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Abstract

Translational relevance: Many types of cancer are located and assessed via positron emission tomography (PET)
using the 18F-fluorodeoxyglucose (FDG) radiotracer of glucose uptake. There is rapidly increasing interest in
exploiting the intra-tumor heterogeneity observed in these FDG-PET images as an indicator of disease outcome. If
this image heterogeneity is of genuine prognostic value, then it either correlates to known prognostic factors, such
as tumor stage, or it indicates some as yet unknown tumor quality. Therefore, the first step in demonstrating the
clinical usefulness of image heterogeneity is to explore the dependence of image heterogeneity metrics upon
established prognostic indicators and other clinically interesting factors. If it is shown that image heterogeneity is
merely a surrogate for other important tumor properties or variations in patient populations, then the theoretical
value of quantified biological heterogeneity may not yet translate into the clinic given current imaging technology.

Purpose: We explore the relation between pelvic lymph node status at diagnosis and the visually evident uptake
heterogeneity often observed in 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) images of
cervical carcinomas.

Experimental design: We retrospectively studied the FDG-PET images of 47 node negative and 38 node positive
patients, each having FIGO stage llb tumors with squamous cell histology. Imaged tumors were segmented

using 40% of the maximum tumor uptake as the tumor-defining threshold and then converted into sets of
three-dimensional coordinates. We employed the sphericity, extent, Shannon entropy (S) and the accrued deviation
from smoothest gradients ({) as image heterogeneity metrics. We analyze these metrics within tumor volume
strata via: the Kolmogorov-Smirnov test, principal component analysis and contingency tables.

Results: We found no statistically significant difference between the positive and negative lymph node groups for
any one metric or plausible combinations thereof. Additionally, we observed that S is strongly dependent upon
tumor volume and that { moderately correlates with mean FDG uptake.

Conclusions: FDG uptake heterogeneity did not indicate patients with differing prognoses. Apparent heterogeneity
differences between clinical groups may be an artifact arising from either the dependence of some image metrics
upon other factors such as tumor volume or upon the underlying variations in the patient populations compared.
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Introduction
There is evidence that pelvic lymph node status is an
important indicator of both disease free and overall
survival in patients diagnosed with cervical carcinoma
[1,2]. There is also a growing belief that the uptake
heterogeneity observed within tumors assayed via FDG-
PET may be of prognostic value [3,4]. A correlation
between increased FDG uptake heterogeneity and worse
prognosis has been reported for human sarcomas [5,6],
non-small cell lung cancer [7], esophageal cancer [8] and
cervical cancer [9,10]. Although the relationship is not
well-understood, it seems that tumor state (e.g., quies-
cence or rapid proliferation) likely is strongly linked to
tumor metabolism [11]. Because FDG uptake is some
measure of metabolic activity within the tumor, this
connection to tumor state offers one plausible means for
uptake heterogeneity to indicate disease outcome. We
therefore hypothesize that increased intra-tumor FDG
uptake heterogeneity may correlate with lymph node
involvement. If such a link were established, it will
provide a new avenue of studying why only some of
cervical carcinoma patients exhibit pelvic lymph node
involvement and perhaps even provide insight as to why
that status so profoundly affects prognosis.
Heterogeneity in FDG uptake is observed in FDG-PET
images as variations in grayscale intensity with more
intense regions ostensibly corresponding to increased
metabolic activity. Examples may be seen in Figure 1
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Figure 1 Shown is an example of a cervical carcinoma imaged
via FDG-PET. The black and white contour approximately indicates
the defined tumor boundary. Within, there are clear variations in
the grayscale intensity. It is these variations researchers seek to
objectively quantify such that inter-patient comparisons of
intra-tumor uptake heterogeneity can be made. The image edges
correspond to 20 cm within the patient.
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where variations in grayscale intensity are clearly visible.
Of course, each image is a low-resolution view of the
underlying biology and is heavily attenuated by the
partial volume effect [12]. Therefore, the image hetero-
geneity observed is unlikely to directly correspond to the
tumor biology from whence the detected signal came
[4,13]. For this reason, all FDG uptake heterogeneity
analyses should be taken cum grano salis when attempt-
ing to establish or infer biological meaning from the
analyses.

The image heterogeneity observed may be thought of as
comprising variations in intensity: distribution, arrange-
ment and shape. The grayscale intensity distribution
results from some combination of underlying biology,
scanner noise and the partial volume effect. These are the
shades available to create image detail; less shades means
that less variation can be conveyed. The spatial arrange-
ment of the intensities also conveys variation. For ex-
ample, intuitively, the smooth gradation of the brightest
image intensities to the dimmest is less varied than
those same intensities randomly juxtaposed. Overall
shape is distinct from arrangement because shape
defines a priori the bounds of where the intensities
may be arranged. For example, a tumor growing near
a physical barrier may be unable to achieve the same
shape a tumor protruding into a void might achieve.
These considerations are crucial when determining if
two distinct intensity samples (i.e., tumor regions) differ
significantly.

There have been several previous attempts at quantify-
ing uptake heterogeneity seen in FDG-PET images
[5-10,14-16]. While we do not exhaustively review them
here, we recapitulate some apposite concerns. One study
analyzed almost twenty higher-order texture metrics and
found only a few to be statistically reproducible on
FDG-PET images [17]. This is consistent with another
study which showed that dozens of texture metrics
applied to FDG-PET images of cervical carcinomas were
not useful indicators of prognosis [10]. In general,
texture metrics often are inter-related and thus including
additional metrics might not include additional infor-
mation. For example, the image entropy is (qualitatively)
inversely proportional to the image energy [18]. In prac-
tice, similar dependences between other metrics may be
may not be at all intuitive. For example, it was argued
that the slope of the SUV-volume histogram was an
intra-tumor heterogeneity metric with prognostic value
[9], however, later that same metric was shown to be a
surrogate for tumor volume [19]. An analogous depend-
ence upon tumor volume also was illustrated with
virtual tumor images for the local image entropy [20].
Still another metric, the area under the cumulative
SUV-volume histogram, also was presented as a prog-
nostic heterogeneity measure [7,14]. It was argued
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later that that metric is equivocal in the sense that it
is possible for unequal heterogeneity scenarios to
achieve identical metric values while unequal metric
values can result from identical heterogeneity scenar-
ios [21,22]. Quantification of image heterogeneity is a
difficult problem in general and has only recently
been addressed in the specific context of predicting
disease outcome from FDG-PET images. Therefore, chal-
lenges and refinements to previously proposed metrics
(including those we employ) are to be expected as the
mathematical sophistication of the problem is revealed via
further study.

We analyze our image data via a spatial metric which
has been demonstrated to be both independent of tumor
volume and consistent with visual ranking of FDG-PET
images by human experts [16]. While this metric does
provide some measure of the variation in intensity
arrangement within pre-established tumor regions, it
also is sensitive the overall region shape [16]. We
employ the sphericity and extent as distinct, volume-
independent shape metrics which may provide com-
plementary information about the contribution of
shape to perceived heterogeneity. The sphericity and
extent are metrics which can distinguish rounder,
more compact regions from highly asymmetrical, por-
ous regions [23]. We employ the well-established
Shannon entropy [18,24] as the measure of informa-
tional content within the individual distributions of
grayscale intensities. We note however, that the Shannon
entropy is predicted to depend non-linearly upon
tumor volume and that the exact functional form of
that dependence is influenced by both the intensity
histogram bin size and image segmentation threshold
employed [20].

Materials and methods

Patients

This is a retrospective study of 85 patients with newly
diagnosed cervical cancer who underwent FDG-PET
or FDG-PET/CT at Washington University in St.
Louis between July 2003 and March 2012. This study
was approved by the Washington University Human
Research Protection Office. All patients were evalu-
ated by history and physical examination, examination
under anesthesia, and FDG-PET or integrated PET/CT
before initiating treatment. Patients were staged clin-
ically, according to FIGO staging (AJCC 2002, 6th
edition). The selection criteria for inclusion into this
study were FIGO clinical stage IIb tumors and squa-
mous cell histology. The patients ranged in age from
27 y to 85 y with a median of 49 y. The maximum
SUV of the tumors analyzed ranged from 4 to 56 and
approximately followed a log-normal distribution with
median of 13 and variance of 74.
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Identification of primary tumors

For patients (n=58) examined between July 2003 and
June 2008 diagnostic imaging scanning was performed
via Siemens Biograph 2 (Munich, Germany) while for
those examined (n=27) between October 2008 and
March 2012 were scanned via Siemens Biograph 40
(Munich, Germany). In both cases, images were recon-
structed via ordered subset expectation maximization
with 8 sets; 2 iterations for the former and 4 iterations
for the latter. In both cases, a Gaussian smoothing filter
was applied post-reconstruction with 5.3 mm and 4 mm
full width at half maximum, respectively. We note that
the 9 most recent Biograph 40 image sets underwent an
additional point-spread function/time-of-flight correc-
tion. The primary tumor evident in each FDG-PET
image set was identified and segmented specifically for
the present study by a veteran oncologist using MIM
version 5.6.3 (MIM Software Inc., Cleveland, OH).
Within the manually approximated tumor region, any
image voxel with SUV greater than 40% of the maximum
region SUV was considered to be part of the tumor [25].
The oncologist then made slight manual adjustments to
the ROI to remove any obvious non-tumor pixels such
as those comprising bladder or bowel regions. For each
patient, these data were exported as a set of (x,2)
coordinates, each with a single 15-bit grayscale image in-
tensity corresponding to radioactivity density in Bq/mL.

Assessment of FDG uptake heterogeneity

We assessed observed FDG uptake heterogeneity in sev-
eral ways. First, we compute the Shannon informational
entropy (S) upon the histogram of grayscale intensities
for each FDG-PET image set [18,24]. The histogram bin
width was defined for each patient individually as the
Freedman-Diaconis bin width. We used the formula

B
_Zpb Inp, (1)
b=1

where p,, is the probability that a given grayscale inten-
sity resides in the »™ of a total of B histogram bins.
From the (x,5,z) coordinates, we computed the sphericity
(p) and the extent (¢) for each virtual tumor object. The
sphericity is defined as [23,26]

N (6-volume)%
surface area

(2)

The extent is defined as the ratio of the net object area
(or volume) to a bounding area (or volume) [23]. We
note one difference from the usual definition of the
extent. Instead of a bounding box, we employed a bound-
ing sphere with diameter matching the maximal diameter
of the tumor object and centered at the geometric center
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of the tumor object. For example, a largely hollow but
basically round tumor will have a low extent (i.e., few
pixels in the bounding sphere) but a high sphericity. Thus,
v and ¢ together form a set of complementary metrics
which together feasibly discern heterogeneous from
homogeneous tumor geometry. Lastly, we compute the
accrued deviation from smoothest gradients ({) [16].
Automated ranking of tumor image via increasing { has
been shown to be consistent with rankings done visually
by human experts. As described in Ref. [16], we computed
( for our three-dimensional intensity data by using tri-
linear interpolation to approximate the 15-bit intensity
value whenever a fractional (x,),z) coordinate was required
(recall that only integer coordinates are stored within
single FDG-PET images).

Statistical analysis

Potential differences between the distribution of a het-
erogeneity statistic for distinct patient subgroups defined
by pelvic lymph node status were assessed via the two-
sample Kolmogorov-Smirnov test. This test of empirical
cumulative distribution functions (CDFs) was chosen
because it: does not require modeling of the distributions
compared, can compare continuous data sets of unequal
size and/or variance and is sensitive to more than just
differences in distribution location [27]. The subgroups
compared are those with no indication of pelvic lymph
node involvement (LN-) to those with (LN+). For our
population comprising 47 LN- and 38 LN+ patients, a
maximum difference (D) between the CDFs greater than
0.286 is significant at the 95% level [28]. In cases where
cross-group ties amongst ranks occur, the p-value given
for D is only an upper-bound of the true p-value [27]. Spe-
cific cases of additional data stratification with differing
significance criteria are detailed in the Results section, as
necessary. Where appropriate, we employ Kendall’s 7 as a
measure of variable association and test other potential
variable dependencies via y*-test applied to contingency
tables. In cases where histograms were constructed,
the Freedman-Diaconis bin width was employed. All
statistical analyses were performed using R version 2.15.2
(R Foundation for Statistical Computing, Vienna, Austria).

Results

In Figure 2, the histograms for the LN- (shaded) and the
LN+ (hatched) groups are shown on the same axes. The
Kolmogorov-Smirnov test (D =0.121; p<0.918) implies
no significant difference between these tumor volume
distributions. In Figure 3, S is seen to be strongly
dependent upon tumor volume (V). Thus, direct com-
parison of S for large volumes to S at small volumes is
not appropriate. We therefore stratified V into quartile
groups of similarly sized tumors and compared the S
distributions of the lymph node status subgroups strictly
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Figure 2 The common-axis histograms overlap largely and thus
show that volume alone cannot predict to which lymph node
status groups a patient will belong. In other words, we find no
appreciable difference in distribution of volumes between the

LN- and LN+ patient groups. Histogram bin size = 14 cc.

within each volume stratum. Table 1 shows the results
where it is seen that S does not differ significantly within
any volume stratum. We repeated this analysis for ¥ and
¢ separately and again found no significant difference for
either variable in any volume stratum (Table 1).
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Figure 3 The Shannon informational entropy (S) of each 15-bit
grayscale intensity histogram is seen to depend monotonically
upon tumor volume (V) across a wide range of volumes. [t is
thus seen that by using increasing S values to rank tumors in
increasing heterogeneity, one actually is ranking those tumors
coarsely in terms of volume. The age of the patients in years is
indicated by color.
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Table 1 Within each volume stratum, the Kolmogorov-Smirnov test was used to discern potential differences between
lymph node status groups for each of the heterogeneity metrics

Volume (in cc) Shannon entropy (S)

Sphericity () Spherical extent (&)

40=V<224 D=0227;p =0.886
22425V <328 D=0548; p=0.102
328<V<528 D=0.173; p =0.987
528V <1851 D=0364; p =0479

D=0355;p =0.390
D=0471; p=0222
D=0500; p<0.168
D=0.182; p=0.993

D=0200; p <0985
D=0269; p < 0.865
D=0539; p =0078
D=0273; p £0.808

The relatively high p-values implies that none of the metrics differ significantly across lymph node status groups.

To analyze the potential discerning power of ¥ and ¢
together, we first plot (y, &) coordinate pairs. As seen in
Figure 4, there are no obvious clusters of LN- (circles)
and LN+ (triangles) and the variables y, ¢ are only
weakly correlated (7=0.164). With some subjectivity,
one might see a gap in coordinate location indicated by
the solid line in Figure 4. However, a contingency table
analysis of lymph node status versus position relative to
that line yields y* = 0.149, p =0.699. This indicates that
we may not reject the null hypothesis that lymph node
group membership is independent of (y, &) coordinate
location. In other words, no clearly defined region of
(y, &) coordinate space reliably corresponds to a particular
lymph node group.

We note that ( is only weakly correlated with previous
shape (r=-0.271 for (-y; 7=-0275 for {-¢) and
intensity heterogeneity metrics (zr=0.063 for (-S) and
therefore plausibly might distinguish heterogeneity
groups in ways those metrics could not. We applied
the Kolmogorov-Smirnov test to ¢ and again found no
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Figure 4 Although the combination of shape metric with
percent shape-filling metric feasibly might identify heteroge-
neous tumors, a contingency table analysis indicated otherwise.
As is seen, no clear clustering of LN- or LN+ patients occurs despite
the appearance of a clear gap (indicated by the solid line) in shape
coordinates. The age of the patients in years is indicated by color.

significant difference between the different lymph node
groups (D=0.147; p <0.752). We did, however, observe
that { is moderately correlated (r=0.610) to the mean
grayscale intensity (g). We investigated this relation in
two ways. First, we define a new variable p as the first
principal component of the matrix of {-g correlations.
We found that p represented 89% of the total (-g
variance. Proceeding as before, we found (D =0.215,
p =0.239) which indicates no significant difference in
p between lymph node groups. Second, we modified
the ( described in Ref. [16] by dividing the average
deviation from smoothest gradients by the maximal
deviation found for each patient before computing the area
the under the curve. This yields a new variable 0<(, <1
which still measures deviations from homogeneity but is
only weakly dependent upon g (7 = -0.142). Although the
Kolmogorov-Smirnov test again indicated no difference
between lymph node subgroups (D =0.148; p <0.744), a
natural break in (,, was observed. In Figure 5, distinct
modes appear across the gap in (,, values between 0.63

30

25 E

20 | .

Frequency
—
2]
T
1

10 | -
5 m
0
0.36 0.45 0.54 0.63 0.72 0.81 0.90

Normalized deviation from smoothness

Figure 5 The distribution of {, values appears to be bimodal,
thus implying a possible threshold between “small” and “large”
(. However, a contingency table analysis does not support a
correspondence between lymph node status and this heterogeneity
metric. Histogram bin size = 0.09.
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and 0.72. We therefore segment the global patient group
into small and large heterogeneity groups at , = 0.675. A
X -test conducted on that 2x2 contingency table (y*=
0.172, p =0.678) indicates that lymph node status likely
does not depend upon (,,.

Discussion

We now note some important aspects of our uptake
heterogeneity analysis. First, our patient population was
chosen in order to reduce variation in characteristics
which affect FDG-PET image heterogeneity. For example,
one might expect image differences between squamous
and non-squamous histology precisely because of the
differences in tissue type and/or density. Additionally,
because FIGO stage is known to have prognostic value,
but the relation between stage and FDG-PET uptake is
not well understood, stage could affect the image data in
unknown ways. Our patients are all of the same FIGO
stage and histology. This increases the believability that
the statistical distribution of a given uptake heterogeneity
metric comes from intra-tumor variability and not from
comparison of unlike tumors.

Second, we specifically consider the relation between
uptake heterogeneity metrics and tumor volume. The
plot of informational entropy versus volume given in
Figure 3 is but one ready example of how heterogeneity
metrics should be expected to depend upon tumor vol-
ume [13,20]. Consider that the tumor volume is nothing
more than the size of the sample chosen from the dis-
tribution of FDG-PET intensities possible for a given
tumor type. Decreasing the sample size (volume) must
decrease the believability that the underlying distribution
has been represented adequately and therefore must
also decrease the reliability of comparisons to much
larger samples. In our analysis, we employed metrics
proven to be volume independent or, in the case of the
informational entropy, specifically stratified our patient
data as to diminish the dependence upon volume. We
may therefore be more certain that any observed uptake
differences are not the result of the comparison of dis-
parate volumes.

Third, we analyze the original FDG-PET image data
unaltered via changes in image bit depth. This is crucial
because any heterogeneity metric, by definition, must be
sensitive to the image bit depth. Consider that visually
evident differences in tumor heterogeneity might be
described verbally as differences in image: detail, vari-
ation, texture, tone, contrast and/or grain. By reducing
the number of grayscale shades available to render those
qualities, the entire image is smoothed. That is, reducing
bit depth always decreases heterogeneity. However, vast
cross-patient differences in tumor shape, tumor size,
orientation (relative to the scanner) and maximum FDG
uptake imply that a bit depth reduction can affect each
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data set differently. Thus, while reducing image variation
for individuals, population variation actually could be
enhanced by bit depth reduction. For example, consider
a case where two differently shaped and shaded tumors
happen to yield similar heterogeneity metric values.
Because bit depth reduction affects shade more than
shape, one tumor can be smoothed significantly more
than the other, thus yielding tumors with different
metric values in the new bit depth. This is another way
that the statistical distribution of uptake heterogeneity
metric values can depend upon patient population more
strongly than upon intra-image variation (which is what
ostensibly is being measured).

Our main result is that none of the previously estab-
lished uptake heterogeneity metrics we employed yielded
statistically significant differences between patients with
pelvic lymph node involvement and those without. In
other words, we found FDG uptake heterogeneity does
not predict membership to groups with differing prog-
noses. This is counter to previous claims that mea-
surements of intra-tumor uptake heterogeneity generally
are of prognostic value [5-10,14]. We posit two main
reasons those analyses yielded contradictory results.
First, the precise uptake heterogeneity found in studies
of other tumor types (such as, e.g., non-squamous small
cell lung carcinomas) simply may not be applicable to,
or even possible in, the cervical carcinomas we study.
Second, and more generally, is the lack of variation in
our patient population. In brief, when patient popula-
tions vary in ways which plausibly affect FDG-PET
image heterogeneity metrics, differing heterogeneity was
found; when this population variation was controlled,
differing heterogeneity was not found. Indeed, it is
possible that all apparent prognostic FDG uptake hetero-
geneity is a statistical effect arising from the partial vol-
ume attenuation of vastly differing tumor types, shapes
and sizes.

To objectively isolate tumor from background, we
employed the 40% of maximum threshold established for
cervical carcinomas [25]. This threshold is conservative in
that it almost certainly misses some tumor at the periph-
ery. The point of using a conservative threshold is so that
one may be reasonably assured that the data analyzed
actually correspond to intra-tumor regions. As the tumor-
defining threshold is lowered, so too is the believability
that the desired intra-tumor measurements aren’t skewed
by inclusion of background pixels. If, instead, the thresh-
old were raised significantly, it is unlikely that heterogen-
eity even could be measured when so few pixels of so few
shades are given as input. In essence, a super-conservative
threshold virtually guarantees homogeneity.

Another reasonable concern about our analysis is in
our use of image data from two scanners. The sphericity
and extent were computed using Euclidean distances in
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centimeters. While is true that the older scanner cannot
give as precise an estimate of size as does the current
one, it should not give an inaccurate estimate. Both the
conversion of radioactivity to grayscale intensity and the
histogram binning of those intensities were uniquely
determined for each patient. The deviation from smooth-
est gradients is derived on a percent of size, percent of
intensity scale a priori. For these reasons we expect that
use of multiple scanners is not a significant source of data
heterogeneity in our analysis.

One weakness of our analysis in the creation of the (,
statistic. The original, unbounded heterogeneity metric {
[16] only weakly correlates with the normalized metric
{, (r=0.040). Therefore while { is a metric proven to
correlate with heterogeneity rankings done visually by
human experts, {, is unproven. Although it is reasonable
that {, can distinguish image sets, the exact interpret-
ation of (,, or its correspondence with particular visually
perceived image properties is not established. We may
therefore only say that a feasible measure of image vari-
ation ({,,) did not distinguish patient groups of differing
lymph node status and that this lack of distinction is
consistent with the results using proven metrics (S and ().
Another potential weakness is in the use of the sphericity
() and extent (¢) to assess heterogeneity in tumor shape.
In general, ¥ measures the closeness to spherical shape
and ¢ measures the percent filling of that shape. Because
neither situation is likely to occur for real tumors, use of
and ¢ imposes an unrealistic shape constraint. This means
that less variation is possible a priori and genuine differ-
ences in tumor shape are compressed into a smaller range
of variable value. Also, these and similar metrics can
exhibit non-linear jumps in value. When segmenting an
image, some thresholding process is employed to discern
tumor from background. This means, for example, that a
ring-like cross-sectional shape could be opened to a
horseshoe-like shape simply due to slight signal variations
which do not surmount the intensity threshold. The result
is that biologically similar tumors could suddenly become
mathematically different when assessed by metrics
strongly dependent upon the ratio of interior pixels to
surface pixels. We visually inspected every image of our
entire data set and found holes and/or disconnected
tumor regions to occur in 218 of the 1,328 images
analyzed. Given the strength of our other results, we do
not feel that this particular source of error will change our
overall conclusions, however, this is one more example
of how the analysis of FDG-PET images is inherently
more challenging than the commonality of the metrics
employed belie.

Conclusion
We analyzed a patient population homogeneous in
qualities which plausibly affect the image heterogeneity
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observed in FDG-PET assays of some cervical carcin-
omas. We found that established metrics of image
heterogeneity do not indicate involvement of pelvic
lymph nodes. Because pelvic lymph node involvement is
a demonstrated prognostic indicator, our results seem at
odds with studies which suggest intra-tumor FDG
uptake heterogeneity has prognostic value. We argue
that the potential conflict might be explained by the
heterogenous nature of the patient populations in other
studies influencing the statistical distribution of some
image heterogeneity metrics.
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