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The effects of computed tomography image
characteristics and knot spacing on the spatial
accuracy of B-spline deformable image registra-
tion in the head and neck geometry
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Abstract

Objectives: To explore the effects of computed tomography (CT) image characteristics and B-spline knot spacing
(BKS) on the spatial accuracy of a B-spline deformable image registration (DIR) in the head-and-neck geometry.

Methods: The effect of image feature content, image contrast, noise, and BKS on the spatial accuracy of a B-spline
DIR was studied. Phantom images were created with varying feature content and varying contrast-to-noise ratio
(CNR), and deformed using a known smooth B-spline deformation. Subsequently, the deformed images were
repeatedly registered with the original images using different BKSs. The quality of the DIR was expressed as the
mean residual displacement (MRD) between the known imposed deformation and the result of the B-spline DIR.
Finally, for three patients, head-and-neck planning CT scans were deformed with a realistic deformation field
derived from a rescan CT of the same patient, resulting in a simulated deformed image and an a-priori known
deformation field. Hence, a B-spline DIR was performed between the simulated image and the planning CT at
different BKSs. Similar to the phantom cases, the DIR accuracy was evaluated by means of MRD.

Results: In total, 162 phantom registrations were performed with varying CNR and BKSs. MRD-values < 1.0 mm
were observed with a BKS between 10–20 mm for image contrast ≥ ± 250 HU and noise < ± 200 HU. Decreasing
the image feature content resulted in increased MRD-values at all BKSs. Using BKS = 15 mm for the three clinical
cases resulted in an average MRD < 1.0 mm.

Conclusions: For synthetically generated phantoms and three real CT cases the highest DIR accuracy was obtained
for a BKS between 10–20 mm. The accuracy decreased with decreasing image feature content, decreasing image contrast,
and higher noise levels. Our results indicate that DIR accuracy in clinical CT images (typical noise levels < ± 100 HU) will
not be effected by the amount of image noise.
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Background
In radiotherapy, multiple volumetric images of a patient
are often acquired to prepare and deliver a treatment
plan with high accuracy in terms of dose and position.
Nowadays, treatment planning relies on computed tom-
ography (CT) images whether or not in combination
with positron emission tomography images and mag-
netic resonance imaging (MRI). Furthermore, the course
of the treatment can be monitored using one or more of
these imaging modalities. In-room cone-beam CT (CBCT)
images are often acquired for treatment position verifi-
cation. These CBCTs may potentially be used for treat-
ment evaluation and adaptation. For head-and-neck
cancer patients, significant changes in the patient anat-
omy between the reference situation (e.g. planning CT)
and the course of treatment can gradually occur and are
mainly related to weight loss, tumor regression and reso-
lution of edema [1,2]. As the head-and-neck anatomy is
characterized by several vulnerable normal tissues, often
in the vicinity of steep dose gradients, monitoring of
these anatomical changes becomes increasingly import-
ant. Adaptive radiotherapy protocols are used to correct
for anatomic and morphologic changes during treatment,
aiming at improved local tumor control and/or a reduction
of radiation induced side effects.
Deformable image registration (DIR) algorithms pro-

vide a one-to-one spatial mapping of voxels in one
image to voxels in the other image. When an adaptive
treatment protocol is used, the role of DIR becomes
increasingly important, e.g. for contour warping and
fractional dose accumulations using the CBCTs and
rescan CTs. To approximate the actual given dose in
the patient, accurate correlations of anatomical points
and (sub)volumes between image sets acquired during
treatment are required.
Systems for DIR become more and more (commercially)

available, but are not yet widely disseminated and used
in treatment planning systems, partly due to the compu-
tational costs and the difficulty of validating the results.
Nevertheless, an increasing number of publications on
clinical applications of DIR in radiotherapy indicate the
high expectations of this technique [2-8]. In literature,
several parametric deformable transformation models have
been proposed [9-11]. Promising characteristics have been
ascribed to the basic spline model, B-splines [12].
DIR algorithms are usually governed by a set of con-

figuration parameters. Therefore, prior to application,
the following question must be answered: to what extent
do these parameters influence the accuracy of the DIR
outcome? One of the tunable configuration parameters
which determines the quality of a deformation in a B-spline
registration, is the B-spline knot spacing (BKS) [13]. A
large number of knots resolves locally sharp features,
while fewer knots allow for modeling smoother and
larger features. The quality of a deformation field from
an intensity-based DIR algorithm like the B-splines algo-
rithm also highly depends on the available local feature
content in an image. Feature content is associated with
the image properties contrast and noise, and is variable
among scans of different anatomical sites, and the used
scanner (e.g. CT or CBCT) and scanner settings.
The number of studies that have paid attention to

the effect of DIR configuration parameters and image
characteristics is limited. The effect of image noise
[14], intensity gradients (contrast and feature content)
[15], and B-spline knot placement [11,13,15] on the ac-
curacy of a deformation has been investigated previously.
Murphy et al. demonstrated that CT image noise caused
no significant loss of registration accuracy [14]. The
authors evaluated the registration quality by contour
comparisons using contour distances. Contours are gener-
ally defined at the border of anatomical structures con-
taining features with sufficient image contrast. At these
regions, intensity-based DIR algorithms generally perform
better than within more homogeneous regions. Within a
contour, however, the DIR quality cannot be evaluated
with these contour-based evaluation methods, limiting its
use for dose accumulations. The effect of image noise on
registration accuracy has been studied so far only using
contour distances. To our knowledge, no studies deter-
mined the registration accuracy on a voxel to voxel
basis. Furthermore, it would be worthwhile to study
the combination of the effect of image characteristics
(i.e. image noise, contrast, and feature content) and B-spline
knot placement on the registration accuracy. Zhong et al.
[15] previously suggested that the number of B-spline
knots for an optimal registration is affected by the in-
tensity gradients of the underlying images.
The purpose of this simulation study was to quantita-

tively evaluate the effect of uniform B-spline knot spacings
and image characteristics on the accuracy of a free-form
deformable registration using B-splines. To assess the
quality of the deformation field, a known deformation
was applied to synthetically generated CT images and
real CT volumes of the head-and-neck region. With
these simulated deformed images, the ability of the al-
gorithm to recover the a-priori known deformation
was investigated on a voxel to voxel basis.

Methods
In this simulation study we included synthetically gen-
erated (fixed) phantom images with varying image
characteristics. For each fixed phantom image, a corre-
sponding simulated moving image was created with a
smooth, Gaussian shaped, B-spline deformation. Further-
more, planning CT (fixed) images with corresponding
simulated moving images of three head-and-neck can-
cer patients were included.
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Phantom data
Multiple synthesized phantom CT images IF(x) and IM
(x) simulating the head-and-neck region were created
with varying image contrast, noise and feature content.
Figure 1 shows a transversal, sagittal and coronal cross-
section of the reference phantom. The phantoms con-
sisted of 60 slices, a FOV of 321 × 251 mm, an in-plane
voxel size of 1.00 × 1.00 mm, and a slice thickness of
2.00 mm. Other characteristics of the reference phantom
are listed in Table 1. From the reference phantom,
seventeen more phantoms were created with varying
amounts of image contrast, image noise, and varying
disc spacing (phantom properties in Table 1). The discs
were added to provide the intensity-based DIR algo-
rithm with varying local feature content. For different
phantoms, the image contrast was adapted by multi-
plying the discs grey values by a grey value factor (GF).
The GFs were chosen such that the resulting images
included contrast levels comparable to clinical cases of
head-and-neck CT images. Transversal slices of the
most important phantoms are shown in Figure 1.
All phantoms were assigned to be fixed images IF(x).

Subsequently, from each IF(x) a corresponding simu-
lated moving phantom image IM(x) was obtained by
an intentionally imposed transformation of IF(x). The
Figure 1 A selection of the synthetically generated “head-and-neck” p
cross-section of the reference phantom is shown within the white box. Ab
Pl = parotid left; Pr = parotid right; S = spinal cord. Phantoms I-IV have sim
(1SD noise = ± 40, ± 80, ± 100, and ± 200 HU, respectively). Simulated def
of 0.5 and 1.5, respectively). Phantoms XVI and XVII vary in disc spacing (7.0
properties of all phantoms are listed in Table 1.
imposed deformation was obtained through a trans-
formation T(x) based on B-splines with a 10 mm knot
spacing. The voxel positions in these images were
noted as x = (x,y,z). The a-priori known imposed
transformation consisted of a well-defined smooth
(Gaussian shaped) B-spline deformation. With this de-
formation we focused on the effect of parameter con-
figuration of the B-spline algorithm in an assumedly
optimal setting for the registration algorithm. This
may limit the generality of the results but offers the
opportunity to determine the ability of the algorithm
to recover the known ground truth deformation. An
example of a transformed phantom is shown in Figure 1V
and X. The distribution of moduli of displacement vectors
for all voxels in IF(x) that represent the imposed smooth
deformation were chosen to be in the same order of mag-
nitude as those observed in clinical cases.
Finally, five levels of noise were added to the images

IM(x) and IF(x) of the reference phantom (Table 1 and
Figure 1 phantom I-IV). The spectral density at various
spatial frequencies in the transverse plane was taken
from the noise power spectrum for CT images as given by
Siewerdsen et al. [16]. The shape of the noise spectrum is
a characteristic filtered ramp spectrum in which the noise
power spectrum increases at low frequencies due to a
hantoms as used in this study. A transversal, sagittal and coronal
breviations of the simulated structures: T = tumour; V = vertebrae;
ilar properties as the reference phantom but with varying noise levels
ormed phantom images are shown by V and X (with grey-value factor
and 19.0 mm, respectively) from the reference situation (1.0 mm). The



Table 1 Phantom characteristics

Reference phantom properties:

Simulated structure Density (HU) Dimensions [AP, LR, SI] (mm) Shape

Body 0.0 220 × 150 × 120

Parotid gland left (Pl) −100 60 × 24 × 50 Ellipsoidal

Parotid gland right (Pr) −200 40 × 12 × 30 Ellipsoidal

Tumor (T) 250 60 × 40 × 20 Ellipsoidal

Vertebrae (V) 1000 28 × 24 Tubical

Spinal cord (S) 200 12 × 12 Tubical

Two bony structures near parotid glands 1000 16 × 12 × 12 Square

Discs (spacing of 1.0 mm) −250 - 250 12 × 4.0 Tubical

Phantom images: Ref. I II III IV V VI VII VIII IX X XI XII XIII XIV

Image noise (1SD, ± HU) 20 40 80 100 200 20 40 80 100 200 20 40 80 100 200

Grey value factor discs (GF) 1.0 1.0 1.0 1.0 1.0 0.5 0.5 0.5 0.5 0.5 1.5 1.5 1.5 1.5 1.5

Contrast-to-noise ratio (CNR) 17.5 8.75 4.38 3.50 1.75 11.3 5.63 2.81 2.25 1.13 23.8 11.9 5.94 4.75 2.38

Phantom images: XV XVI XVII

Diameter discs (mm) 6.0 6.0 6.0

Spacing discs (mm) 1.0 7.0 19

Ref. indicates the characteristics of the reference phantom (see Figure 1).
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ramp filter, and rolls off at higher frequencies due to
band limiting processes such as blur and interpolation.
The noise levels were denoted by the 1SD of the HUs
of the voxels in a homogeneous area of an image slice:
1SD = ± 20, ± 40, ± 80, ± 100, ± 200 HU. Furthermore,
for all phantoms, the contrast-to-noise ratio (CNR)
was derived by the ratio of the intensity difference be-
tween the brightest discs and the simulated left parotid
structure (Figure 1. Pl) and 1SD of the image noise.

Patient data
CT image pairs of three head-and-neck cancer patients
were included to evaluate more clinically relevant and
plausible deformations. The properties of the helical CT
scans were as follows: a FOV of 500 mm, an in-plane voxel
size of 0.98 × 0.98 mm, a slice thickness of 2.00 mm, and a
tube voltage of 120 kVp. The included patients had tu-
mours that originated in the epiglottic (case A, T4N2M0),
the supraglottic (case B, T2N0M0), and in an unknown pri-
mary tumour location (case C, TXN3M0). Each image pair
consisted of a planning CT IF(x) and a simulated moving
image IM(x). The latter was created by a realistic B-spline
transformation of the planning CT with an a-priori known
deformation field, derived from a DIR of the planning CT
with a rescan CT (with BKS = 10 mm and 500 iterations) of
the same patient.

Hardware and software
For preparation and evaluation of the data, Matlab R2012a
(Version 7.14, MathWorks, Natick, MA) was used. Elastix
version 4.6 was used for the registrations [17], which were
performed on a standard office PC with an Intel Xeon
X5550 CPU, 2.67 GHz with 16 GB DDR3 RAM and 64 bits
Windows 7 operating system.

Deformable image registration
In intensity-based DIR, a moving image IM(x) must be
spatially aligned to a fixed image IF(x). Both images can
be described as continuous functions of intensity values
at position x. The registration determines a displace-
ment u(x) that best matches the two images according
to a criterion of similarity. The displacement u(x)
spatially relates two images so that the restored image
IM (T(x)) best matches image IF (x) at every position x. The
transformation T(x) is then defined by T(x) = (x + u(x)). So
the moving image is deformed to fit the fixed image,
but the transformation is defined from the fixed to the
moving image [18].
In this study, a B-spline free-form deformation model

was used [11,12,19]. The B-spline transformation is
modeled as a weighted sum of B-spline basis functions,
each term weighted by an adjustable control point,
placed on a uniform grid of knots. The spacing of the
knots (and the corresponding number of control points)
in a B-spline registration is an important, user-selectable
parameter. In the remainder of this paper, the spacing of
the knots will be referred to as B-spline knot spacing
(BKS), expressed in mm. There will be an optimal number
of control points and knot spacing for any particular
image pair, which depends on the local spatial frequency
of the image content. With decreasing knot spacing, the
registration accuracy generally improves until the knot
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spacing can resolve all of the details. If one keeps decreas-
ing the knot spacing further, at some point there will not
be enough information in the image to constrain all of
them, and the registration will become underdetermined
and unreliable. The registration parameters as used in this
study are listed in Table 2. Except for the BKS, the parame-
ters were taken from Klein et al. [20]. The following BKSs
(final knot spacings) were used: 5, 6, 8, 10, 15, 20, 25, 30,
and 40. The number of iterations was set to 500. This
number of iterations has been proven to be large enough
for the optimization to converge to an optimal solution
(see Additional file 1).
Table 2 Parameters used for B-spline registration

Cost function

Metric of the similarity measure Advanced Mattes
mutual information

Number of grey level histogram bins in
each resolution level

32

Transformation

Transformation Cubic B-spline

Knot spacing at the highest resolution
levels (mm)

Same spacing for all
three dimensions.

The effect of various
spacings was investigated

Knot spacing schedule in resolution
levels 1, 2 and 3

4, 2, and 1

Optimization

Optimizer Adaptive Stochastic
Gradient Descent

Maximum number of iterations in each
resolution level

Ratio iterations between
levels: 1 2 2

The effect of the number of
iterations was investigated

Parameter values for determination step
size ak (mm) of the optimizer for each
resolution level

Same values for all three
dimensions.

a = 6400, A = 50, α = 0.60

Image sampling

Spatial samples used to compute the
mutual information in each iteration

Randomly off the voxel grid

Number of spatial samples in each
iteration

2048

Hierarchical strategies

Number of resolutions levels 3

Fixed image pyramid Fixed recursive

Moving image pyramid Moving recursive

Downsampling factor for multi-resolution
image data

Gaussian pyramid with factor 2

Downsampling factor for the image
pyramid for each resolution level

4 (resolution 1), 2 (resolution 2),
1 (resolution 3)

For multi-grid transformation model Knot spacing halved every
resolution level
Imposed deformation
In the presented study, an a-priori known set of B-spline
coefficient vectors φi,j,k_imp was used to create an
intentionally deformed simulated moving image, with
a BKS of 10 mm. In each knot the φi,j,k values were set
as follows: first a knot was chosen near the left
parotid-like structure, acting as a center point of
deformation, to which φi,j,k was set. Then the B-spline
coefficients φi,j,k in all other knots were set based on a
three dimensional Gaussian function from the center
point, and calculated as function of distance to the
center point of the deformation. The maximum local
imposed displacement in the left parotid-like structure
was 10 mm.
In general, the registrations were performed in three

steps. First the center point of the field of views of the im-
ages were aligned. Second, the images were rigidly regis-
tered. In the final step, the free-form DIR was performed.
Because the simulated moving images were created from
the fixed images using a known deformation field, no rigid
registration was required.

Evaluation of deformable registrations
The deformation vector field (DVF) from the known im-
posed deformation (DVFimp) and corresponding result of
the registration (DVFreg) were calculated using Transformix
[17]. Note that the grid of the deformation field was
equal to the image resolution and differs from the BKS.
The registration accuracy was quantified by the average
difference between DVFimp and DVFreg and expressed
as the mean residual displacement (MRD). For the
phantom images, the MRD was defined in a region near
the initially imposed deformation; the ellipsoidal left
parotid structure (Figure 1 Pl).
For the three head-and-neck cancer patient cases,

the MRD was defined within the whole patient volume
as deformations were simulated throughout the whole
volume. Furthermore, the spatial distribution of mod-
uli of DVFimp and DVFreg were demonstrated by histo-
gram comparisons.

Results
Phantom data
For all phantoms the simulated moving image IM(x) was
deformed to the fixed image IF(x) and the MRD was re-
corded within the left parotid-like structure. The MRD
of the phantoms with constant feature content but varying
noise levels (i.e. the reference phantom and phantom I-IV as
listed in Table 1 and Figure 1) were acquired and compared
for registrations with different BKSs (Figure 2). Phantoms
with clinically realistic noise levels (1SD ≤ ± 100 HU) which
were registered with BKS-values between 8-20 mm,
resulted in a MRD < 1.0 mm. The MRD was lowest
(0.7 mm) for image sets with a noise level of ± 20 and ± 40
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HU (1SD). Only for the phantom with a simulated noise
level of ± 200 HU the MRD was > 1.0 mm at all BKSs.
The intensity of the discs in the reference phantom

ranged from ± 250 HU (GF = 1.0). Additionally, phantom
images were created with discs intensities of ± 125
(GF = 0.5) and ± 375 HU (GF = 1.5), and with different
levels of noise (see phantoms I-XIV in Table 1). From
the 15 resulting image sets the CNR was determined.
In total, 135 registrations were performed with varying
CNR and BKSs (Figure 3). Overall, MRD-values reduced
with increasing image contrast. For phantoms with limited
contrast (GF = 0.5), MRD-values < 1.0 mm were only
observed at CNR = 11.3 and BKS = 20 mm (Figure 3A).
For the phantoms with GF ≥ 1.0 the registrations re-
sulted in MRDs < 1.0 mm for CNR ≥ 3.5 and a BKS be-
tween 8–25 mm (Figure 3B and C).
To study the effect of varying feature content on the

registration accuracy, phantoms with different disc
spacing were created (see phantom XV-XVII in Table 1
and Figure 1). The registration of the phantom images
with the smallest disc spacing (i.e. 1 mm in between
discs) showed similar MRDs for all BKSs (Figure 4).
Increased disc spacing (i.e. 7 and 19 mm in between
A B

Figure 3 Mean residual displacement (MRD) for varying contrast-to-n
noise varied from 20–200 HU (1 SD) in combination with (A) GF = 0.5 (Pha
(C) GF = 1.5 (Phantom X-XIV). Phantoms according to Table 1. GF = grey v
and note the spacing of the BKS-axis.
discs; phantom XVI and XVII), resulted in MRDs > 2.0 mm
for BKS < 8.0 mm (Figure 4).
For three head-and-neck cancer patients a simulated

moving image was created using a rescan CT of each
individual patient. For each patient, the residual displace-
ment is shown for three representative axial cross-
sections throughout the body volume of the planning
CT (Figure 5AI-CI). The largest residual displacement
was observed near tissue-air transitions and within
homogenous regions, such as the brain. Figure 5AII-CII
shows the corresponding distribution of the deformation
vector length of the known imposed and the resulting
registration. The deformations between the planning CT
and the rescan CT were of similar magnitude as the ar-
tificially imposed Gaussian shaped B-spline deformation
to the phantom images. The distribution of the residual
displacements after a registration with BKS = 15 mm is
shown in Figure 5AIII-CIII. For all patients the MRD
was < 1.0 mm.
Figure 6 plots the MRD as function of BKS for patient

A-C. The registrations resulted in MRDs of < 1.0 mm
for all cases, using a BKS < 30 mm. The MRD was lowest
using a BKS between 10–20 mm. The neck flexion of pa-
tient B was different from patient A and C, and therefore
more brain tissue was included in the image of patient B.
The brain tissue included higher residual displacements
than those in the neck region. The highest MRD for pa-
tient C was found in homogeneous tumor tissue.

Discussion
In this study the effect of image contrast, noise and feature
content on a B-spline deformation in synthetically gener-
ated phantom images was evaluated at varying B-spline
knot spacings. Our results demonstrate that with a BKS
between 10 – 20 mm, the lowest MRD (smaller than the
size of one image voxel) could be achieved in both the
registration of phantom images and real CT scans.
Tanner et al. [21] evaluated the DIR accuracy similar

to our study. Physically plausible breast deformations of
C

oise (CNR) levels and B-spline knot spacings (BKSs). The image
ntom V-IX), (B) GF = 1.0 (Reference phantom and phantom I-IV), and
alue factor. Note that the overall MRD decreased with increasing GF



Disc spacing (mm)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0 10 20 30 40 50

M
RD

 (m
m

)

BKS (mm)

1

7

19

Figure 4 Registration accuracy for varying image feature content.
The MRD as function of BKS for phantoms with varying disc spacings
(phantom XV-XVII) (see phantom properties in Table 1). Abbreviations:
MRD=mean residual displacement, BKS = B-spline knot spacing.

Brouwer et al. Radiation Oncology 2014, 9:169 Page 7 of 10
http://www.ro-journal.com/content/9/1/169
dynamic contrast-enhanced MR images were simulated
using finite element methods. Rigid against affine against
B-spline based nonrigid (single-resolution, multi-resolution
and volume-preserving) registrations were studied. Perform-
ance of these configurations was optimized for 5 patients,
and tested on another set of 5 patients. The images were
most accurately aligned with volume-preserving single-
resolution non-rigid registration employing 40 or 20 mm
knot spacing. The mean registration error declined from
1.40 to 0.45 mm for the whole breast, and from 1.20 to
0.32 mm for the enhancing lesion. Although the DIR was
performed on MR images, similar accuracies as in the
current study were reported.

Imposed deformation
The imposed B-spline deformation was generated from
B-splines on a grid of 10 mm knot spacing and contained
one particular spectrum of spatial frequencies of the de-
formation field. For the registration also a B-spline-based
transformation was used. Consequently, the results might
be expected to give minimal MRD values for BKS values of
10 mm. However, this study was not meant find the opti-
mal parameter values for all clinical situations, but to dem-
onstrate the impact of BKS and noise, contrast, and feature
content in the images on the registration result. Deforma-
tions given by a certain algorithm will by definition be a
model of reality. However, the use of images with known
imposed deformations is at the moment the only method
to quantify residual errors of a specific deformation in every
voxel in patient images, because the local actual deform-
ation of the patient is not known. Additional, independent
means to validate registrations are therefore required.

Noise, contrast, and feature content
The current study showed that images with noise levels
(1SD) > ± 100 HU and a CNR < 3.5 resulted in larger
MRDs (Figures 2 and 3). Typical observed noise in head-
and-neck images, measured in relatively homogeneous
areas of the brain of a patient, showed noise values of ± 12
HU for CT and ± 35 HU for CBCT images (1SD). For 4D-
CBCT, this value increased to ± 68 HU (liver patient)
and ± 76 HU (lung patient) (1SD). This indicates that
in clinical (CB)CT-scans the noise would normally only
have a minor influence on the outcome of DIR. In case of
image regions with little feature content, i.e. the phantoms
with a large disc spacing (phantom XVI and XVII), a BKS
of 20 mm seemed optimal (Figure 4). The MRD increased
with increasing disc spacing, for all BKSs.
Murphy et al. [14] also investigated the effect of noise

differences on DIR of fan-beam CTs and CTs with simulated
cone-beam noise up to ± 120 HU. The accuracy of their B-
spline model-based DIR process was assessed by comparing
automatically transferred contours of pelvic organs to man-
ual contours on the original CTs. Changes in DIR accuracy
due to increased noise were deduced from changes in auto-
matically transferred contours. In line with our results, the
investigators found that the addition of noise caused no sig-
nificant loss of registration accuracy at noise levels equal to
or higher than those normally found in CBCT.
A similar study of Zhong et al. [15] involved a low-

intensity gradient prostate phantom image which was de-
formed by a modeled deformation based on region-specific
material parameters. The authors observed a minimal
MRD of 1.6 mm for multi-resolution B-spline DIR. For a
CT scan of a lung patient, the authors found minimal MRD
of 1.5 mm. However, this minimal MRD dropped to
0.5 mm if the error was averaged within the lung region
only. The authors suggested that regions with different
image contrast levels can be registered at different accur-
acies. This was confirmed by our study, in which higher
contrast showed a lower MRD (Figure 3). Zhong et al. [15]
and our results thus suggest that a customization of image
registration parameters should be tailored to the specific
region: tissue type, image modality, etc.

B-spline knot spacing
Our results demonstrated that with a BKS between 10–
20 mm, the lowest MRD could be achieved. This corre-
sponds to our hypothesis, that with decreasing BKS, at some
point the BKS becomes smaller than the spatial frequency
(the local density of detail) in the image. Hence, there will
not be enough information in the image to constrain all of
the control points, and the registration becomes underdeter-
mined and unreliable. On the other hand, at increasing BKS
the registration will at some point be unable to capture the
sharpness of the deformation, resulting in a higher MRD.
The effect of increasing MRD with BKS < 10 and > 25 mm
was more pronounced for low CNR (Figure 3), which can
be explained by the fact that low CNR deteriorates feature
detection.



Figure 5 Registration results of three head-and-neck CT cases (patient A, B, C) with a realistic known imposed displacement derived
from a rescan CT of the same patient. The images in row I show the 3D residual displacement maps between the simulated moving image
and the target image, plotted on an axial CT slice of the planning CT. The histograms (row II) indicate the 3D deformation vector length of the
known imposed displacements and the resulting registration. The histograms (row III) indicate the 3D residual displacements between known
imposed displacements and the resulting registration at BKS = 15 mm.
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DIR validation
In intensity-based DIR approaches, the image similarity
measure of the registration is not related to physical space
error in a simple way. Therefore, such a similarity measure
by itself provides no clue to the user whether the
registration has an acceptable accuracy. In most applica-
tions, careful visual inspection remains the first and most
important validation check available for previously unseen
images. Moreover, validation is usually performed by
making supplementary measurements post-registration [22].
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Figure 6 Mean residual displacement (MRD) at different
B-spline knot spacings (BKSs) for three head-and-neck CT cases.
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It is possible to identify corresponding landmarks or
regions independently of the registration process and es-
tablish how well the registration brings them into align-
ment [23]. However, in many applications the true
point-to-point correspondence might not be known and
may not even exist, for instance, due to loss of mass.
Various kinds of consistency measures are used in DIR

validation. The simplest and most commonly used measure
verifies the inverse consistency in which the registration of
IM(x) to IT(x) produces the same alignment as IT(x) to IM(x)
[24]. An extension to this method, the measure of transitiv-
ity, utilizes at least three images, and is described in detail
by Bender et al. [25]. These authors showed that both the
inverse consistency and transitivity check were feasible in
DIR of head-and-neck CT images.
In the current study, the DIR accuracy was evaluated

by calculating a residual error in displacement between a
known imposed displacement and the resulting displace-
ment after DIR in a local volume of interest. Such a vol-
ume can be selected, for instance, in a region with high
dose gradients where the accuracy in position is import-
ant for successful treatment monitoring.

Rigidity penalty
The B-spline transformation model as used in this paper
does not take into account the difference in rigidity of
various tissue types, such as a parotid gland relative to
bony structures (e.g. the mastoid and the mandible con-
doyle) in the head-and-neck area of a patient. This likely
results in unwanted distortions of rigid objects. Using
rigidity regularization, involving a penalty term that penal-
izes deformations of rigid objects, is one method for
restricting deformations. Staring et al. [26] proposed such
a local rigidity penalty term, which has been included in
the registration functionality of Elastix [17]. A promising
approach would be to quantify the effect of the rigidity
term on the MRD in comparison to the standard DIR with
the method presented in this paper.
Conclusion
The accuracy of B-spline deformations of the head-and-
neck geometry could be assessed using known defor-
mations in synthetic phantom images and clinical CT
scans. For these cases the highest accuracy in the de-
formations was obtained for BKS between 10–20 mm.
The accuracy decreased with decreasing image feature
content (i.e. larger disc spacing) and higher noise levels.
For clinical CT images, with noise levels 1SD < ± 100 HU,
no effect of image noise on the registration accuracy was
found. Real CT scans of the head-and-neck region could
be registered within an average accuracy < 1 mm.

Additional file

Additional file 1: Number of Iterations. The number of iterations
needed to converge the iteration loop to a minimum depends on the
deformable image registration algorithm and the type of images. In the
current paper, the number of iterations was set to 500 (360 sec in our case),
since this number has been proven to be large enough to obtain the
optimal registration results. An example can be seen in Figure S1, which
depicts the mean residual displacement (MRD) as a function of iteration
time for different study phantoms and B-spline knot spacing (BKS) = 15 mm.
After 500 iterations (360 s), an MRD plateau was reached for all
phantoms. Figure S1. Mean residual displacement (MRD) as a function
of iteration time, for different phantoms (GF = grey-value factor, SD = 1
standard deviation of the image noise (HU)). 360 seconds corresponds to
500 iterations. B-spline knot spacing was set to 15 mm, SD to ± 20 HU
(upper graph) and GF to 1.0 (lower graph).
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