2]. The treatment of spine metasta-
sis includes surgery, systemic chemotherapy, radiotherapy,
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as well as medical treatment with analgesics and steroids;
most patients undergo radiotherapy. In the past, radio-
therapy consisted of delivering modest doses of radi-
ation to spinal lesions using conventional techniques,
but through advances in planning and delivery tech-
niques, radiosurgery, which can deliver highly localized
doses of radiation, is now being widely used [2-4]. Because
spinal lesions are only slightly affected by respiration or
internal organ movement, those are suitable for radiosur-
gery, which is effective in reducing pain [3,5-8].

© 2014 Chae et al, licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly credited.


mailto:sonshyun@catholic.ac.kr
http://creativecommons.org/licenses/by/2.0

Chae et al. Radiation Oncology 2014, 9:72
http://www.ro-journal.com/content/9/1/72

Three-dimensional conformal radiotherapy (3D-CRT),
dynamic conformal arc therapy (DCAT), and intensity-
modulated radiotherapy (IMRT) are commonly used in
radiosurgery. Since the recent development of volumetric-
modulated arc therapy (VMAT), in which the IMRT
technique is combined with the DCAT technique, several
studies have been conducted on it [3,5,9-12]. The multileaf
collimator (MLC), which is used for linac-based radiosur-
gery, continues to be developed, and is now commercially
available with a 2.5-mm leaf width. Several studies using
3D-CRT, DCAT, and IMRT have reported that smaller
MLC leaf width provides dosimetric improvement, par-
ticularly in the radiosurgery for small lesions, and the use
of micro-MLC, which has a leaf width of less than 5 mm,
has provided good results [13-16]. The differences in
VMAT planning related to different MLC leaf width sizes
(5 mm vs. 2.5 mm) have not been evaluated. Furthermore,
the effects of a smaller MLC width have not been evalu-
ated by comparing VMAT with other techniques. The
existing researches investigated the effects of MLC leaf
width size in relation to the target shape [16-18]. However,
these researches were limited because the target complexi-
ties were not methodically classified.

In this study, we evaluated the difference in dosimetric
effects between 5-mm and 2.5-mm MLC leaf width in
radiosurgery of spine lesions. We established the change
in the quality of the dose distribution for the modulated
techniques (VMAT and IMRT) and verified the effects
of MLC leaf width in relation to the complexity of the
target shape.

Methods

Target delineation

This study was designed to evaluate the dosimetric effects
of different MLC leaf widths on the quality of the dose
distribution in relation to the radiotherapy techniques and
target shape complexity. Therefore, artificial spine lesions
were contoured and used for treatment plans.

For the simulations, patients were immobilized using
a thermoplastic head mask for C spine and the BodyFix
system (Medical Intelligence, GmbH, Schwabmuenchen,
Germany) for T and L spines. Spiral computed tomog-
raphy (CT) scans were performed using the Ingenuity
128-channel CT scanner (Philips Healthcare, Eindhoven,
The Netherlands) with a 1-mm slice thickness. The pa-
tients” CT data were retrospectively reviewed and used for
this planning study following institutional review board
approval (IRB of Incheon St. Mary’s Hospital, the Catholic
University of Korea, Reference number: OC13RISI0061).
Written informed consent was obtained from the patient
for the publication of this report and any accompanying
images.

To represent various shapes of spinal lesions, three
spinal levels (C5, T5, and L2) were selected, and four
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types of target shapes, reflecting the complexity of the
lesions, were contoured (Figure 1). The four types of spi-
nal lesions were contoured by modifying a Weinstein,
Boriani, and Biagnini (WBB) surgical staging system,
which provides various degrees of spinal lesions sur-
rounding the spinal cord [19-21]. Type 1 is defined as
the entire vertebral body only (WBB zones 4, 5, 6, 7, 8,
and 9), and type 2 is defined as the vertebral body and
left transverse process (WBB zones 4, 5, 6, 7, 8, 9, 10,
and 11). Type 3 is defined as the vertebral body, left
transverse process, and spinous process (WBB zones 1,
4,5,6,7,8,9,10, 11, and 12), and type 4 is defined as
the vertebral body, left transverse process, spinous
process, and right transverse process (entire spinal cord
encompassed state, WBB zones 1-12). The spinal cord
is defined as the spinal canal minus 1 mm from the en-
tire circumference, as the gap between the target and
the spinal cord was 1 mm. The spinal cord was con-
toured by extending 10 mm both above and below the
level of the target volume. Relevant structures such as
the esophagus, lungs, and both kidneys were also con-
toured. The target volumes and spinal cord volume in
accordance with the level of the spine and the types of
target shapes are summarized in Table 1.

Prescription and radiation treatment planning

The prescribed dose was 18 Gy in a single fraction, with
a maximum dose of 10 Gy allowed to 0.25 cc of spinal
cord [22]. In this study, we intended to obtain the ma-
ximal target volume coverage satisfying the dose con-
straint for the spinal cord. Therefore, the irradiated dose
to 0.25 cc of spinal cord is 10 Gy, which is the same for
all types of plans. However, the coverage rates of the
prescribed dose to the target volume varied according to
each plan.

All treatment plans were performed with Eclipse ver-
sion 8.9 (Varian Medical Systems, Palo Alto, CA) to ex-
clude any bias due to the effect of different planning
algorithms. The Dose Volume Optimizer version 8.9 for
IMRT and the Progressive Resolution Optimizer version
8.9 for VMAT were used for the plan optimization. The
Anisotropic Analytic Algorithm version 8.9 was used for
the dose calculations. The treatment plans were per-
formed using a 2.5-mm and 5-mm MLC and using both
multiple static field sliding window IMRT and multi-arc
VMAT. For each plan, the same parameters such as the
isocenter location; the number of fields; the MLC mar-
gin; the gantry, collimator, and couch angles for each
beam; and the dose constraints level were used. The
IMRT plans consisted of single-isocenter, coplanar, and
11 fields delivered by the sliding-window method (dy-
namic MLC mode). The fluence map pixel size was 2 x
2 mm?® The whole angles were 0°, 33°, 65°, 98°, 130",
163°, 195°, 228°, 260°, 293°, and 326°. The VMAT plans
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Figure 1 Four types of target shapes, reflecting the complexity of lesions. (a) Type 1, (b) Type 2, (c) Type 3, and (d) Type 4.
A\

(d) Type 4

were implemented with a single-isocenter 3-full arc, and
without a couch rotation. The collimator angles were set
to 45°, 315°, and 90° for each arc. The gantry angle range
of each arc was 179.9°-181.1°. Several studies have repor-
ted that static IMRT planning using more than 7 fields
results in a dosimetric gain [5,23], and that VMAT plan-
ning using multi-arc, rather than 1-arc, achieves better
results [3,24]. Therefore, in this study, for the best re-
sults for the two different planning techniques, we use
an 11-field static IMRT and a 3-arc VMAT.

Thus, 48 treatment plans were established according
to the three types of spine levels, four types of target
shapes, two MLC leaf widths, and two types of planning
techniques. The established treatment plans are shown
in Figure 2.

Table 1 Target and spinal cord volumes

Target (cc) Spinal
Type 1 Type 2 Type 3 Type 4 cord (cq)
c5 4.62 6.37 7.67 9.90 7.37
15 14.19 18.60 23.18 27.69 9.14
L2 3032 35.02 38.98 44.45 9.76

Dosimetric indices
Target volume coverage (TVC), conformity index (CI),
dose gradient index (GI), and V3o were used to compare
the efficacy of each treatment plan. The definition of each
index is summarized below.

1. TVC: The index to evaluate the dose coverage of the
target volume [25,26]. A larger value of TVC indicates a
better dose coverage of the target volume.

Volume within the target receiving
at least the prescription isodose x 100 (%)
Target volume

TVC (%) =

2. CI: The ratio used to evaluate the quality of fit
of the target volume to the prescription isodose vol-
ume. It was proposed by the Radiation Therapy Oncology
Group (RTOG) and modified by Paddick et al. [27] and
Nakamura et al. [28]. A smaller value of CI indicates a bet-
ter conformity of the target volume.

PIV x TV
Conformity index (CI) = prwm
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line is the 12 Gy isodose line, yellow line is the 10 Gy isodose line).
A

Figure 2 Established treatment plans according to the four types of target shapes, two MLC leaf widths, and two types of planning
techniques. (a) Type 1, (b) Type 2, (c) Type 3, and (d) Type 4 (the green line is the 18 Gy isodose line, blue line is the 15 Gy isodose line, orange

e
25mmMLCIMRT 2.5 mm MLC VMAT

(b) Type 2
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25 7
(d) Type 4

2.5 mm MLC T

[PIV, prescription isodose volume; PTVpis, planning
target volume encompassed within the prescription iso-
dose surface; TV, target volume]

3. GI: The index that represent the degree of dose
drop-off outside the target volume, which was proposed
by Paddick et al. [29]. A smaller value of GI indicates
a better degree of dose drop-off outside the target
volume.

Dose gradient index (GI) = PY‘”/% x 100 (%)
PIS

[Vs0, volume receiving at least 50% dose of the pre-
scription dose; PTVps, planning target volume encom-
passed within the prescription isodose surface]

4. Improvement ratio: The ratio used to evaluate the
improvement in the index between the two rival plans
(a plan with a 2.5-mm MLC vs. a plan with a 5-mm
MLC) [30].

Index, 5_ — Indexs_
Improvement ratio (%) = ( 2:5-mm MLC 5-mm MLc)
Indexs_mm mLc

% 100 (%)
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5. Vzge: The irradiated volume receiving more than
30% of the prescription dose.

Statistical analysis

An independent ¢-test was used to analyze the influence
of the MLC size, and the difference according to the types
of target shapes was evaluated using a one-way analysis of
variance test. A Wilcoxon signed rank test was used to
compare the low dose distribution (V3gy) between IMRT
and VMAT plans according to the MLC leaf width and
the types of target. The statistical analysis was conduc-
ted using MedCalc version 12.6 for Windows (MedCalc
Software, Ostend, Belgium) and a p value <0.05 was con-
sidered statistically significant.

Results

Comparison between 2.5-mm and 5-mm MLCs in IMRT
and VMAT plans

The dosimetric indices and their improvement ratios ac-
cording to the MLC leaf width (2.5 mm vs. 5 mm) and
modulated techniques (IMRT vs. VMAT) are summa-
rized in Table 2. The Dg,s5.. of the spinal cord was a
median of 10.00 Gy (range: 9.97-10.02 Gy), which was
not statistically different in relation to the MLC type,
planning technique (IMRT vs. VMAT), types of target
shapes, and spine level (p = 0.087, 0.087, 0.994, and 0.471,
respectively).

The mean TVC was 88.10% with the 5-mm MLC and
91.83% with the 2.5-mm MLC. When using the 2.5-mm
MLC instead of the 5-mm MLC, TVC was improved by
5.68%, which was statistically significant (p =0.003). In
IMRT, the mean TVC was 83.55% with the 5-mm MLC
and 88.40% with the 2.5-mm MLC, and the improve-
ment ratio was 8.38%. In VMAT, the mean TVC was
92.65% with the 5-mm MLC and 95.26% with the 2.5-mm
MLC, and the improvement ratio was 2.97%. TVC was
higher in VMAT than in IMRT, and the improvement ra-
tio was higher in IMRT (Figure 3).
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The mean CI was 2.06 with the 5-mm MLC and 1.94
with the 2.5-mm MLGC; this difference is not statistically
significant (p = 0.110). In the case of IMRT, the mean CI
was 2.24 with the 5-mm and 2.24 with the 2.5-mm
MLC. In the case of VMAT, the mean CI was 1.88 with
the 5-mm and 1.85 with the 2.5-mm MLC. There is no
statistically significant difference between the MLC leaf
widths (p =0.042 and 0.689, respectively). CI was larger
in VMAT than in IMRT.

The mean GI was 10.89 with the 5-mm MLC and 9.99
with the 2.5-mm MLC. Comparing the 2.5-mm with the
5-mm MLC, GI was improved by 6.25%, which is statis-
tically significant (p = 0.023). In IMRT, the mean CI was
10.98 and 9.30 with the 5-mm and the 2.5-mm MLC, re-
spectively, and the improvement ratio was 13.79%, which
is statistically significant (p = 0.003). In VMAT, the mean
GI was 10.80 and 10.68 with the 5-mm and the 2.5-mm
MLC, respectively, and the difference is not statistically
significant (p = 0.871).

Comparison of V3qq, between IMRT and VMAT plans
according to the MLC leaf widths and the types of target
To evaluate the low dose distribution of the IMRT and
VMAT plans, the Vg values are compared according
to the MLC leaf widths and the types of target (Table 3).
The mean Vs, was 460.80 cm® and 466.44 cm?® in the
IMRT and VMAT plans, respectively; the difference is
not statistically significant (p = 1.000).

In the 2.5-mm MLC, the mean Vjgy was 455.84 cm®
and 466.10 cm® in the IMRT and VMAT plans, respect-
ively. In the 5.0-mm MLC, the mean Vg, was 465.76 cm®
and 466.78 cm® in the IMRT and VMAT plans, respec-
tively. In both types of MLC, there was no statistically sig-
nificant difference (p=0.875 for 2.5-mm and 0.875 for
5.0-mm MLC).

According to the types of target, the mean Vo for
IMRT and VMAT were, respectively, 315.33 ¢m® and
380.36 cm® for type 1, 439.84 cm® and 470.90 cm? for type
2, 551.47 cm® and 514.65 cm? for type 3, and 536.55 cm®

Table 2 Dosimetric indices and their improvement ratios according to the MLC leaf width (2.5 mm vs. 5 mm) and

intensity-modulated techniques (IMRT vs. VMAT)

2.5-mm MLC 5-mm MLC Improvement ratio (%) p value

Overall TVC 91.83+11.56 88.10£15.23 5.68+10.07 0.003
@ 1.94+053 206 +0.81 —242+1225 0.110

Gl 9.99+2.13 10.89+ 2.81 —625+ 1884 0.023

IMRT TVC 8840+ 1562 83.55+20.24 838+ 13.66 0.042
c 203+067 224+1.06 —4.86 £ 13.00 0.119

Gl 9.30£2.06 1098 +3.34 —13.79+£738 0.003

VMAT TVC 9526 +3.12 92.65+548 297+3.10 0.005
c 1.85£0.34 1.88£041 0.02+1148 0.689

Gl 10.68 £2.04 10.80+ 230 127+2374 0.871
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Figure 3 Comparison of TVC between 2.5-mm and 5-mm MLC
in IMRT and VMAT plans.

Overall

and 499.86 cm? for type 4. For all target types, there was
no statistically significant difference (p=0.075, 0.173,
0.249, and 0.249, respectively).

Improvement ratio according to the types of target
The improvement ratios (the 2.5-mm MLC compared to
the 5-mm MLC) of the dosimetric indices according to
the types of target shapes in IMRT and VMAT are sum-
marized in Table 4.

The mean improvement ratio of TVC was 0.42% in
type 1, 2.39% in type 2, 2.74% in type 3, and 17.16% in
type 4. There was a statistically significant difference in

Table 3 Comparison of V3q¢, between IMRT and VMAT
plans according to the MLC leaf width and the types
of target

IMRT (cm®  VMAT (cm®)  p value
MLC 2.5-mm MLC 45584 +£31645 466.10+ 28869 0.875
50-mm MLC 46576 +31502 466.78+27648 0875
Target shapes Type 1 31533+216.79 38036+£25799 0075
Type 2 439.84+28724 47090+29022 0.173
Type 3 55147 +368.23 51465+30596 0249
Type 4 536.55+36191 49986+ 29627 0249
Overall 460.80 +308.84 46644 +273.95  1.000
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type 4 compared with other types (1, 2, and 3) (p = 0.006),
and the difference in the improvement ratio was 14.42-
16.74%. In IMRT, the improvement ratios of Type 1, 2, 3,
and 4 were -0.16%, 3.62%, 2.10%, and 27.99%, respect-
ively. In VMAT, the improvement ratios for types 1, 2, 3,
and 4 were 1.01%, 1.15%, 3.37%, and 6.34%, respectively
(Figure 4). A statistical difference was observed only in
IMRT (p = 0.007).

The mean improvement ratio of CI was —0.41% in type
1, -5.58% in type 2, 3.77% in type 3, and -7.76% in type
4. However, there was no statistically significant dif-
ference between different target shapes (p =0.396), and
there was no statistically significant difference between
IMRT and VMAT (p = 0.231 and 0.883, respectively).

The mean improvement ratio of GI was 8.89% in type
1, -10.61% in type 2, -7.85% in type 3, and —15.46% in
type 4. However, there was no statistically significant dif-
ference (p=0.122). In IMRT, the mean improvement
ratios of types 1, 2, 3, and 4 were —-8.85%, —14.30%,
-9.37%, and -22.62%, respectively, and a statistically sig-
nificant difference was observed (p =0.047). However,
there was no statistically significant difference in VMAT
(p =0.208).

Discussion

Owing to developments in MLCs in addition to improve-
ments in radiotherapy planning techniques and delivery
methods, radiosurgery has been widely used, and many
studies have reported its dosimetric superiority and cli-
nical effectiveness [3,5-8]. Jin et al. reported that when a
dose of 18 Gy was prescribed, and 10% of the adjacent
spinal cord volume was irradiated below 10 Gy, 85% of
patients safely experienced pain relief and neurological
improvement [4].

The micro-MLC commonly used for radiosurgery is
defined as having a leaf width of less than 5 mm. Galal
et al. tested the dosimetric and mechanical characteris-
tics of a 3-mm micro-MLC and concluded that it was
suitable for use in radiosurgery [31]. Many investigators
have studied the effects of MLC leaf width in various
planning techniques (3D-CRT and IMRT). Monk et al.
compared 3-mm and 5-mm MLC in radiosurgery with
the 3D-CRT technique for 14 brain lesions [13]. CI was
better with the 3-mm MLC, but there was no statisti-
cally significant improvement in the index for organs at
risk (Dpax to the critical structures). Kubo et al. found,
while studying the difference of MLC size in radiosur-
gery with 3D-CRT for prostate cancer, that when a
10-mm MLC was replaced with a 3-mm MLC, the dose
to the bladder and rectum was lowered, but CI was not
improved [17]. Wu et al. compared IMRT plans using
5-mm and 2.5-mm MLCs for 15 cases of brain, liver,
and spine lesions. In the brain lesion, the indices for
target volume such as Dy, Diae and the homogeneity



Chae et al. Radiation Oncology 2014, 9:72
http://www.ro-journal.com/content/9/1/72

Page 7 of 10

Table 4 Improvement ratios of the dosimetric indices according to the types of target in IMRT and VMAT

Improvement ratio (%)

Type 1 Type 2 Type 3 Type 4 p value

Overall T™vVC 042+ 101 239+524 274+280 17.16 £ 14.68 0.006
@ -041+£934 -558 +6.61 3.77 £9.00 —746+19.63 0.396

Gl 8.89 +33.04 -10.61+440 —7.85+531 —1546+£9.52 0.122

IMRT VG -0.16+036 362+797 210+232 2799+1335 0.007
@ —-4.97 +£8.94 -6.83+4.75 716 £991 -14.81+£1892 0.231

Gl —885+459 -1430+243 —937+568 —2262+757 0.047

VMAT TvC 101£1.18 1.15+0.78 3374361 6.34+3.11 0.094
@ 414+872 -433+9.06 -039+835 -0.11+21.06 0.883

Gl 2664 +41.98 —692+132 —633+559 -829+392 0.208

index (HI) were improved, and in the spine lesion, the
indices for organs at risk such as D;, Dyp, and the mean
dose to the cord were improved by 14%, 19%, and 29%,
respectively [16]. Wang et al. compared IMRT plans using
10-mm and 4-mm MLCs for 10 patients with prostate
cancer, and both the indices for target volume (Dax.1c0r
Dy, and HI), and dose to the rectum and bladder were
improved significantly [32,33]. According to Jin et al. and
Dvorack et al, CI and TVC were improved significantly
when the MLC leaf width was changed from 10 mm to

Improvement ratio of TVC
50

o Typel
o Type 2
& Type 3
x Type 4

40

71 SSS E—

7 S E—

-10 -+
Overall IMRT VMAT

Figure 4 Improvement ratio of TVC according to the types
of target.

3 mm in the IMRT plans [14,34]. However, according to
Burmeister et al, when they compared a 10-mm MLC
with a 5-mm MLC in the IMRT plans, there were no sig-
nificant differences in Dy, Dmax and Dpean. The treat-
ment efficacy was lower for the 5-mm MLC because of an
increase in the whole body dose, the treatment time, and
the monitor unit [35].

These effects of the MLC leaf width varied according
to the radiotherapy technique used. The benefits of a
small MLC were more prominent in the 3D-CRT com-
pared to the IMRT technique [14,34,36]. Tanyi et al. ana-
lyzed the impact of the MLC leaf width difference
(2.5 mm vs. 5 mm) on the 3D-CRT, DCAT, and IMRT
techniques for 68 cases of brain lesions. In DCAT, the
indices for target volume (CI, Dy, Dmaxw and Dipean)
and index for organs at risk (PRV100, peritumoral rind
volume receiving >100% of the prescription dose) were
improved, while in 3D-CRT, only the indices for target
volume (CI and D,,,;,) were improved. However, in IMRT,
there was no improvement in the indices for target
volume (CIL, Dy, Diaw and Dynean) and organs at risk
(PRV100) [36].

Recently, the VMAT technique was developed by com-
bining IMRT with the concept of dynamic arc therapy,
and many authors have reported results comparing sta-
tic IMRT and VMAT [2,3,24,37]. The studies of 7-field
IMRT compared with VMAT showed that 1-arc VMAT
was similar to or slightly more effective than IMRT [2,37].
Lee et al. compared 7-field IMRT and 1-arc VMAT plans
for 5 cases of spine lesions and reported that 1-arc VMAT
was better than 7-field IMRT in CI and Dy, and the dose
to the spinal cord was significantly lower in 1-arc VMAT
(p =0.04) [2]. Tsai et al. compared 7-field IMRT with
1-arc VMAT for 12 patients with prostate cancer, and
1-arc VMAT showed better result than 7-field IMRT both
in Nakamura’s CI and dose to the rectum [37]. Reports
have shown 2-arc VMAT to be superior to IMRT, but if
the number of fields is increased in IMRT, it has been re-
ported to be better than 1-arc VMAT and similar to 2-arc
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VMAT [3,24]. Roa et al. compared 7-14 fields IMRT,
1-arc VMAT, and 2-arc VMAT plan for 23 cases of brain
and body lesions, and there were no statistically significant
differences among the three groups according to the
RTOG CI, Nakamura’s CI, and HI [24]. Wu et al. re-
ported the results from comparing 8-12 fields IMRT,
1-arc VMAT, and 2-arc VMAT plans for 10 cases of spine
lesions. Paddick’s CI was only improved in 2-arc VMAT
compared to 8—12 fields IMRT, and all other comparison
indices (Dgg, Dgs, D19, Ds, D1, and Dpyean) showed no sta-
tistically significant difference [3].

The basic concept of radiation therapy planning is the
balancing of two opposing objectives: the target volume
should be irradiated with as much of the prescribed dose
as possible, and organs at risk should be spared from ra-
diation as much as possible. Therefore, there are limita-
tions to improve the dose coverage to the target volume
while sparing the organs at risk. Among previously pub-
lished studies, only a few reported that the indices for
target volume and organs at risk could be improved sim-
ultaneously [18,32]. Other authors have reported the im-
provement of only one type of index [13-15,17].

In this study, all the treatment plans were designed
to obtain the maximal target volume coverage satisfying
the dose constraint of the spinal cord (maximum 10 Gy
to 0.25 cc of spinal cord). Therefore, the irradiated dose
to 0.25 cc of spinal cord was the same in all treatment
plans. The present study was designed mainly to enable
comparison of the indices for target volume, and thus,
the comparison of the index for the spinal cord, which is
the most important organ at risk in the treatment of the
spinal lesions, was not necessary. In addition, to enhance
the quality of the IMRT and VMAT plans, 11-field IMRT
and 3-arc VMAT plans were carried out.

In this study, when the 5-mm MLC was replaced by
the 2.5-mm MLC, TVC and GI improved significantly
by 5.68% and 6.25%, respectively. With a smaller MLC
leaf width, the improvement ratios of TVC were larger
in IMRT than in VMAT (8.38% vs. 2.97%). Although the
improvement was prominent in IMRT, the values of TVC
were better in VMAT compared to IMRT. According to
previous studies, 3D-CRT and DCAT are more sensitive
to the MLC leaf width than IMRT [14,34,36]. We think
that more sophisticated radiotherapy techniques cause
higher dosimetric index values. Such techniques are less
affected by the MLC leaf width. These trends were ob-
served in our study as well.

The VMAT technique has wider low-dose regions than
IMRT [38,39]. However, some authors have reported
that VMAT does not always increase the regions of low-
dose distribution compared to IMRT [2,40,41]. Lee et al.
compared 7-field IMRT and 1-arc VMAT for spine me-
tastases [2]. When prescribing 35 Gy, the Vg, for the
remaining volume at risk was larger in IMRT than in
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VMAT (14.6% vs. 11%), which was statistically signifi-
cant (p = 0.04). According to Wolff et al, in their study
comparing VMAT and IMRT, V34, was higher in 7-field
IMRT than in 2-arc VMAT (3,414 cm® vs. 3,340 cm®)
[41]. However, in the case of 1-arc VMAT, V3qy was
3,438 cm?®, which was higher than that in 7-field IMRT. In
this study, V3o was 460.80 c¢m® in IMRT and 466.44 ¢cm?®
in VMAT, the difference of which is not statistically sig-
nificant (p = 1.000). Lee et al. reported that the health tis-
sue mean dose was larger in 18-field IMRT than in 7-field
IMRT (29.37 Gy vs. 29.11 Gy) [42]. Therefore, the regions
of low-dose distribution could differ on the basis of the
number of fields and the type of parameter.

Several studies have reported that the micro-MLC and
IMRT techniques are more effective when the target is
small or its shape is complex [14,16-18,36]. According to
the study of Kubo et al. on the effects of the MLC leaf
width difference (1.7 mm, 3 mm, and 10 mm), when tar-
get shapes became more irregular, a smaller-width MLC
leaf was more efficient [17]. Dhabaan et al. investigated
the effect of the MLC leaf width difference (2.5 mm vs.
5 mm) and reported that when the target became small
and had a complex shape, CI improved and the indices
for organs at risk such as the conformity distance index,
NTV50% (normal tissue volume >50% of prescription
dose), NTV70%, and NTV90% also improved [18]. How-
ever, these researches were limited because the target
complexities were not methodically classified.

In this study, the complexities of the target were clas-
sified into four types by using the WBB surgical staging
system. The effects of the MLC leaf width were evalu-
ated according to the type of target. Our study showed
that a smaller MLC leaf width enhanced the target co-
verage. The improvement ratio of TVC in type 4, which
was the most complex target shape, was 17.16%, and
TVC was improved by 14.42-16.74% in type 4 compared
to other types of targets. This means that as the target
became more irregular, the dosimetric advantage of the
smaller MLC increased. When a 2.5-mm MLC was used
in VMAT, TVC was improved by only 6.34% in type
4, which was not statistically significant (p =0.094).
However, in IMRT, TVC was improved by 27.99% in
Type 4, and the difference between type 4 and types
1-3 was 24.37-28.15%, which is statistically significant
(p =0.007). In addition, GI was significantly improved
in IMRT (p = 0.047).

In conclusion, a smaller MLC leaf width provided im-
proved target coverage in both IMRT and VMAT, and
its improvement was larger in IMRT than in VMAT. In
addition, a smaller MLC leaf width was more effective
for a complex-shaped target.
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