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Abstract

Innovative strategies in cancer radiotherapy are stimulated by the growing knowledge on cellular and molecular
tumor biology, tumor pathophysiology, and tumor microenvironment. In terms of tumor diagnostics and therapy
monitoring, the reliable delineation of tumor boundaries and the assessment of tumor heterogeneity are
increasingly complemented by the non-invasive characterization of functional and molecular processes, moving
preclinical and clinical imaging from solely assessing tumor morphology towards the visualization of physiological
and pathophysiological processes. Functional and molecular imaging techniques allow for the non-invasive
characterization of tissues in vivo, using different modalities, including computed tomography (CT), magnetic
resonance imaging (MRI), ultrasound, positron emission tomography (PET) and optical imaging (OI). With novel
therapeutic concepts combining optimized radiotherapy with molecularly targeted agents focusing on tumor cell
proliferation, angiogenesis, and cell death, the non-invasive assessment of tumor microcirculation and tissue water
diffusion, together with strategies for imaging the mechanisms of cellular injury and repair is of particular interest.
Characterizing the tumor microenvironment prior to and in response to irradiation will help to optimize the
outcome of radiotherapy. These novel concepts of personalized multi-modal cancer therapy require careful
pre-treatment stratification as well as a timely and efficient therapy monitoring to maximize patient benefit on an
individual basis. Functional and molecular imaging techniques are key in this regard to open novel opportunities
for exploring and understanding the underlying mechanisms with the perspective to optimize therapeutic concepts
and translate them into a personalized form of radiotherapy in the near future.
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Introduction
The effective use of radiation for cancer treatment is closely
linked to the optimal application of imaging for staging and
tumor characterization. Therefore any improvement in the
field of imaging will impact on radiation oncology per se. In
a broader sense the term imaging may not only be used to
cover aspects of patho-anatomical imaging but may also
cover all relevant aspects of additional functional
visualization. The growing knowledge on the pathophysi-
ology of cancer and the associated paradigm shift in thera-
peutic concepts are moving preclinical and clinical imaging
from exclusively assessing tumor morphology towards the
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visualization of physiological and pathophysiological pro-
cesses on a molecular level. Functional and molecular im-
aging allows for the non-invasive characterization of tissues
in vivo, and comprises techniques, such as computed tom-
ography (CT), magnetic resonance imaging (MRI), ultra-
sound, positron emission tomography (PET) and optical
imaging (OI). These novel imaging techniques have the po-
tential for the visualization of functional tumor properties
and the quantification of molecular pathways regulating the
hallmarks of cancer [1]. As such, signaling pathways or-
chestrating proliferation, survival, angiogenesis, invasive-
ness, metastasis, and different types of cell death can be
visualized either directly or indirectly via surrogate markers
[2]. Imaging the mechanisms of cellular injury, repair, and
cell death is of particular interest for characterizing the
tumor microenvironment prior to and in response to
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irradiation, and hence for optimizing the outcome of radio-
therapy (RT) [3].
RT is an established, highly effective cancer treatment

option applied for definite, curative treatment as well as
for palliative care. Together with surgery and/or chemo-
therapy it is an integral part of multimodality ap-
proaches. Novel therapeutic concepts include optimized
radiotherapy in combination with molecularly targeted
agents focusing on tumor cell proliferation, angiogenesis,
and cell death [4]. Importantly, these concepts require
predictive biomarkers in order to stratify tumors for the
appropriate therapy according to their individual mo-
lecular profile as well as biomarkers for monitoring the
therapeutic outcome on a non-invasive and serial basis
in vivo. E.g. with regard to tumor heterogeneity, the
non-invasive evaluation of cellular tumor properties,
such as proliferation, using molecular imaging methods
could be of great interest for radiotherapy planning, for
the identification of highly proliferative tumor areas.
Functional and molecular imaging techniques may be
key in this regard, since they open novel and exciting
opportunities for exploring the molecular mechanisms
in radiation biology with the possibility to optimize
therapeutic concepts and translate them into a personal-
ized form of radiotherapy in future.

Imaging modalities
Computed Tomography (CT)
CT is one of the leading imaging modalities in medical im-
aging and standard-of-care in RT planning. Advantages in-
clude short examination times allowing for whole body
imaging within seconds, broad availability of the technique
as well as low costs. Additionally, CT offers high spatial
resolution at the submillimeter level. In small animal im-
aging, morphologic micro CT has shown significant poten-
tial with benefits, including high throughput and superior
resolution. Winkelmann and colleagues investigated micro
CT in a bone metastasis model of prostate cancer in mice
and found that bone micro CT was able to non-invasively
follow the onset and progression of bone metastatic lesions
as small as 300 μm in diameter [5]. Although radiation dose
per micro CT scan approached 7–9 cGy, with six to nine
micro CT examinations per mouse over a 7-week period,
the applied radiation dose did not induce tumor stasis.
However, the radiation dose applied by diagnostic micro
CT has to be taken into account, particularly, when investi-
gating micro CT for RT planning in small animal tumor
models. A study by Boll and colleagues [6] investigated a
dedicated alkaline earth metal-based nanoparticulate con-
trast agent for micro CT imaging of liver metastases in a
colon carcinoma metastasis model in mice and reported
that liver metastases as small as 300 μm were detectable
after a single injection. The authors concluded that the in-
vestigated nanoparticulate contrast agent is suitable to
compensate for the limited soft tissue contrast of unen-
hanced micro CT and allows for high resolution and high
soft tissue contrast imaging of tumors in small animal
models. Therefore, micro CT enhanced with dedicated
contrast media may be of particular interest for the delinea-
tion and non-invasive characterization of tumors before
and during radiotherapy in the preclinical setting.
Recent studies also support the value of perfusion CT as

a functional imaging method in oncology [7]. Perfusion im-
aging techniques based on CT, MRI and ultrasound have
been applied for the non-invasive quantification of func-
tional parameters of tissue microcirculation [8-11]. It has
also been shown that dynamic contrast-enhanced CT
(DCE-CT) allows for the assessment of pathologically in-
creased tissue perfusion, blood volume and permeability
[12], reflecting typical features of angiogenically active tis-
sues, such as tumors. Surrogate parameters of tumor
microcirculation assessed by DCE-CT have the potential to
predict response to chemotherapy or irradiation in various
cancers, e.g. cancers of the head and neck, lung, and rec-
tum [13-15]. In anti-angiogenic tumor therapy, DCE-CT
has shown its applicability for early assessment of the thera-
peutic effect on tumor vascularization, identifying treat-
ment responders from non-responders, and optimizing
personalized molecular therapies on an individualized pa-
tient basis.
Dual-energy CT (DECT) offers high soft tissue con-

trast and a clear differentiation between soft tissue, iod-
ine contrast and bone. Dual source DECT can provide
iodine maps which reflect iodine content in a tissue of
interest and which have been demonstrated to show
good correspondence to perfusion images in the lung
and heart [16,17]. In an experimental study of a VX2-
rabbit model of liver cancer Zhang and colleagues re-
ported that DECT iodine maps correlated well with mul-
tiparametric perfusion CT measurements for monitoring
tumor angiogenesis with a significantly lower effective
radiation dose. It was concluded that DECT might have
the potential for serially monitoring angiogenesis in solid
tumors with a significant reduction in radiation dose
compared to perfusion CT techniques [18]. This tech-
nique may be of particular interest for serially monitor-
ing tumor heterogeneity and angiogenesis in the planning
and monitoring of RT combined with anti-angiogenic
agents.

Magnetic Resonance Imaging (MRI)
Based on strong magnetic fields (clinically between 1.5 and
3 Tesla, human research scanners up to 7 Tesla) MRI is
able to provide superior soft tissue contrast and high spatial
resolution without the application of ionizing radiation. Be-
sides its morphologic capabilities useful for clinical staging
and RT planning purposes [19,20], MRI is increasingly de-
veloped for functional and molecular imaging methods,
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among them perfusion and diffusion imaging as well as MR
spectroscopy and molecular MRI. Perfusion MRI can be
applied to quantify functional parameters of tissue micro-
circulation, which have been shown to reflect tissue proper-
ties such as vitality, angiogenesis and proliferation [21].
Novel imaging methods such as 23Natrium MRI have been
proposed as a potential imaging biomarker for the assess-
ment of tumor viability and the evaluation of therapy re-
sponse in cancer patients [22].

Magnetic Resonance Proton Spectroscopy (MRS)
MR spectroscopy uses selective radiofrequency pulses
for the investigation of the molecular composition of tis-
sues [23,24]. The Fourier transformation of the acquired
signal generates a defined spectrum allowing for the dis-
crimination of different metabolites in the investigated
tissue, which may be pathognomonic for certain under-
lying pathologies. Metabolites detected in tumor tissues
include choline-containing compounds, creatine, glu-
tamate, lactate, N-acetyl aspartate (NAA), myoinositol
(mI) and taurine [25]. The concentration of each of
these metabolites can be mapped on spectroscopic im-
ages with a voxel size of 0.7-1 cm3. NAA is predomin-
antly a neuronal marker and decreases associated with
neuronal damage and dysfunction [25]. Choline is asso-
ciated with cell membrane synthesis as well as increased
metabolic turnover and is elevated in tumors and in-
flammatory processes [25]. Creatine has been shown to
be a marker of energy metabolism in the brain [26],
while mI was confirmed as a glial cell marker and has
been used as an indicator of myelin breakdown [27]. In
glioblastomas increased levels of creatine and choline as
well as a lowered level of N-acetyl aspartate were found
[28]. Additionally, MRS can be applied for pre-operative
staging of gliomas [29] and for monitoring tissue pH
and temperature [30]. With regard to radiation therapy,
MRS may be a sensitive tool for monitoring radiation-
induced changes in tumors based on the acquired
spectrum of metabolites. MRS has also been postulated
to be of particular interest in focal dose escalation in
prostate cancer patients [31]. Significant technical chal-
lenges for clinical translation remain particularly with re-
gard to reproducibility in the quantification of chemical
metabolites in tumors as well as impeded data quality
due to local-field inhomogeneities caused by healthy tis-
sue adjacent to the tumor [26].

MR perfusion
MR perfusion represents one of the most promising
methods of functional MR imaging. Perfusion imaging is
defined as the in vivo assessment and quantification of
microcirculatory parameters in different tissues, which may
allow for the characterization of an underlying pathology.
Depending on the imaging protocol and kinetic models
applied for data analysis different parameters of microcircu-
lation, such as plasma flow, extraction fraction, or relative
plasma volume, can be assessed reflecting tissue properties,
such as tissue perfusion, endothelial permeability, and tis-
sue vascularity [32], in vivo. Technically, MR perfusion im-
aging can be performed by dynamic contrast-enhanced
imaging (DCE), dynamic susceptibility contrast imaging
(DSC), and arterial spin labeling (ASL) techniques. The
most common method for perfusion imaging, however, is
dynamic contrast-enhanced imaging.
Methodologically, DCE imaging monitors signal en-

hancement before, during and after intravenous injection
of a paramagnetic contrast agent applying T1-weighted
sequences with high temporal and spatial resolution
[21]. The resulting signal-intensity vs. time curve can
be analyzed to yield different quantitative and semi-
quantitative parameters, for example maximum signal
enhancement, time-to-peak, maximum slope or area
under the curve. These semi-quantitative parameters de-
scribe important aspects of contrast media kinetics and
can be routinely assessed with high robustness. However,
physiological interpretation of these semi-quantitative
parameters is often difficult [33] and factors like acquisi-
tion time, temporal resolution, sequence parameters,
contrast media dose, and bolus velocity greatly influence
semi-quantitative parameters. As a consequence, semi-
quantitative parameters are only of limited use for
follow-up measurements and multicenter studies. As
demonstrated in Figure 1, DCE-MRI can also be applied
for the assessment of quantitative parameters of tissue
microcirculation, such as plasma flow (ml/min/100 ml),
extraction flow (ml/min/100 ml), and plasma volume
(%) [34]. These parameters are considered to be physio-
logically distinct with better suitability for longitudinal
and multicenter studies, but strongly depend on stan-
dardized imaging and analysis protocols. Depending on
the kinetic profile of the contrast medium, investigated
tissue of interest and acquisition technique a range of
kinetic models is available for the analysis of the kinetic
data, e.g. the Patlak or the Tofts model [35]. The best
model to fit the data can be evaluated using the Akaike’s
information criterion, which can be applied to support
model selection for the mathematical description of
tracer kinetics [36]. Clinically, MR perfusion imaging has
great potential as a functional imaging method in oncol-
ogy for the assessment of tumor vitality, angiogenesis,
and tumor heterogeneity. In e.g. prostate cancer, it can
be used after radical prostatectomy to detect local recur-
rence without an endorectal coil [37], for therapy re-
sponse imaging [38] as well as for the determination of
extracapsular extension [39]. However, standardization
of acquisition protocols and data analysis remain major
obstacles towards broader establishment of the tech-
nique in clinical routine [21].



Figure 1 Representative axial T1 weighted TWIST image of an athymic rat bearing a subcutaneous colon carcinoma xenograft over the
left flank. (a) Representative axial T1 weighted TWIST image of an athymic rat bearing a subcutaneous colon carcinoma xenograft over the left
flank with the arterial input function (AIF) measured in the inferior vena cava as well as the signal enhancement curve over the tumor. (b)
Representative quantitative parameter maps depicting different parameters of tumor microcirculation (from top to bottom): plasma volume (%),
plasma flow (ml/100 ml/min), plasma mean transit time (s), permeability surface area product (ml/100 ml/min).
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MR diffusion
MR diffusion imaging is another major technique of func-
tional MR imaging and is already routinely applied in neu-
roradiologic imaging protocols. In MR diffusion imaging,
gradient pulses generate a spatially varying magnetic field
with resulting phase differences of the MR signal, which are
caused by the random motion of water molecules in the tis-
sue (Brownian motion). Diagnostic applications of MR dif-
fusion imaging include ischemia [40], tumor diagnosis and
characterization [41], multiple sclerosis [42], therapy re-
sponse assessment [38] as well as fiber tracking using diffu-
sion tensor imaging (DTI). Recent studies have also
investigated the potential of diffusion imaging for therapy
monitoring [43] and the assessment of biomarkers in on-
cology with promising results [41]. In this context, Somford
and colleagues successfully investigated DWI for the identi-
fication of high-grade prostate carcinoma in patients with a
Gleason score ≥ 3 + 3 = 6 after TRUS-guided biopsy and
concluded that DWI is able to predict the presence of high-
grade tumor with significant relevance for subsequent treat-
ment decisions. In a study of 73 patients with prostate
cancer, Ueno et al. found that diffusion-weighted MRI with
ultra high b-values (b = 2000 s/mm) is superior compared
to the use of high b-values (b = 1000 s/mm) for prostate
cancer detection, validated by histopathology following rad-
ical prostatectomy [44]. These ultra-high b-values may be
assessable by computed DW MRI, as shown in a study by
Blackledge and co-workers, who investigated DW MR im-
aging in 10 oncologic patients with b values of 0 and
900 sec/mm, subsequently generating images with com-
puted b values of 1500 and 2000 sec/mm. They found that
images with a computed b value of 2000 sec/mm resulted
in higher overall diagnostic sensitivity and specificity com-
pared to images with an acquired b value of 900 sec/mm
[45]. A novel application of MR diffusion is intravoxel inco-
herent motion (IVIM) imaging, which allows to derive
quantitative parameters that reflect tissue microcapillary
perfusion and tissue diffusivity [46]. A bi-exponential model
is fitted to diffusion-weighted data, to quantify the mea-
sured signal attenuation as a function of diffusion (b-value).
Perfusion information is extracted from the initial signal at-
tenuation at low b-values between 0 and ca. 150 s/mm3

[46]. Figure 2 shows a representative example of a subcuta-
neous tumor xenograft of head and neck squamous cell
carcinoma in rats imaged by diffusion-weighted MRI with
voxel-wise analysis using the bi-exponential IVIM model.
Several recent studies have also discussed a possibly

enhanced diagnostic value of multiparametric MRI
combining morphologic and functional information
from perfusion and diffusion parameters for the non-
invasive characterization and differentiation of tumors
[47]. The recently published guidelines of the European
Society of Urogenital Radiology (ESUR) describe the
application of multiparametric MRI for the detection
and staging of prostate cancer, a separate protocol
for node and bone imaging as well as a standardized
reporting system (PI-RADS), analogue to breast im-
aging [48].



Figure 2 Representative morphological and diffusion-weighted images of an athymic rat bearing a subcutaneous HNSCC (head and
neck squamous cell carcinoma) over the left lateral flank. (I.) T1-weighted flash 3D morphological image of an athymic rat bearing a subcuta-
neous HNSCC (head and neck squamous cell carcinoma) over the left lateral flank for anatomical correlation (white arrow). (II.) Example of a
voxel-wise analysis of diffusion weighted images using the bi-exponential IVIM-model. Initial T2-weighted image is shown in (a), (b)-(c) depict the
calculated parameter maps for tissue diffusivity D (b), perfusion fraction f (c) and pseudo diffusivity D*(d). Reduced values for f towards the center
of the tumor indicate a local decrease in perfusion.
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Molecular MRI (mMRI)
mMRI applies targeted, gadolinium- or iron-based con-
trast agents of different designs, which allow for the ded-
icated depiction of molecular processes in vivo using
antibodies, peptides or peptidomimetics [49,50]. Based
on Gadolinium (Gd) or iron, these contrast agents cause
a shortening of the T1- (Gd) or the T2/T2* time (iron)
and lead to a change in tissue contrast. To achieve
highly specific binding properties, Gd-chelates or nano-
particles are conjugated to antibodies, peptides or pepti-
domimetics for the dedicated in vivo visualization of
molecular processes [50]. Serres and co-workers devel-
oped a targeted MRI contrast agent based on iron oxides
that enables imaging of endothelial vascular cell adhe-
sion molecule-1 (VCAM-1), which is known to be up-
regulated on vessels of cerebral metastases [51]. They
investigated whether MRI enhanced with the targeted
anti-VCAM-1 microparticles of iron oxide (anti-VCAM-
1 MPIO) would be able to depict up-regulated VCAM-1
in a model of human breast carcinoma cerebral metasta-
sis in mice and if early detection of these metastases
would be feasible. The results indicated that by use of
the VCAM-1 targeted MRI contrast agent, it is possible
to detect brain metastases substantially earlier than with
the established gadolinium-based small molecular con-
trast media and concluded that this approach represents
a highly sensitive method for the early detection of brain
metastases with the potential for clinical translation [51].
Recently, enzymatic reporter systems for the non-
invasive investigation of gene expression patterns detect-
able by MRI have been investigated combining the
relatively high spatial and temporal resolution of MRI
with the ability of each genetically-expressed enzyme to
generate many MRI-detectable product molecules [52].
Currently, most of these molecular MR contrast agents
are experimental and not approved for human use.
Particularly concerns of potential immunogenicity and
incomplete bio-elimination of targeted MR contrast
agents hamper clinical translation.

Hyperpolarized MRS
Compared to the currently established proton-based MR
imaging, other nuclei like 3He, 129Xe or 13C have lower
occurrence in the human body. If these alternative nu-
clei were used for the generation of the radiofrequency
signal in MRI, the resulting signal-to-noise ratio (SNR)
would be quite low. By means of hyperpolarization, how-
ever, it is possible to excite specific nuclei, thereby po-
tentiating their MR signal to achieve a better SNR. 3He
und 129Xe can be polarized by optical pumping, while
13C can be polarized using parahydrogen and dynamic
polarization [53]. Different studies have investigated 13C
in MR angiography- und perfusion studies as well as
129Xe for lung imaging [54,55]. Experimental, hyperpo-
larized MR contrast agents such as 13C-urea do not alter
relaxation time, as established Gd- or iron based MR
contrast media, but resemble in their function radio-
active tracers, with the hyperpolarized nuclei represent-
ing the basis for the MR signal.
To date, 13C pyruvate has been the most widely used

hyperpolarized substrate for MRS, which has also been
applied for tumor response monitoring [56], and was the
first to be used in a clinical trial of the technique [57]. In
a study investigating the effects of the mTOR inhibitor
everolimus on a highly invasive orthotopic glioblastoma
model in rats. Chaumeil and colleagues demonstrated
that hyperpolarized 13C MRS can be used on a clinical
MR system to monitor early metabolic response by
means of measurement of the HP lactate-to-pyruvate ra-
tios [58]. Similarly, Day et al. showed the applicability of
hyperpolarized 13C pyruvate MRS for the detection of
treatment response 72 h following a whole brain
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irradiation with 15Gy in a rat glioma model [59].
Golman and colleagues investigated 13C pyruvate in P22 tu-
mors in rats for the non-invasive imaging of the
anaerobic glycolysis of the injected pyruvate to alanine
and lactate, analogue to imaging of aerobic glycolysis
with 18 F-FDG-PET [60]. Further perspectives of hyper-
polarized MRI were discussed in a paper of Mansson
et al. who were able to show that the signal of 13C
nuclei varies depending on the hosting molecule, which
could allow for refined discrimination of different 13C-
containing molecules. This could be an advantage over
radionuclide-based imaging modalities such as PET and
SPECT [61]. Main problems of the still experimental
hyperpolarization MRI include the very high costs as
well as the rapid decline of the hyperpolarization, which
allow only for a very short interval between application
and imaging [62].

Ultrasound
In recent years, ultrasound has undergone significant
technological advancement with an evolution from a
simple morphology-based gray-scale image to a multi-
parametric high-resolution real-time imaging system.
Major developments include the introduction of func-
tional imaging options including sophisticated Doppler
ultrasound, contrast-enhanced ultrasound (CEUS), and
elastography for the non-invasive characterization of tis-
sues with significantly improved spatial and temporal
resolution. The development of gas-filled blood-pool
microbubble contrast agents has significantly enhanced
clinical and pre-clinical research applications with par-
ticular regard to the in vivo characterization of tissue
microcirculation in a semi-quantitative and quantita-
tive manner [63]. Novel targeted microbubble contrast
agents available for research purposes open the door for
a molecular evaluation of tissues, e.g. by selectively bind-
ing to vascular endothelial growth factor receptor
(VEGFR-2) [64-68] and a possible theranostics applica-
tion linked to high intensity focused ultrasound (HIFU)
which may be used in recurrent prostate cancer [69] and
the microbubble-assisted delivery of drugs and genes
[70].
Clinically, in recent years image-guided radiotherapy has

been a major issue in research and development for (mage-
guided radiotherapy (IGRT) and may be regarded as
standard-of-care, especially in high-precision radiotherapy.
One newly developed system is based on ultrasound – the
Clarity 3D™ ultrasound system (Elekta, Stockholm, Sweden)
is designed to track exemplarily the prostatic gland and ad-
jacent organs-at-risk in order to minimize setup errors
caused by organ motion, displacements and different filling
states [71]. Furthermore, ultrasound has great potential to
be established as a sensor for intrafractional movement as
the tumor or organ motion can be tracked online as
compared to a static cone beam CT (pre or post application
of the individual fraction), e.g. in liver cancer/metastases or
prostate cancer [72]. This in turn allows for an early detec-
tion of significant deviations and could in principle be used
for real tumor tracking during irradiation.

Contrast-enhanced sonography (CEUS)
In CEUS, gas-filled microbubbles are injected intraven-
ously, thereby creating a multitude of small interfaces
with high echogenicity. After destruction, the gas (e.g.
SF6) is eliminated over the lungs within minutes and
phospholipid membranes will be endogenously metabo-
lized. The diameter of most microbubbles ranges be-
tween 2–10 μm, quite similar to the diameter of
erythrocytes. Contrary to conventional small molecular
CT- and MRI- contrast media, the microbubbles do not
extravasate into the interstitial space, remain intravascu-
lar and therefore belong to the class of blood pool con-
trast media [73,74]. Microbubbles oscillate and vibrate
resulting in a continuous improvement of gray scale
contrast. With the development of high-frequency linear
ultrasound transducers (>20 MHz) ever-smaller struc-
tures can be examined by CEUS with superior temporal
and spatial resolution (Figure 3).
For the most part CEUS has been applied for investi-

gations of tumors in parenchymatous organs and in
pathologies of the vascular system [75-83], where CEUS
can be applied as a functional imaging method for the
assessment of tissue microcirculation in healthy and ma-
lignant tissues. CEUS perfusion imaging may be particu-
larly attractive for monitoring novel, molecular therapies
in oncology mainly targeting tumor angiogenesis [84].
Paprottka and co-workers showed in an experimental
study that CEUS allows for superior assessment of
tumor perfusion compared to color-coded duplex ultra-
sound and power Doppler [84]. Other preclinical studies
demonstrated that parameters of tumor microcirculation
assessed by CEUS may be applicable as imaging bio-
markers of tumor angiogenic activity and may have the
potential to be used as non-invasive biomarkers of
tumor responses under anti-angiogenic therapy (Figure 4)
[85,86]. Radiotherapeutic applications of CEUS include
treatment guidance in prostate brachytherapy planning
[87] and it has a potential role in monitoring of liver me-
tastases after stereotactic radiosurgery [88].
Apart from non-targeted, blood-pool ultrasound contrast

media, targeted microbubbles have been developed as a
molecular imaging technique by attaching specific ligands
to the coating of gas-filled microbubbles. These tar-
geted microbubbles can be applied for the non-invasive
characterization of molecular tissue properties in vivo. As
ultrasound microbubble contrast media remains intra-
vascularly after intravenous injection, molecular targets
have to be located on the luminal surface of vascular



Figure 3 Contrast-enhanced ultrasound (CEUS) with intravascular SF6-filled microbubbles: online quantification of hypervascular tumor
tissue (turquoise ROI), tumor necrosis (yellow ROI) and feeding vessels (red ROI).
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endothelium. Targeted microbubbles have been conjugated
to ligands specific for highly expressed molecular markers
of tumor angiogenesis such as VEGFR-2 and αvβ3-integrin
[64,65,68,70] to allow for the assessment of tumor angio-
genic activity and for monitoring anti-angiogenic therapies
in preclinical tumor models [90-92]. Together with poten-
tial application in theranostics multiparametric, contrast-
enhanced ultrasound has developed to a high-potential tool
for research and patient care combining high sensitivity,
real-time morphological imaging, with functional and mo-
lecular imaging options with a lack of ionizing radiation
and at comparably low costs [93].
Figure 4 Offline absolute quantification of perfusion of the whole tum
method [89]. ROIs can be drawn in different parameter maps, allowing a s
video sequences.
Elastography
Tissue elastography complements the conventional B-
image, color Doppler, and CEUS in the assessment of
pathologies [94,95]. Ultrasound elastography bridges the
gap between modern state-of-the-art ultrasound and one
of the most ancient examination techniques in medicine –
palpation. Tissue elasticity is frequently altered in the
presence of inflammation or malignancy and can be
detected by compression elastography on the basis of
compression and release [96]. Malignancies frequently
exhibit higher tissue stiffness due to high rates of cell
proliferation and densely packed cells. Thus, they appear
or and hypervascular tumor parts using the flash replenishment
impler and more standardized analysis of the digitally stored



Figure 6 Gray-scale ultrasound for the evaluation of tumor
heterogeneity. The extent of central tumor necrosis is significantly
underestimated by gray-scale ultrasound compared to elastography.
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less elastic in ultrasound elastography. By means of the
combined autocorrelation method, elastic tissue properties
of different tissues can be assessed (Figure 5). Application
of light pressure on the tissue with the ultrasound probe
and the subsequent release aid to assess relative stiffness of
the investigated tissue and differences can be visualized, ei-
ther in gray scale or color coded, parallel, or merged with a
conventional b-image (Figure 6). Several studies investi-
gated ultrasound elastography in mammography as well as
in liver and prostate imaging and found that elastic tissue
properties contribute valuable information, which is not
discriminable in conventional ultrasound [97-101]. In an
animal study elastography was applied to monitor ethanol
injections for the treatment of liver tumors, and the authors
concluded that elastography added significant information
compared to the conventional b-image [102,103]. After ad-
juvant radiotherapy of breast cancer, elastography can be
used to quantify the extent of lymph edema [104].

Optical imaging
Optical imaging employs light for the assessment of
functional and molecular tissue information. This light
can either originate from administered, elicited fluores-
cent tracers or – as bioluminescence – from genetically
modified cells [105]. Upon excitation with externally ap-
plied light of the proper wavelength, fluorescent tracers
emit light with a higher wavelength that can be detected
by a CCD (charged-coupled device) camera. Different
forms of tracers have been described. For visualization
of blood flow, unspecific, blood-flow distributing agents
can be used, much resembling established contrast
agents for x-ray computed tomography or magnetic res-
onance tomography [106]. For visualization of molecular
processes, targeted probes have been designed, typically
consisting of a fluorescent dye (e.g. Cy 5.5) and a
Figure 5 Ultrasound elastography (blue: hard tissue, green: soft
tissue): Central tumor necrosis is encoded in green. Due to the
immediate vicinity of subcutaneous tissues to the transducer,
subcutaneous tumor parts under compression are also coded in
green. Further developments investigate elastography without
manual compression to minimize these artifacts.
binding moiety – e.g. an antibody or smaller peptide
with binding specificity for the target of interest. To
minimize tissue absorption and scattering of the emitted
light, the optimal spectral range for in vivo applications
has been defined as the near-infrared optical window
(wavelengths 650–900 nm), with lowest tissue absorb-
ance for hemoglobin, water and lipids. In biolumines-
cence, an in vivo enzymatic reaction is responsible for
the emission of light. The most common enzymatic tool
is the firefly luciferase system, where D-luciferine is oxi-
dized using ATP (adenosine-tri-phosphate) and oxygen
in a two-step mechanism. The resulting emission of
yellow-green light at 575 nm can be employed to
visualize luciferase-expressing cells in vivo following
intravascular injection of D-luciferine, the substrate of
firefly luciferase, or after providing D-luciferine in the
drinking water. Advantages of bioluminescence imaging
include (1) an exquisite imaging sensitivity due to a high
signal-to-noise ratio caused by the lack of biolumines-
cence background signal (in mammals) and (2) the lucif-
erase system does not require excitation light from
outside to be activated. Disadvantages include the need
for cell transfection with the luciferase reporter genes,
substrate injection (D-luciferine), and the poor spatial
resolution of bioluminescence imaging compared to
tracer-mediated fluorescence optical imaging. In recent
years, many studies have investigated the luciferase bio-
luminescence assay to visualize a wide array of molecu-
lar pathways for the non-invasive characterization of the
tumor microenvironment as useful tools in radiation
and cancer biology research.
Bioluminescence optical imaging using firefly lucifer-

ase has been applied to image an array of biological
pathways and cellular processes relevant for novel ap-
proaches in radiation and molecular cancer therapy
[107]. In a recent study, Li and colleagues developed an
imaging system for non-invasive quantification of epi-
dermal growth factor receptor (EGFR) activation in vivo
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based on the bi-fragment luciferase reconstitution sys-
tem. Epidermal growth factor and its receptor are part
of a key-signaling cascade responsible for the initiation
and growth of malignancies. Li and colleagues fused the
EGF receptor and its interacting partner proteins growth
factor receptor binding protein 2 (grb2), and Src hom-
ology 2 domain-containing protein (shc) to the amino-
terminal and the carboxyterminal fragments of the
firefly luciferase, respectively. In this system, firefly lucif-
erase is only enzymatically active when the two parts of
the protein are brought together, hence when EGFR, and
grb2 or EGFR and shc are interacting and the signaling
cascade is active. With the help of this system EGF-
induced as well as radiation-induced pathway activation
could be convincingly measured in vitro and in vivo
(Figure 7) [108]. Moreover, this system was employed to
visualize hyperthermia-induced EGFR activation in
tumor cells and the potential mechanisms involved
[109]. In an analogue study, Li and colleagues utilized
their split-luciferase system in order to quantitatively as-
sess DNA double strand breaks and their repair [110].
They fused the N- and C-terminal fragments of firefly
Figure 7 Mice implanted with EGFR-luc transfected H322 tumors ove
3x6Gy) induces consecutive Luciferase expression and thus detectabl
the right flank with EGFR-luc transfected H322 tumors. EGFR activation dur
sion and thus detectable Bioluminescence upon Luciferine injection. Chang
sult in detectable alterations of the signal. Non-treated tumors (A) do not e
Association for Cancer Research: Li et al., Noninvasive imaging and quantifi
Cancer Research, 2008, 68, 4990–7. [109].
luciferase with H2AX and MDC1, two proteins, which
at the sites of DNA double strand breaks physically
interact with each other. Hence, upon generation of
DNA double strand breaks, the two luciferase fragments
are brought together and luciferase activity can be de-
tected at the site of damage. Since DNA double strand
breaks and the mechanisms of their repair are of crucial
interest in the context of ionizing radiation, this imaging
system is of specific relevance for monitoring the effect
of radiotherapy in tumor tissue.
The study of Backer and colleagues exemplary illus-

trates strengths and drawbacks of targeted optical im-
aging with near-infrared fluorescent tracers. Human
vascular endothelial growth factor (VEGF) was labeled
with the fluorescent dye Cy5.5 (emission maximum
696 nm) for application in an in vivo tumor model [111].
The elevated contrast, observed in the tumor following
tracer administration was assigned to elevated VEGFR
expression on tumor cells and adjacent endothelia. Un-
fortunately, the question remained unanswered, how
specific this accumulation was. The authors missed to
provide data on essential parameters, including whole
r the right flank. EGFR activation during radiotherapy (B, C;
e bioluminescence upon luciferine injection. Mice implanted into
ing radiotherapy (B, C; 3x6Gy) induces consecutive Luciferase expres-
es to the EGFR activation by EGFR inhibition with e.g. Gefitinib (C) re-
xhibit a specific signal. Adapted by permission from the American
cation of epidermal growth factor receptor kinase activation in vivo.



Table 1 Novel PET tracers for research and patient care
beyond 18 F-fluor-desoxyglucose (18 F-FDG) aim at
molecular targets such as integrins and somatostatin
receptors or a sensitive for up-regulated amino acid turn-
over or cell membrane synthesis of tumor cells

Nuclide Tracer Metabolism Comment

11C

11C - Methionine Amino acid Increased amino
acid uptake and
turnover of tumor
cells

11C -Tyrosine Amino acid
11C - Leucine Amino acid

18 F

18 F - Fluoruracile Amino acid
18 F - Fluorethyltyrosine Amino acid

derivative
Longer half-life of
18 F allows for ap-
plication of tracers
in imaging centers
without cyclotron

(18 F - FET)
18 F - Fluordesoxyglucose Glucose

metabolism
(18 F – FDG)
18 F –
Fluorazomyzinarabinoside

Hypoxia

(18 F – FAZA)
18 F – Fluoromisonidazole Hypoxia

(18 F – FMISO)
18 F – Fluorthymidine Proliferation

(18 F – FLT)
18 F - Galacto-RGD αvβ3-Integrins

[18 F- Arg-Gly-Asp (RGD)
Peptide]
18 F - Choline Prostate

carcinoma
18 F - Fluoride Bone

metabolism

68Ga

68Ga-DOTATOC/DOTA-
TATE

Somatostatin
receptors
(SSR)

SSR-overexpressing
tumors
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body distribution of the tracer or an unspecific control
of equal size and distribution. Importantly, biodistribution
studies and blocking experiments are a crucial require-
ment for such imaging studies in order to convincingly
show that tracer-mediated fluorescence in fact is a reliable
measure of tracer to target binding.
Mostly due to restricted penetration depth of light and

strong scatter, clinical translation of optical imaging tech-
niques seems to be limited to lesions in or close to the skin,
lesions accessible by endoscopy (e.g. colon polyps), or intra-
operative applications. To solve some of these limitations,
current technical developments in optical imaging focus on
scanners with improved penetration depth and sensitivity,
including photoacoustic imaging systems as well as hybrid
fluorescence molecular tomography x-ray computed tom-
ography scanners (FMT-XCT) [112-114]. The application
of either or both technologies will help to provide signifi-
cant insights into the molecular mechanisms of radiation
and tumor biology in vivo. However, even state of the art
optical imaging is a valuable modality for preclinical im-
aging in small animals, allowing for the non-invasive
characterization of cells and tissues on a molecular level.
The use of highly specific tracers or reporter gene-based
bioluminescence imaging systems will help to gain a better
understanding of the molecular processes, which take place
in tumors in response to irradiation and/or targeted ther-
apy, and will finally result in a more efficient pre-
therapeutic stratification of tumors for multimodal therapy.

Positron emission tomography (PET)/single photon
emission computed tomography (SPECT)
PET is a non-invasive imaging technique that visualizes
the distribution and accumulation of positron-emitting
tracers in the whole body with high sensitivity providing
functional and molecular information on tissues. With
its high sensitivity for radiotracers even in picomolar
amounts, PET allows for excellent depiction of specific
metabolic activity, molecules and receptors in vivo.
Besides the established 18 F-fluordesoxyglucose (FDG), a
broad spectrum of PET tracers is under development
for the non-invasive imaging of cellular processes such
as angiogenesis, proliferation and hypoxia (Table 1).
DOTA-TATE has been shown to be a valuable tracer for
sensitive imaging of somatostatin-receptor expression in
neuroendocrine tumors and meningioma delineation
[115,116]. SPECT resembles PET in its application of
radioactive tracers and the detection of gamma rays for
image acquisition. However, in SPECT the gamma radi-
ation emitted by the tracer is directly measured, whereas
in PET positrons emitted by the applied tracers annihi-
late with surrounding electrons, causing two gamma
photons to be emitted in 180° directions. PET scanners
detect photon emissions coincident in time, thereby
providing more spatial information of the observed
radiation event and, thus, higher image resolution.
Different radiotracers can be applied in SPECT for
functional imaging of the brain (99mTc-(HMPAO)
hexamethylpropylene amine oxime), the myocardium
(99mTc-tetrofosmin, 99mTc-sestamibi), malignant (123I-
(MIBG) metaiodobenzylguanidine), or inflammatory
processes (99mTc or 111In- in vivo labeled leukocytes).
However, both functional molecular imaging techniques
provide only limited spatial resolution and require com-
plementary morphologic imaging for anatomic mapping
and morphologic correlation.
In morphologic imaging, particularly tomographic mo-

dalities such as CT and MRI underwent tremendous
innovation during the last 15 years currently providing ex-
cellent spatial resolution, 3D imaging and increasingly also
functional information from tissue perfusion and diffusion.
To combine morphological and functional/molecular infor-
mation in diagnostic decision making, hybrid imaging with
PET/CT has entered clinical routine in oncologic imaging
using mostly 18 F-fluordesoxyglucose (FDG) for cancer
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diagnosis, as predictive imaging biomarker [117], for moni-
toring of therapy response and radiotherapy planning
[118-120]. As a highly sensitive imaging modality based on
molecular biology, PET has the ability to assess functional
and molecular processes in benign and malignant tissues,
which are altered in the earliest stages of virtually all dis-
eases, before morphological changes occur. It compares
normal and abnormal tissues on a functional rather than
morphological level as MRI and CT. Functional and mo-
lecular imaging techniques such as 18 F-FDG-PET/CT can
be applied to define a metabolically active biological tumor
volume (BTV) for radiation therapy planning [121,122], still
limited by its lack of spatial resolution and relatively low
specificity to reliably delineate the tumor as accurately
as required by precision RT techniques like intensity-
modulated radiotherapy (IMRT). 18 F-FDG-PET/CT has
the potential to safely decrease radiotherapy volumes by
better delineation of tumor and better lymph node detec-
tion [123,124] and may be used as predictive/prognostic
marker [125,126]. It enables radiation dose escalation [127],
and experimentally permits the definition of regions in het-
erogeneous tumor at greatest risk of recurrence, thus facili-
tating the redistribution of radiation doses within the
tumor to focus on these regions – a principle which is
called dose-painting by contours (DPBC) [128]. Another
method of specific dose escalation in a PET-positive area is
dose painting by numbers (DPBN), where an inhomogen-
eous radiation dose distribution is intended on a voxel-by-
voxel base [129]. Recent developments in PET reconstruction
focusing on time-of-flight (TOF) and point spread function
(PSF) modeling bear the potential for further improvements
in diagnostic performance, as shown by Schaefferkoetter
and colleagues [130]. They investigated four different re-
construction schemes on real tumor patient images and
found that the application of TOF and PSF modeling may
help to optimize particularly the detection of small, low-
intensity, focal disease in larger patients.
However, FDG is not a tumor-specific tracer and accu-

mulation in benign lesions, such as regions of inflamma-
tion, causes false-positive results with consecutively low
specificity [131]. Therefore, novel alternative tracers with
higher specificity are under investigation (Table 1), in-
cluding radiolabeled amino acids for monitoring protein
synthesis and radiolabeled choline for monitoring cell
membrane synthesis, which may allow for a dedicated
characterization of the tumor microenvironment on a
molecular level prior to as well as during RT and espe-
cially useful in radiotherapy planning, e.g. in high-risk
prostate cancer [132]. The amino acid methionine has
been used for grading, prognostication and tumor extent
delineation for RT planning and showed promising re-
sults in the detection and delineation of viable tumors
particularly in low-grade gliomas [133]. In clinical prac-
tice however, 18 F-labeled PET molecules have revealed
advantages compared to those that are 11C-labeled due
to a longer physical half-life of 110 min vs. 20 min. In
this regard, 18 F-labeled O–(2) fluoroethyl-L-tyrosine
([18 F]-FET) is one of the most widely used amino acid
tracers [134]. Available data suggests that for RT plan-
ning the additional use of [18 F]-FET-PET to conven-
tional imaging might improve gross tumor volume
delineation [135,136]. For PET-based imaging of tumor
hypoxia, tracers such as 18 F-fluoromisonidazole (18 F-
FMISO) and 124I-iodoazomycin galactopyranoside (124I-
IAZG) were investigated by Riedl and colleagues in rats
bearing liver tumors with peritoneal metastasis by dy-
namic microPET imaging. The authors demonstrated
that 18 F-FMISO and 124I-IAZG localized the same
tumor regions to be hypoxic, however with superior
diagnostic quality of 18 F-FMISO images in the investi-
gated Morris hepatoma model due to higher count
statistics of 18 F-FMISO. Clinically, Thorwarth and col-
leagues investigated reoxygenation dynamics and its re-
lationship to local control after radiotherapy in a small
group of head-and-neck cancer patients (n = 10), based
on repeated dynamic 18 F-FMISO PET examinations.
The authors reported that a tumor control probability
model was developed based on repeated 18 F -FMISO
PET scans during RT to estimate reoxygenation time
which may be applicable for hypoxia image-guided dose
escalation in RT [137].
Recently, first hybrid MRI/PET scanners have been in-

stalled for patient care combining the excellent soft tis-
sue contrast of MRI with the options of PET in
functional and molecular imaging. Compared to CT,
MRI provides superior soft tissue contrast together with
options for perfusion, diffusion and spectroscopic im-
aging, as complementing functional parameters, without
the use of ionizing radiation [50,138]. The combination
of both imaging modalities therefore provides strong
synergies for imaging physiological and pathophysio-
logical processes in vivo following multiparametric mor-
phological, functional and molecular imaging concepts
in oncology, neurology and cardiology.
Accurate delineation of gross tumor volume is a pre-

requisite for a successful treatment of cancer with radio-
therapy. FDG-PET plays an increasingly important role
in radiotherapy that goes beyond staging and selec-
tion of patients. For some tumors, such as NSCLC,
FDG-PET has led to the safe decrease of radiotherapy
volumes, enabling radiation dose escalation and redistri-
bution of radiation doses within the tumor (tumor
heterogeneity), along with a significant role in monitor-
ing radiotherapy response. In esophageal cancer and
bronchial cancer, FDG-PET/CT has gained significant
predictive importance in multimodal treatment settings
particularly before, during and after neo-adjuvant radio-
chemotherapy and is very helpful in target volume
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delineation [139,140]. Currently, besides for staging/re-
staging purposes, PET/CT is playing a complementary
role to other modalities such as CT and MRI for target
volume delineation in radiotherapy. Standardized proto-
cols should be established to better define what role
PET and/or PET/CT scans should play in radiotherapy
planning.

Conclusions
Advances in the understanding of the pathophysiology
of cancer have triggered profound developments in mul-
timodality treatment concepts comprising surgery, radio-
therapy and molecularly targeted anti-cancer agents.
These novel concepts of personalized cancer therapy re-
quire careful pre-treatment stratification and timely and
efficient therapy monitoring to maximize patient benefit
on an individual basis. Therefore, different functional
and molecular imaging methods with corresponding bio-
markers are currently being developed and characterized
pre-clinically with the perspective of clinical translation.
Molecularly tailored adaption of MRI, CT, ultrasound,
PET/CT (−MRI) and optical imaging modalities repre-
sent promising approaches for the demands of targeted
combination therapy in radiation oncology.
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