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Abstract

Nucleoside analogs have been frequently used in combination with radiotherapy in the clinical setting, as it has
long been understood that inhibition of DNA repair pathways is an important means by which many nucleoside
analogs synergize. Recent advances in our understanding of the structure and function of deoxycytidine kinase
(dCK), a critical enzyme required for the anti-tumor activity for many nucleoside analogs, have clarified the
mechanistic role this kinase plays in chemo- and radio-sensitization. A heretofore unrecognized role of dCK in the
DNA damage response and cell cycle machinery has helped explain the synergistic effect of these agents with
radiotherapy. Since most currently employed nucleoside analogs are primarily activated by dCK, these findings lend
fresh impetus to efforts focused on profiling and modulating dCK expression and activity in tumors. In this review
we will briefly review the pharmacology and biochemistry of the major nucleoside analogs in clinical use that are
activated by dCK. This will be followed by discussions of recent advances in our understanding of dCK activation
via post-translational modifications in response to radiation and current strategies aimed at enhancing this activity
in cancer cells.
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Overview of purine and pyrimidine nucleoside
analogs that synergize with ionizing radiation
Nucleoside analogs comprise a class of rationally designed
agents that emerged in the 1950s from insight gained by
advances made in understanding DNA structure and
DNA synthesis. In many ways, the underlying logic behind
the creation of these compounds presaged the develop-
ment of more recent targeted therapies by modeling
cancer drugs after endogenous nucleotides in an effort
to corrupt key cellular processes. By acting in this
manner, it has become possible to kill rapidly dividing
cancer cells by exploiting differences in the rate and
amount of DNA synthesis between normal cells and
cancer cells. The nucleoside analogs can be divided
into sub-classes based on their structural similarity to
purine bases (adenine and guanine) or pyrimidine bases
(cytosine, uracil, or thymine). In general, these agents
exert their cytotoxic actions through common means such
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as disruption of DNA function, inhibition of DNA replica-
tion, or a combination thereof. Additionally, these drugs
as a class share the need to be transported into the cell
through nucleoside transporters and are metabolically ac-
tivated following internalization into the cell. A number of
these drugs have been shown to work synergistically with
radiation, a feature that is exploited clinically to enhance
tumor regression, and the subject of this review. We will
briefly review the pharmacology for each of these com-
pounds followed by putative mechanisms by which
radiosensitization or chemosensitization may be achieved.
We will conclude with a discussion of recent efforts to
identify patient suitability for combination chemotherapy
and ways to enhance these synergistic effects in suscep-
tible individuals in an optimal fashion.
Purine based analogs
Fludarabine
Originally synthesized by John Montgomery and Kathleen
Hewson in 1969, the fluorinated arabinosyl nucleoside
analog fludarabine is a prodrug that incorporates a
number of structural features that extend its half-life by
protecting it from degradative enzymes [1]. Some of
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these structural features are shared by other nucleoside
analogs. For example, the presence of a fluorine atom
on the 2- position of the adenine ring makes fludarabine
resistant to ADA mediated metabolism. The presence of
a hydroxyl group (β instead of α) at the 2-position of
the sugar ring is also a common structural modification
that helps reduce glycosidic bond cleavage by the bac-
terial purine nucleoside phosphorylase (PNP), although
fludarabine is still susceptible to phosphorolysis by hu-
man PNP [2]. Degradation by bacterial PNP can limit
oral bioavailability whereas human PNP is involved in
normal cellular metabolism of purine nucleosides to
bases [3]. Unlike other nucleoside analogs, fludarabine
is administered in the monophosphate form to increase
solubility and bioavailability [4,5]. However, fludarabine-
monophosphate is rapidly dephosphorylated by plasma
localized 5′-nucleotidases in a rapid and complete fashion
prior to cellular uptake by the hENT1, hENT2, hCNT2,
or hCNT3 nucleoside transporters [5]. Once internalized
into the target cell, fludarabine is phosphorylated by
deoxycytidine kinase (dCK) to a monophosphate form
facilitating its retention inside the cell. Phosphorylation
of fludarabine to the diphosphate and triphosphate
forms appear to be catalyzed by adenylate kinase and
nucleoside diphosphate kinase, respectively [6]. The af-
finity of dCK for fludarabine appears to be relatively
weak as evidenced by low Km values (100-600 μmol/L)
and this may be explained by the aforementioned struc-
tural modifications [6-9]. Nevertheless, the interaction of
dCK with fludarabine is specific and occurs rapidly when
dCK is abundant [6]. As a consequence T-lymphoblasts,
which contain high levels of dCK, are particularly sen-
sitive to fludarabine due to the increased production of
fludarabine-monophosphate [10]. At the present time,
however, the major clinical utility of fludarabine is for the
treatment of refractory chronic lymphocytic leukemia
(CLL) [11]. Fludarabine has been tested for efficacy against
a wide variety of solid tumors in the absence of radiation
yielding unimpressive results. This may be potentially
explained by the exceedingly low levels of dCK activity
seen in non-lymphoid tissues [10]. However, more recent
efforts using fludarabine in combination with radiation
have shown promise in treating non-small cell lung cancer
(NSCLC) and head and neck squamous cell carcinomas
(HNSCC), at least in terms of tolerability and safety [12].
The major molecular actions of fludarabine tri-phosphate,
which lead to cytotoxicity and radiosensitivity, may be
explained in part by inhibition of DNA polymerases and
inhibition of ribonucleotide reductase with consequent
depletion of deoxynucleotide pools [6]. Incorporation of
fludarabine into DNA can lead to chain termination and
induction of apoptosis in a cell cycle specific manner
[13]. Alternative mechanisms relating to inhibition of
DNA repair machinery have been proposed to explain
cell death initiation in quiescent tumor cells in response
to fludarabine [14].

Cladribine
Cladribine, a chlorinated deoxyadenosine nucleoside
analog, has been the agent of choice in the treatment of
hairy cell leukemia since the early 1990s [15]. Cladribine
has also demonstrated utility in the treatment of chronic
myelogenous leukemias and non-hodgkins lymphomas
but, similar to what has been reported for fludarabine, it
has not produced impressive outcomes with solid tumors
[16-18]. The synthesis of cladribine in the 1960s grew out
of efforts to produce agents with enhanced cytotoxicity
and decreased susceptibility to catabolism using insight
gained from studies of agents like ara-A [19]. Indeed, the
chloride atom placed at the 2-position of the adenine ring
is a key modification that interferes with catabolism
through inhibition of deamination by ADA [20]. However,
oral administration of cladribine is hindered by poor
oral bioavailability due to degradation by the actions of
bacterial PNP [21]. Thus, cladribine is administered
intravenously (IV). Following IV infusion, cladribine is
rapidly internalized by cells via the hENT1, hENT2,
hCNT2, and hCNT3 transporters and phosphorylated to
the monophosphate form by dCK and deoxyguanosine
kinase (dGK) [22-25], respectively. The relative role of
dGK in mediating activation of cladribine is unclear in
light of published data showing dGK is localized to the
mitochondria whereas endogenous dCK is localized in the
cytoplasm (exogenously overexpressed dCK results in
nuclear localization) [26,27]. Thus, phosphorylation by
dCK is thought to be a critical event that is responsible for
both enriching cladribine inside the cell and preparing it
for its cytotoxic actions [28]. The triphosphate form of
cladribine is achieved after successive phosphorylation of
the mono- and di-phosphate forms by the nucleoside
monophosphate kinase and the nucleoside diphosphate
kinase. Once the triphosphate is generated it serves as an
effective substrate for DNA replication enzymes like DNA
polymerases [29,30]. While incorporation of cladribine
into DNA does not block chain extension per se, it is an
inefficient substrate for extension and facilitates miss-
incorporation of nucleotides [29]. Nevertheless, incorpor-
ation of cladribine into DNA leads to inhibition of DNA
synthesis and, importantly, inhibition of DNA repair
which in turn leads to formation of single strand breaks in
DNA, poly(ADP-ribose) polymerase (PARP) activation
and apoptosis via p53 dependent and independent path-
ways [31-33]. Interestingly, cladribine is toxic to both rest-
ing and actively proliferating cells (a feature shared with
fludarabine) possibly in a p53 dependent manner [34]. In
addition to its effects on DNA synthesis and repair, the
tri-phosphate form of cladribine has also been shown to
inhibit ribonucleotide reductase (RR) [30]. Inhibition of
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RR by cladribine results in depletion of deoxynucleoside
triphosphate (dNTP) pools leading to further inhibition of
DNA synthesis and inappropriate activation of endonucle-
ases that promote formation of stand breaks [35]. Other
mechanisms regarding the cytotoxic actions of cladribine
have also been reported. Fabianowska-Majewska et al.
reported that cladribine can inhibit deoxyadenosine
deamination and phosphorylation suggesting a role in
regulating deoxyadenosine metabolism [36]. Several
groups have demonstrated that cladribine may directly
damage the mitochondria, disrupt mitochondrial func-
tion and promote the release of AIF [37,38]. Despite the
similarities in structure and mechanism to other nucleo-
side analogs, we are not aware of any successful clinical
trials using cladribine as a radiosensitizer [39,40].

Clofarabine
Clofarabine (2-Chloro-9-(2-deoxy-2-fluoro-β-D-arabinofu-
ranosyl)-adenine) is a deoxyadenosine analog used in the
treatment of acute lymphoblastic leukemia (ALL) and
acute myelogenous leukemia (AML) [41]. A number of
favorable structural features of other nucleoside analogs
were incorporated into clofarabine to help improve its
pharmacokinetic profile and reduce toxicity, without alter-
ing pharmacodynamics [41,42]. For example, the addition
of a fluoride atom to the 2’-position on the sugar group
increases resistance to acidic conditions and bacterial PNP
[43]. Also, reminiscent of modifications to cladribine and
fludarabine, a halogen (chloride) at the 2-position of the
adenine ring helps protect clofarabine from adenosine de-
aminase [43,44]. In addition, the presence of this chloride
atom appears to enhance the catalytic efficiency of dCK
for clofarabine [45].
After administration, clofarabine is transported into

the cell by the concerted action of three types of nucleo-
side transporters, hENT1, hENT2, and hCNT2 [22,23].
Passive transport across the plasma membrane may also
occur depending on the concentration of drug adminis-
tered [22]. Upon entry into the cell, clofarabine undergoes
rapid phosphorylation by dCK [41]. This is followed by
rapid phosphorylation to the diphosphate form by purine
nucleotide monophosphate kinase and to the triphosphate
form by purine nucleotide diphosphate kinase [46]. The
phosphorylation of clofarabine by dCK appears to occur
with greater efficiency than fludarabine and cladribine
[41,47,48]. Phosphorylation by dCK facilitates retention of
clofarabine inside the cell thereby enriching intracellular
drug concentrations. Indeed, the ABCG2 drug efflux
pump can eject unphosphorylated clofarabine from the
cell but not the monophosphate form [49]. As a result, the
tissue distribution and relative expression levels of dCK in
normal and cancer cells can influence both therapeutic
efficacy and toxicity of clofarabine and other nucleoside
analogs phosphorylated by dCK. Equally important is the
fraction of active dCK present in normal cells as compared
to cancerous cells. As discussed later in this review, while
dCK is active in its native unphosphorylated state, its kin-
ase activity is greatly enhanced when it is phosphorylated
[50,51]. Once phosphorylated to the tri-phosphate form,
clofarabine acts as a fraudulent nucleoside and is incorpo-
rated into DNA but serves as a poor substrate for subse-
quent addition of nucleosides onto the growing chain [52].
This, in turn, results in chain termination and strand
breaks. The triphosphate form of clofarabine has also been
shown to interfere with DNA polymerase-α, but not β or
γ [52,53]. Finally, clofarabine-triphosphate is a potent
inhibitor of ribonucleotide reductase (RR) that appears to
result in an increase in clofarabine-triphosphate incorpor-
ation into DNA by depleting cellular concentrations of the
normal, endogenous nucleotides [52,53]. Several studies
suggest that clofarabine ultimately promotes induction of
apoptosis through a combination of direct and indirect
effects on the mitochondria [37,54]. As with the other
radiosensitizing nucleoside analogs, in vivo activity against
solid tumors have failed to reveal any objective responses
in the absence of co-treatment with radiation [55].
However, the effectiveness of clofarabine for solid
tumors has shown promise in vitro when used in
tandem with radiation [56].

Nelarabine
Nelarabine is a prodrug of the guanosine analog, 9-β-D-
arabinofuranosyl guanine (ara-G), that was granted ac-
celerated approval by the FDA in 2005 for the treatment
of T-cell ALL (T-ALL) and T-cell lymphoblastic lymph-
oma (T-LBL) [57]. Although ara-G was originally syn-
thesized in the early 1960s its maturation into a viable
clinical treatment modality was hindered because of its
poor solubility [58]. However, in the 1970s work on hu-
man PNP deficiency rekindled interest in ara-G. Several
key observations emerged from these studies: 1) human
PNP deficiency can lead to depletion of T cells, 2) T cell
cytotoxicity is associated with elevations in intracellular
levels of dGTP (because dGTP is normally degraded by
human PNP), and 3) B lymphocytes are largely un-
affected, possibly as a result of differences in metabol-
ism or cell cycle dependent accumulation of dGTP
[59-63]. Based on these observations, it became appar-
ent that T cells would be subject to killing by a guanine
based analog, such as ara-G, which is not subject to
degradation by human PNP [64]. Subsequent studies
revealed that the cytotoxic actions of ara-G were princi-
pally directed towards T cells [64]. This was followed by
the successful synthesis of nelarabine via addition of a
methyl group to the N6 position of the guanine ring
[58]. Upon administration, nelarabine is converted to
ara-G by plasma localized ADA [58]. Ara-G readily
enters cells via the hENT whereupon it is rapidly
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phosphorylated by either dCK or dGK, in a rate limiting
manner, to the monophosphate form [65,66]. Phosphoryl-
ation to the di-phosphate and tri-phosphate forms may
also be catalyzed by dGK [63,66]. The intracellular con-
centrations of ara-GTP appear to be highly dependent and
related to kinase activity of dCK or dGK. An increase in
dCK activity or dGK activity facilitates higher intracellular
concentrations of ara-GTP which shifts the preference of
ara-G from dGK to dCK [66]. Additionally, the presence
of a β hydroxyl group at the 2’-position of the sugar moi-
ety leads to high intracellular levels of ara-G by reducing
its susceptibility to human PNP [64]. Recent studies have
suggested that the ABCB1 transporter may play a role in
development of resistance by pumping ara-G out of the
cell although the prevalence of this mechanism is un-
certain [67]. Nevertheless, once sufficient intracellular
levels of ara-GTP are reached, incorporation of ara-GTP
into DNA blocks chain extension leading to strand
breaks and, ultimately, apoptosis [64,68]. Although
there is currently no evidence that nelarabine or ara-G
act as radiosensitizers, their reliance on dCK may make
them subject to activation by the IR/ATM/dCK pathway
thereby facilitating synergism as discussed below.

Pyrimidine based analogs
Cytarabine
The deoxycytidine analog cytarabine (also known as ara-C
or 1-β-arabinofuranosylcytosine) has been in clinical use
for leukemias such as acute myelogenous leukemia (AML)
since its synthesis in the late 1950s. Ara-C resembles
endogenous deoxycytidine in all respects save for the
position of the 2’-hydroxyl group on the sugar moiety
which is in the arabinose configuration to distinguish it
from cytidine. After administration, ara-C is primarily
transported into cells via the human equilibrative trans-
porter (hENT1) although this is thought to be concentration
dependent [69]. At high concentrations, however, ara-C
may enter the cell by passive diffusion [70]. Once inside
the cell ara-C is phosphorylated in sequence to the tri-
phosphate form by dCK and pyrimidine nucleotide kinases
[71]. As with other nucleoside analogs, phosphorylation
can serve as a means to retain ara-C in the cell however, it
has been noted that phosphorylated ara-C can be effluxed
from the cell by multi-drug resistance proteins (MRPs) 5
and 7 [72]. The importance of dCK mediated phosphoryl-
ation is supported by studies that show resistance to ara-C
in cells lacking dCK [73,74]. Like other nucleoside analogs
discussed thus far, it is the triphosphate form that is incor-
porated into DNA. Incorporation of ara-CTP into DNA
occurs in competition with endogenous deoxycytidine tri-
phosphate (dCTP) and once incorporated, the hydroxyl
group on the ribose makes ara-CTP a poor substrate for
chain extension. Ara-C appears to induce cell death via
activation of the apoptotic program and inhibition of
Bcl-2 expression re-sensitizes AML blasts to cell killing
by Ara-C [75]. The mechanism of cell death may involve
generation of reactive oxygen species [76]. As with ara-G,
there is currently no evidence that ara-C can act as a
radiosensitizer. However, because dCK is important
for the activation of ara-C, there is a potential for
chemosensitization by IR as discussed below.

Gemcitabine
The deoxycytidine analog, gemcitabine, is employed in the
treatment of metastatic breast cancers, locally advanced or
metastatic non-small cell lung cancers, pancreatic cancers,
and relapsed ovarian cancers [77-84]. To address meta-
bolic limitations of ara-C, gemcitabine was structurally
modified through the addition of two fluorine atoms in
lieu of a hydroxyl group on the 2’-position of the ribose.
Similar to ara-C, gemcitabine is internalized into target
cells via the human equilbrative nucleoside transporter
1 (hENT1) although other nucleoside transporters ap-
pear to also play an important role in uptake [24,85,86].
Also, like ara-C, gemcitabine is phosphorylated to the
monophosphate form by dCK [87]. Gemcitabine-
monophosphate is converted to the di-phosphate and
tri-phosphate form in succession by pyrimidine nucleo-
tide kinases [88,89]. Heinemann et al. demonstrated
that, in contrast to ara-C tri-phosphate, gemcitabine tri-
phosphate enters cells more rapidly, has a higher affinity
for dCK and a slower elimination rate, leading to
prolonged inhibition of DNA synthesis [87]. It has been
documented that MRP 5 and 7 can pump gemcitabine
out of the cell following internalization as a resistance
mechanism [72]. Following phosphorylation to the tri-
phosphate form, gemcitabine-triphosphate is incorpo-
rated into DNA leading to inhibition of DNA synthesis
[90]. Interestingly, after the incorporation of gemcitabine-
triphosphate into DNA a single, normal nucleotide
is added to the 3’-hydroxyl of its ribose, shielding
gemcitabine from DNA repair mechanisms including
base excision repair [91]. The diphosphate form of
gemcitabine is also a potent inhibitor of ribonucleotide
reductase which leads to inhibition of DNA synthesis via
depletion of deoxynucleotides [91]. As a consequence of
this action, declining levels of dCTP de-inhibit dCK, in-
creasing its activity favoring the generation of additional
gemcitabine triphosphate [92]. Although the precise
manner by which cell death is executed remains unclear,
it is most likely mitochondrially mediated and caspase
dependent [93,94].

Mechanisms of synergism between nucleoside
analogs and ionizing radiation
The clinical use of radiation in combination with che-
motherapeutic agents gained significant momentum in
the 1970s although many of the original studies date
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back to the early 1960s [95]. The underlying goal of
these early efforts was a simple one, to synergistically
increase tumor cell killing and improve patient out-
comes [95]. The most studied means of synergism has
been radiosensitization of cancer cells with nucleoside
analogs. At the present time, gemcitabine, fludarabine,
and clofarabine are employed clinically as radiosensitizers
[96-100]. Observations from these and other studies have
revealed mechanistic commonalities between these agents
that contribute to radiosensitization including inhibition
of DNA repair and modulation of nucleotide synthesis/
availability. Ultimately, it is thought that these effects
culminate in cell cycle redistribution/arrest and inhibition
of DNA synthesis. While many questions remain un-
answered concerning how these mechanisms work to-
gether to achieve radiosensitization this topic has been
reviewed extensively elsewhere [100,101]. An alterna-
tive explanation of the synergism between radiation
and nucleoside analogs, that remains underexplored, is
IR-mediated chemosensitization. As discussed, not all
nucleoside analogs act as radiosensitizers. Indeed,
Nelarabine (ara-G), cytarabine (ara-C) and cladribine
are not known to function as radiosensitizers despite
having significant similarities in mechanism of action and
metabolism to the radiosensitizing nucleoside analogs
noted above. However, the ability to chemosensitize cells
to these agents could represent an important strategy for
synergism. Here we will briefly review the involvement of
DNA repair inhibition in radiosensitization and contrast
this mechanism with a recently identified pathway involv-
ing the ATM kinase and dCK that may lead to synergism
through chemosensitization.

Radiosensitization through inhibition of DNA repair
Inhibition of DNA repair is one method for nucleoside
analog induced radiosensitization. Indeed, the inhibition
of DNA repair pathways is a logical means by which
these drugs could sensitize cancer cells to the DNA
damaging actions of ionizing radiation. However, while
DNA repair pathways remain an attractive target, there
are few published examples of this type of inhibition by
nucleoside analogs. The nature of the interaction be-
tween the DNA repair machinery and nucleoside analogs
that leads to enhanced radiosensitization remains poorly
described. For example, Wachters et al. used cells that
were deficient in either XRCC2 or XRCC3 to show that
gemcitabine interferes with homologous recombination
(HR) repair pathways possibly by inhibiting Rad51 [102].
These same authors had previously reported that
gemcitabine radiosensitization was not dependent on
NHEJ and in fact radiosensitization was enhanced in the
absence of an intact NHEJ system [103]. These results
correlate well with cell cycle studies of gemcitabine that
demonstrate maximal radiosensitization occurs in cells
that have progressed into S phase when HR would be
most active [104,105]. However, it is known that cells in
S phase are more radioresistant compared to cells in
other phases of the cell cycle. Also, there does not
appear to be any significant increase in double strand
break formation or repair with gemcitabine and radi-
ation combination in tissue culture models [105,106].
This is in contrast with more recent studies demonstrating
increased γ-H2A.X formation (a marker of double strand
breaks) by gemcitabine and clofarabine in cells with
siRNA silenced Neil1 [107]. Neil1 is a key glycosylase that
initiates BER. Thus, the importance of gemcitabine medi-
ated inhibition of HR in promoting radiosensitization and
the explanation behind enhancement of radiosensitization
in S phase remain to be fully elucidated. In the case of
fludarabine, several publications have shown that it can in-
hibit BER [106,108]. A more recent study by Bulger et al.
showed that the BER associated glycosylase UDG is
upregulated in response to fludarabine in the leukemic cell
line, HL60 [109]. Nevertheless, the consequences of
fludarabines effects on BER in terms of radiosensitization
remain unclear. Finally, a recent study by Stackhouse et al.
examined the combination treatment with clofarabine and
radiation where cell lines from several solid tumors were
pre-treated with clofarabine for 1 hour followed by low
dose IR treatment [56]. The most profound responses to
this combination were seen in the head and neck cancer
cell line SR475, the pancreatic cancer cell line PANC-1,
and the colon cancer cell line HCT-116. The explanation
as to how clofarabine radiosensitizes may relate to its abil-
ity to interfere with the DNA damage response and inhibit
DNA repair [96]. Indeed, it has been reported that incorp-
oration of clofarabine monophosphate into DNA may
serve to inhibit DNA repair [41]. In general more studies
are needed to validate the importance of DNA repair
inhibition in mediating radiosensitization by nucleoside
analogs. As a case in point, cladribine is known to inhibit
DNA repair but it is a poor radiosensitizer.

Role of IR-induced activation of deoxycytidine kinase in
chemo- and radiosensitization
A number of publications have demonstrated that radi-
ation alone can enhance the activity of dCK [110-112].
Interestingly, Csapo et al. show that increased dCK activity
following low dose IR treatment is not a result of changes
in dCK protein levels but rather due to post-translational
modifications such as phosphorylation [110]. Given the
critical role dCK plays in phosphorylating and activating
agents such as gemcitabine, fludarabine, clofarabine,
cladribine, nelarabine (ara-G), and cytarabine (ara-C) one
would predict that cells with higher dCK activity (either
intrinsically or via IR induction) would accumulate higher
levels of active drug. This in turn would lead to enhanced
cell cycle arrest, DNA damage by means of DNA repair
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inhibition or depletion of deoxynucleotide pools depend-
ing on the actions of the nucleoside analog in question. In
support of this idea, Gregoire et al. went one step further
by showing that increases in dCK activity directly correlate
with radiosensitization exhibited by gemcitabine [97].
While these authors were able to demonstrate a tight
correlation between the mRNA levels of dCK and
radiosensitization the correlation between protein levels
and radiosensitization was less robust again suggesting
a role for post-transcriptional or post-translational
modifications in dCK function and activity. The import-
ance of post-translational modification of dCK was sub-
sequently outlined in an eloquent series of studies by
Bontemps and colleagues in which they demonstrated
the role of phosphorylation in activating and stabilizing
dCK kinase activity [50,113-115]. In these studies a
number of candidate phosphorylation sites were identified
including Thr-3, Ser-11, Ser-15, and most importantly,
Ser-74 [50]. How dCK activation mediates the synergism
between nucleoside analogs and radiation remained
unclear until only recently. Our group has established that
dCK can be phosphorylated by the DNA damage respon-
sive kinase ATM on Ser-74, thereby directly linking radi-
ation and dCK activation [51] (Figure 1). We further show
that phosphorylated dCK can interact with and inhibit
cyclin dependent kinase 1 (cdk1) which participates in
governing the transition of cells from the G2 to M phase
[116]. Thus increasing dCK activity via IR could potentiate
synergism by creating a cellular environment favoring
increased phosphorylation and activation of some, but not
all nucleoside analogs [117]. Thus chemosensitization
would occur as a result of the enhanced ability of nucleo-
side analogs to alter nucleotide synthesis and availability,
cell cycle synchronization, and DNA repair processes.
However, it is important to note that this synergism
Figure 1 Activation of dCK after radiation contributes to enhanced ther
radiation causes double strand breaks in DNA and activates the serine/threon
phosphorylates deoxycytidine kinase, leading to a synergistic effect with nucle
transporter and is rapidly phosphorylated to the monophosphate form by act
would not occur uniformly with all nucleoside analogs
as evidenced by documented substrate preferences for
S74 phosphorylated dCK or the S74E mutant [117,118].
Additionally, given the observation that maximal radio-
sensitization occurs when nucleoside analogs are adminis-
tered prior to radiation activation of dCK by IR may
represent a secondary event that propagates synergism
rather than initiate it. Future studies are needed to fully
understand the role that this signaling pathway plays
in chemo- and radiosensitization and, ultimately, its
clinical utility.

Clinical application of deoxycytidine kinase as a
biomarker and drug target
As noted above, many genes involved in DNA repair,
DNA damage response, and activating nucleoside analogs
have been determined to mediate the synergism between
nucleoside analogs and radiation. Assessing how these
genes and their resultant proteins are altered in cancer or
in response to treatment offers the promise of identifying
biomarkers to predict the potential susceptibility of indi-
vidual patients to combination chemotherapy and radio-
therapy. Additionally, gaining understanding of how these
genes function to promote or impair chemosensitization
or radiosensitization could yield insight into how to thera-
peutically enhance these processes using small molecule
or gene therapy approaches. Focusing on deoxycytidine
kinase, we will review the active efforts to identify variants
of dCK that can drive the activation of nucleoside analogs
and then follow this by a discussion of work towards
establishing high-throughput screening methods for iden-
tification of therapeutic modulators of dCK.
Several groups have used pharmacogenomic ap-

proaches to identify genetic variants of dCK. Lamba et al.
conducted an extensive examination of dCK single
apeutic effects of nucleoside analogs. Treatment with ionizing
ine kinase Ataxia-telangiectasia mutated (ATM) which, in turn,
oside analogs. For example, gemcitabine enters the cell via the hENT1
ive, serine 74 phosphorylated dCK prior to incorporation into DNA.
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nucleotide polymorphisms (SNPs) in both European
and African populations [119]. They identified a total of
64 genetic variants of which 3, I24V, A119G, and P122S,
were nonsynonymous changes in the coding region.
Further analysis of these variants revealed that I24V,
A119G, and P122S exhibited significantly reduced abil-
ity to phosphorylate cladribine as compared to wild type
dCK. The expression of these variants was examined
clinically in patients with AML receiving ara-C either in
short infusions or continuously. However, due to the
low numbers of patients with these nonsynonymous
polymorphisms their clinical significance remains un-
clear and further study is needed. A subsequent study
by Kocabas et al. confirmed these results and analyzed
the implications of these and other single amino acid
changes (I24V, A119G, and P122S) on the structural
conformation of dCK [120]. They note that these amino
acid substitutions could alter the local flexibility and
destabilize the conformation of dCK, however, the overall
effect on dCK activity or as a phosphorylation target itself
remain unclear. Li et al. identified an additional SNP in
dCK (rs4308342) located in an intron that appears to be
associated with altered sensitivity of lymphoblastoid cells
from ethnically diverse populations to gemcitabine and
ara-C [121]. These studies and others have helped pry
open the door to discerning the relative contribution of
individual amino acids in the function of dCK though it is
evident that not all mutations in dCK have prognostic
value as biomarkers [122]. Interestingly, none of the mu-
tants identified in these screens had alterations in either
the active site or phosphorylation sites of dCK such as
serine-74. However, several publications have demon-
strated that loss or attenuation of dCK activity can have
profound implications on the activation of gemcitabine
and ara-C. Indeed, independent studies by Saiki et al. and
Ohmine et al. used matched pancreatic cell lines that were
either sensitive or resistant to gemcitabine and then used
gene expression and proteomic analysis approaches to
define the role of dCK in gemcitabine resistance [123,124].
While it is becoming clear that dCK kinase activity is
necessary for activation and efficacy of nucleoside analogs
it is unclear if dCK phosphorylation site mutants are viable
biomarkers or potential drug targets. However, phosphor-
ylated dCK may be useful as a biomarker to gauge the
functionality of dCK following radiotherapy but prior to
administration of nucleoside analogs. Nevertheless, by
gaining a more in depth understanding of how mutations
in dCK alter its conformation and its ability to serve as a
target for phosphorylation, it might be possible to screen
or design small molecules to stimulate activation of dCK.
However, key questions emerge such as: What types of
dCK mutations might activate dCK? Can identification of
dCK mutants with enhanced activity serve as a basis for
small molecule drug design or gene therapy approaches?
To properly address these questions a high-throughput
platform for identifying dCK mutants that have altered
activity is needed. One such approach has been developed
and tested by Rossolillo et al. who tested a retrovirus based
system for generating screening libraries of gene mutants
[125]. To validate their system they generated and identi-
fied mutant versions of dCK which, when over-expressed
in cancer cells, alter susceptibility to gemcitabine. The
most exciting mutant to emerge from this study is G12 a
triple mutant that is altered at amino acids 171, 247, and
249 (E171K, E247K, and L249M). They demonstrate that
although G12 phosphorylates gemcitabine as efficiently as
wild type dCK, the G12 mutant exhibits significantly
diminished ability to phosphorylate the endogenous dCK
target, deoxycytidine as compared to wild-type dCK. Thus
the G12 mutant is less likely to interfere with normal
nucleotide synthesis catalyzed by dCK and instead is more
directed towards gemcitabine activation. This suggests
that the potential exists to modulate dCK to enhance its
ability to phosphorylate nucleoside analog pro-drugs to
active form. They also demonstrate that G12 has superior
phosphorylation kinetics for gemcitabine compared to
either the S74E mutant or the A100V, R104M, D133A
triple mutant which also has altered substrate specificity
[9,118,126]. They posit that because the E247 and L249
are located in the base sensing loop, which is thought to
govern folding of dCK following binding of ATP or UTP,
their mutation may explain the shift in substrate specificity
seen with G12. Furthermore, the E171 residue located in
alpha helix-7, which is involved in dCK dimer formation,
may abrogate dCK dimer formation thus impairing its ac-
tivity. Therefore this approach relies on generation of dCK
mutants and validation of their activity prior to structural
analysis.
An alternative approach that merits discussion uses

insight gained from structural and functional studies of
dCK to guide the design of dCK variants that can be
expressed in cancer cells using gene therapy technology
[127]. In this study, by Neschadim et al. dCK cDNA
mutants were generated that exhibit altered activity and
substrate specificity, and they were packaged them into
lentiviral vectors for delivery to lymphoma or glioblast-
oma cells lines (Jurkat and MOLT-4 or U87mg, respect-
ively). Mutation of dCK at arginine-104 and aspartic
acid-133 have been previously demonstrated to alter the
substrate specificity of dCK to include thymidine and
deoxyuridine [126]. Still other studies have demonstrated
that substitution of a glutamic acid residue in lieu of
serine-74 leads to enhanced dCK activity by mimicking
S74 phosphorylation [50,118,126]. For example, Hazra
et al. sought to ascertain if expressing dCK double
(R104M and D133A) or a triple (R104M, D133A, and
S74E) mutants in cancer cells would increase the sensi-
tivity of dCK to non-natural substrates like pro-drugs
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bromovinyl-deoxyuridine (BVdU) or L-thymidine (LdT)
[128]. The cells transduced with triple mutants were
most sensitive to cell death in response to treatment
with both BVdU and LdT. The glioblastoma cell line
U87mg was most sensitive followed by both lymphoma
cell lines. These studies, therefore, offer proof of concept
that dCK can serve as a potential biomarker or target for
small molecule development.

Conclusions
In summary, a number of prominent nucleoside analogs
have been shown to have a synergistic effect when used
in combination with radiation. The underlying mecha-
nisms behind this synergism remain poorly understood
but may result from inhibition of DNA repair machinery,
inhibition of DNA synthesis, cell cycle redistribution, or
activation of nucleoside kinases such as dCK. Indeed,
many of the currently used nucleoside analogs that have
exhibited synergistic activity with radiotherapy are acti-
vated by dCK. It is well recognized that hematological
malignancies, including many leukemias and lymphomas,
express higher than normal levels of dCK and that this
makes them more “sensitive” to nucleoside analog induced
cell death. However, solid tumors do not exhibit a clear
dCK expression pattern and in many cases they have low
dCK expression levels. Thus, by leveraging recent devel-
opments in our understanding of dCK function and
activation it may be possible to develop pharmacologic
or genetic therapeutic approaches to increase the sus-
ceptibility of these tumors to radiation and antimetabol-
ite combination therapy. Additionally, new insight on
the function of dCK and mechanism of activation has
applicability to nucleoside analogs in the pipeline cur-
rently such as thiarabine and sapacitabine.
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