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Abstract

radiotherapy.

increased accordingly.

Background: 1-{4-[Bis(2-chloroethyl)lamino]phenyl}-3-[2-methyl-5-(4-methylacridin-9-ylamino)phenyljurea (BO-1051)
is an N-mustard DNA alkylating agent reported to exhibit antitumor activity. Here we further investigate the effects
of this compound on radiation responses of human gliomas, which are notorious for the high resistance to

Methods: The clonogenic assay was used to determine the ICso and radiosensitivity of human glioma cell lines
(UB7MG, U25TMG and GBM-3) following BO-1051. DNA histogram and propidium iodide-Annexin V staining were
used to determine the cell cycle distribution and the apoptosis, respectively. DNA damage and repair state were
determined by y-H2AX foci, and mitotic catastrophe was measure using nuclear fragmentation. Xenograft tumors
were measured with a caliper, and the survival rate was determined using Kaplan-Meier method.

Results: BO-1051 inhibited growth of human gliomas in a dose- and time-dependent manner. Using the dosage
at 1Csp, BO-1051 significantly enhanced radiosensitivity to different extents [The sensitizer enhancement ratio was
between 1.24 and 1.50 at 10% of survival fraction]. The radiosensitive G,/M population was raised by BO-1051,
whereas apoptosis and mitotic catastrophe were not affected. y-H2AX foci was greatly increased and sustained by
combined BO-1051 and vy-rays, suggested that DNA damage or repair capacity was impaired during treatment.

In vivo studies further demonstrated that BO-1051 enhanced the radiotherapeutic effects on GBM-3-beared
xenograft tumors, by which the sensitizer enhancement ratio was 1.97. The survival rate of treated mice was also

Conclusions: These results indicate that BO-1051 can effectively enhance glioma cell radiosensitivity in vitro and
in vivo. It suggests that BO-1051 is a potent radiosensitizer for treating human glioma cells.

Background

Malignant gliomas account for approximately 30% of all
intracranial tumors, and of them, glioblastoma multi-
forme (GBM) is considered as the most frequent and
aggressive type. Removal of GBM by surgical resection is
usually not feasible due to the highly diffuse infiltrative
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growth and recurrence rate [1]. A multicenter study has
shown that addition of concurrent temozolomide (TMZ)
to radical radiation therapy improves the survival in
patients who suffered from GBM [2,3]. These studies
have demonstrated an improvement for patients who
received TMZ, compared to those who did not, in the
median survival time and in the 2-year survival rate (14.6
vs. 12 months, 27% vs. 10%, respectively). Unfortunately,
the survival rate remains low using TMZ, and it prompts
investigators to seek new and more effective chemothera-
peutic agents for the treatment of malignant gliomas.
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DNA alkylating agents are used widely for treatment of
a variety of pediatric and adult cancers because the cyto-
toxic effects of these agents can directly modify DNA and
cause DNA lesions [4]. However, the development of new
alkylating N-mustard agents is slow due to their low
tumor specificity, high chemical reactivity and an induc-
tion of bone marrow toxicity [5,6]. To overcome these
drawbacks, one strategy has been to design DNA-
directed alkylating agents by linking the alkylating
pharmacophore to the DNA-affinity molecules (e.g.,
DNA intercalating agents, DNA minor groove binder)
[7,8]. In most cases, the DNA-directed alkylating agents
have more selective, cytotoxic and potential than the cor-
responding untargeted derivatives [8-10]. Among these
agents, the compound BO-0742 exhibited significant
cytotoxicity (107-fold higher) on human lymphoblastic
leukemic cells than its parent analogue 3-(9-acridinyla-
mino)-5-hydroxymethylaniline [9,11].

BO-0742 was found to have a potent therapeutic effi-
cacy against human leukemia and solid tumor cell growth
in vitro. Also, it has a good therapeutic index with leuke-
mia being 10-40 times more sensitive than hematopoietic
progenitors. Administration of BO-0742 at an optimal
dose schedule, based on its pharmacokinetics, signifi-
cantly suppressed the growth of xenograft tumors in
mice bearing human breast and ovarian cancers. How-
ever, BO-0742’s bioavailability is low because it has a nar-
row therapeutic window and is chemically unstable in
mice (half-life < 25 min) [12]. To improve the poor phar-
macokinetics of BO-0742, we have recently synthesized a
series of phenyl N-mustard-9-anilinoacridine conjugates
via a urea linker [13,14]. Of these agents, BO-1051 was
found to be more chemically stable than BO-0742 in rat
plasma (54.2 vs. 0.4 h). BO-1051, an agent capable of
inducing marked dose-dependent levels of DNA inter-
strand cross-linking (ICLs), revealed a broad spectrum of
anti-cancer activities in vitro without cross-resistance to
taxol or vinblastine. Due to BO-1051’s hydrophobic abil-
ity, it can penetrate through the blood-brain barrier to
brain cortex. BO-1051 has been shown to possess thera-
peutic efficacy in nude mice bearing human breast MX-1
tumors and human glioma in vivo [14]. Interestingly, we
found that obvious tumor suppression was observed in
mice and sustained over 70 days without relapse [14].
The results indicated that BO-1051 was more potent
than cyclophosphamide with low toxicity to the host
(15% body-weight drop) suggesting that this agent is a
promising candidate for preclinical studies.

Given that radiotherapy is considered to be the most
effective adjuvant treatment with surgery, we tested if
the therapeutic ability of BO-1051 could be translated
into antitumor activity. In this study, we investigated the
effects of BO-1051 on the radiosensitivity of a panel of
three human glioma cell lines, and we found that
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treatment with BO-1051 at nanomolar concentrations
sensitizes the glioma cells to radiation-induced cellular
lethality. These data indicate that BO-1051 enhances
tumor radiosensitivity in vitro and in vivo. Moreover,
this sensitization correlates with its enhancement arrest
in the radiosensitive cell cycle phase and the delayed
dispersion of phosphorylated histone H2AX (y-H2AX)
foci, which suggests an inhibition of the repair to the
DNA double-strand breaks (DBSs).

Materials and Methods

Cell lines and treatment

This research followed the tenets of the Declaration of
Helsinki. All samples were obtained after patients pro-
vided informed consent. The study was approved by the
Institutional Ethics Committee/Institutional Review
Board of Tri-Service General Hospital. The commercial
available U87MG, and U251MG glioma cell lines as well
as primary GBM cell line (GBM-3), which was isolated
from tumor sample obtained from patient undergoing
surgery for a GBM (World Health Organizing Grade 4
astrocytoma), were grown as attached monolayers in
75-cm” flasks in DMEM media (Invitrogen) supplemen-
ted with glutamate (5 mmol/L) and 10% fetal bovine
serum. Cells were incubated at the exponential growth
phase in humidified 5% CO,/95% air atmosphere at
37°C. The GBM-3 cells used for the experiments had
already undergone > 100 passages. 1-{4-[bis(2-chlor-
oethyl)amino]phenyl}-3-[2-methyl-5- (4-methylacridin-9-
ylamino)phenyl]urea (BO-0151, Figure 1A) was dissolved
in DMSO to a stock concentration of 5 mM and stored
at -20°C. Gamma radiation (ionizing irradiation) was
delivered with a T-1000 Theratronic cobalt unit (Thera-
tronic International, Inc., Ottawa, Canada) at a dose rate
of 1.1 Gy/min (SSD = 57.5 cm).

Assay of BO-1051 cytotoxicity

For these studies, a specified number of single cells were
seeded into a 25-T flask, and after 6 h, to allow for cell
attachment (but no division), the cells were treated with
0, 50, 100, 200 or 400 nM BO-1051. At 0, 6, 12 and
24 h after the BO-1051 addition, the BO-1051-contain-
ing medium was removed; the cells were washed with
sterile PBS, and fresh media was added. After 10 to 14
days of incubation, colonies were fixed with methanol
and stained with Giemsa. The number of colonies con-
taining at least 50 cells was determined, and the plating
efficiency (PE) and surviving fractions (SF) were calcu-
lated. The SF of cells exposed to x nM BO-1051 for t h
was calculated as [15]:

_ PE xnM, thr

SFng,thr - PE
0nM, thr
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Figure 1 Clonogenic survival of human glioma cells treated with BO-1051. (A) Chemical structure of 1-{4-[bis(2-chloroethyl)Jamino]lpheny!}-3-
[2-methyl-5-(4- methylacridin-9-ylamino)phenyl]urea (BO-1051). (B) US7MG, (C) U25TMG and (D) GBM-3 cells were exposed to escalating doses
(50-400 nM) of BO-1051 or vehicle (DMSO). At 6, 12 and 24 h after the addition of BO-1051, the BO-1051- containing medium was removed,
rinsed, and then fed with fresh growth media. Colony- forming efficiency was determined 10-14 days later, and the survival fractions of BO-1051-
treated cells were calculated after normalizing for the plating efficiencies of untreated cells. Points: mean for at least 3 independent experiments;
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This protocol was used in an attempt to eliminate any
effects of trypsinization on post-treatment or post-irradia-
tion signaling/recovery processes [16-20]. Moreover, this
protocol allows for the irradiation of single cells but not
microcolonies, which eliminates the confounding para-
meter of multiplicity and its effects on the radiosensitivity.

Combination of BO-1051 and irradiation

After allowing the cells time to attach, the culture
medium was then replaced with fresh medium that
contained 200 nM BO-1051, and the flasks were irra-
diated 24 h later. Immediately after irradiation, the
growth media was aspirated, and fresh media was
added. Colonies were stained with Giemsa 10 to
14 days after seeding. Survival curves were then

generated after normalizing for the amount of
BO-1051-induced cell death. The radiation SF of cells
pretreated with x nM BO-1051 was calculated as [15]:

SF _ I)Exnfvl,DGy
xnM,DGy — PE
xnM,0Gy

The combined therapeutic effects based on drug and
ionizing irradiation was obtained by the survival frac-
tions measured by separate treatment as reported pre-
viously [21]. The expected effect by two separate
treatments was determined by the formula SFp,g) x SF
(Rad)» Which was compared to the observed survival
fraction.



Chu et al. Radiation Oncology 2011, 6:7
http://www.ro-journal.com/content/6/1/7

Cell-cycle analysis

After treatment, cells were prepared for fluorescence-
activated cell sorting (FACS) to assess the relative distri-
bution in the respective phases of the cell cycle. Cells
were harvested 24 h after of treatment with BO-1051,
pelleted by centrifugation, re-suspended in PBS, fixed in
70% ethanol and stored at -20°C. Immediately before
flow cytometry, the cells were washed in cold PBS (4°C),
incubated in Ribonuclease A (Sigma) for 20 min at
room temperature, labeled by adding an equal volume
of propidium iodide solution (100 pg/ml) and incubated
in the dark for 20 min at 4°C. These samples were mea-
sured (20,000 events collected from each) in a FACSCa-
libur cytometer (BD FACS Caliber; Mountain View,
CA). The data shown are for one experiment, but the
results were reproduced and confirmed in at least three
identical experiments.

Annexin V-Pl apoptosis assay

To evaluate apoptosis as a mechanism of cell death,
approximately 2 x 10° cells were plated in 100-mm
petri dishes. Cells were exposed to 200 nM or higher
concentration (1.2 uM) of BO-1051 prior to irradiation
and were stained at 24 and 48 h postirradiation (2 Gy).
Both adherent and detached cells were collected, centri-
fuged, and double stained with Annexin V-FITC and
propidium iodide (PI). Apoptotic cells were quantified
with flow cytometry using a FACSCalibur cytometer
(BD FACS Caliber, Mountain View, CA).

Immunofluorescent staining for y-H2AX

Cells were treated with or without BO-1051 for 24 h
prior to irradiation (2 Gy) and fed with BO-1051-free
medium, and the average number of foci per cell was
measured beginning at 1 h after irradiation and followed
thereafter for 24 h. At specified times, the media were
aspirated and cells were fixed in 1% paraformaldehyde
for 10 min at room temperature. Paraformaldehyde was
aspirated, and the cells were treated with a 0.2% NP40/
PBS solution for 15 min. Cells were then washed in PBS
twice, and the anti-yH2AX antibody was added at a
dilution of 1:500 in 1% BSA and incubated overnight at
4°C. Again, the cells were washed twice in PBS before
incubating in the dark for 1 h with a FITC-labeled sec-
ondary antibody at a dilution of 1:100 in 1% BSA. The
secondary antibody solution was then aspirated, and the
cells were washed twice in PBS. The cells were then
incubated in the dark with PI (1 pug/ml) in PBS for
30 min, washed twice, and coverslips were mounted
with an anti-fade solution (Dako Corp.; Carpinteria,
CA). Slides were examined with a confocal fluorescent
microscope (Wetzlar, Germany). Images were captured
by a Photometrics Sensys CCD camera (Roper Scientific;
Tucson, AZ) and imported into the IP Labs image
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analysis software package (Scanalytics, Inc.; Fairfax, VA)
running on a Macintosh G3 computer. For each treat-
ment condition, y-H2AX foci were determined in at
least 150 cells.

In vivo tumor model

Six-week-old female nude mice were used in these stu-
dies. Mice were caged in groups of five or less, and all
animals were fed a diet of animal chow and water ad
libitum. All procedures involving animals were per-
formed in accordance with the institutional animal wel-
fare guidelines of the Taipei Veterans General Hospital.
Tumors were generated by injecting 5 x 10° GBM-3
cells subcutaneous (s.c.) into the right hind leg. Irradia-
tion was performed using a T-1000 Theratronic cobalt
unit (Theratronic International, Inc.; Ottawa, Canada)
irradiator with animals restrained in a custom jig.

Tumor growth delay assay

The tumor re-growth delay assay measures the time
required for a tumor to reach a given size post-treatment.
When tumors grew to a mean volume of ~150 mm?®, mice
were randomly assigned to one of four treatment groups:
vehicle control (14 animals), BO-1051 (12 animals), 4 Gy
irradiation (9 animals), or combined BO-1051 and radia-
tion (8 animals). BO-1051 treatment was performed,
which consisted of an intraperitoneal (i.p.) injection proto-
col of 50 mg/kg administered at 3-day intervals over a
6-day period (3 injections on days 0, 3, 6; Q3D x 3). For
irradiation, unanesthetized animals were immobilized in a
lead jig that allowed for the localized irradiation of the
implanted tumors. Gamma radiation was delivered by a
T-1000 Theratronic cobalt unit (Theratronic International,
Inc,; Ottawa, Canada) at a dose rate of 1.1 Gy/min (SSD =
57.5 cm). For the BO-1051-plus-radiation group, BO-1051
(50 mg/kg) was delivered via i.p. injection on days 0, 3,
and 6, with day 0 being the day of randomization. Radia-
tion (4 Gy) was delivered to animals restrained in a cus-
tom lead jig 24 h after the first injection of BO-1051 (day
1 after randomization). Tumor volume is a critical para-
meter in determining radiation-induced growth delay with
smaller tumors appearing more radiosensitive. To ensure
BO-1051-induced growth delay did not bias the results of
the combination treatment (BO-1051 plus 4 Gy), it was
important that the two irradiated groups (4 Gy and BO-
1051 plus 4 Gy) received radiation when the tumors were
approximately the same size. To obtain tumor growth
curves, perpendicular diameter measurements of each
tumor were made every day with digital calipers, and the
volumes were calculated using the formula for volume of
an ellipsoid: 411/3 x L/2 x W/2 x H/2, where L = length,
W = width, and H = height. The time for the tumor
to grow again to ten times the initial volume (about
1500 mm?) was calculated for each animal. Absolute
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tumor growth delay was calculated as the number of days
for the treated tumors to reach ten times the initial tumor
volume minus the number of days for the control group
to reach the same size.

The mean size of tumors receiving the combination
treatment was compared to the mean size of tumors in
mice from each of the other groups (receiving vehicle
control, radiation alone, or BO-1051 alone). The analysis
was done on day 42 after the treatment started because
this was the last day that all animals were still alive. Time
to treatment failure (TTF) was defined as the time from
the initiation of treatment (experimental or control) to
the time a tumor was severely necrotic or had reached a
volume > 1500 mm?. Normalized tumor growth delay is
defined as the time in days for tumors to reach 10 times
the initial volume in mice treated with the combination
of BO-1051 and radiation minus the time in days for the
tumors to reach 10 times the initial volume in mice trea-
ted with BO-1051 only, which was 6.7 days (i.e.,
16 minus 9.3 days).

Statistical analysis

The results are reported as mean + SD. Statistical analy-
sis was performed using a Student’s t-test, one-way
ANOVA test or two-way ANOVA test followed by
Tukey’s test, as appropriate. A P < 0.05 was considered
to be statistically significant.

Results

Determination of the cytotoxicity of BO-1051 on different
human glioma cell lines

To determine the effects of BO-1051 on glioma cell cyto-
toxicity by clonogenic survival, MTT assay was per-
formed in a panel of 3 human malignant glioma cell lines
(U87MG, U251MG and GBM-3). The IC5, (concentra-
tion resulting in cell viability of 50% of control) values of
BO-1051 for U87MG, U251MG and GBM-3 cells were
2.7, 2.5 and 1.5 pM, respectively. However, the
clonogenic survival analysis showed little or no colony
formation for 24 h post-exposure to the concentrations
of BO-1051 > 400 nM. We found that the appropriate
dosage range of BO-1051 for colony formation in these
glioma cell lines was between 50 and 400 nM. The cyto-
toxicity of U87MG, U251MG and GBM-3 cells were sig-
nificantly influenced by BO-1051 in a time-dependent
and dose-dependent manner. The 24-h treatment of
200 nM BO-1051 resulted in SFs of 0.470 + 0.091, 0.485
+ 0.041 and 0.510 £ 0.042 for U87MG@G, U251MG, and
GBM-3, respectively (Figure 1). Because approximately
50% of survival fractions were reached using 200 nM
BO-1051 treatments on each glioma cells at 24 h, we
chose this dose for the following experiments.
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Enhancement of radiosensitivity in glioma cells by BO-1051

To investigate if BO-1051 enhances the cellular sensitiv-
ity to ionizing radiation, the glioma cells were exposed
to BO-1051 for 24 h before irradiation and subjected to
the clonogenic assay. The results showed that the SFs at
different radiation dosages were apparently reduced in
U87MG, U251MG and GBM-3 cells after they were
exposed to BO-1051 (Figure. 2A-C). SFs after 2 Gy of
BO-1051-pretreated cells were significantly lower than
those of untreated cells (Figure 2D). Besides, the SERs
were 1.50 for U87MG, 1.24 for U251MG and 1.31 for
GBM-3 at a 10% cell survival (0.1). At 50% cell survival
(0.5), the SERs were 1.87 for US7MG, 1.83 for U251MG
and 1.68 for GBM-3 (Figure 2A-C, and 2E). As a result,
the radiation survival curves obtained by the clonogenic
assay showed that BO-1051 pretreatment sensitized
human glioma cells to the ionizing radiation. Besides,
Table 1 summarizes the relative reduction in SFs and
compares them with a virtual value, expected for each
of the combination of BO-1051 and irradiation dose.
The actual SF measured for combinations is smaller
than that expected on the basis of the treatment effects
of each modality separately. It indicates a significant
synergistic interaction in all three glioma cells.

Induction of a G,/M phase arrest in glioma cells exposed
to BO-1051

Given that radiosensitivity is distinct in different phases
of the cell cycle, we tested the cell cycle distribution in
BO-1051 treated glioma cells [22,23]. Cells were treated
with BO-1051 for 24 h and then subjected to flow cyto-
metric analysis. As illustrated in the DNA histograms,
BO-1051 treatment significantly disturbed the cell cycle
progression and showed a dramatic increase in Gy/M
phase populations in U87MG cells compared with the
untreated controls (Figure 3A). Quantitative analysis of
the cell-cycle distribution at 24 h post-exposure to
BO-1051 at different concentrations from 200 nM to
1200 nM is shown in Figure 3B-D, which shows that
G,/M phase arrest was caused by pre-treatment with
BO-1051 in a dose-dependent manner for all 3 glioma
cells (Figure 3A-D). Because the G,/M phase is known
as the cell cycle’s most radiosensitive phase [22,23], it
may in part account for the effects of BO-1051 on the
enhancement of radiosensitivity of glioma cell line.

Enhancement of radiosensitivity by BO-1051 treatment is
not caused by apoptosis or mitotic catastrophes in
glioma cells

We next investigated whether BO-1051 enhanced radia-
tion sensitivity of glioma cells was associated with
increase of apoptosis. Cells were exposed to a range of
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Figure 2 The effect of BO-1051 on tumor cell radiosensitivity. Cultures of (A) UZ7MG, (B) U25TMG and (C) GBM-3 cells were exposed to 200 nM
of BO-1051 or DMSO (IR only) for 24 h and irradiated with graded doses of y-rays, rinsed, and fed with fresh growth media. Colony-forming efficiency
was determined 10-14 days later, and survival curves were generated after normalizing for cell killing by BO-1051 alone. Points: mean survival fraction
from at least 3 independent experiments; bars: SD. (D) The survival fraction after 2 Gy (SF), corrected for independent cytotoxic effect of BO-1051, of
human glioma cells treated with 200 nM of BO-1051 or control (DMSO) for 24 h pre-radiation was measured. Values are the mean survival fraction +
SD of at least 3 independent experiments. * p < 0.05. (E) Sensitizer enhancement ratios (SER) of human glioma cells. SERs were calculated at 10% or
50% cell survival (0.1 or 0.5) by dividing the dose of radiation from the radiation-only surviving curve with the corresponding dose from the BO-1051
plus radiation curve.

BO-1051 concentrations (from 200 to 1200 nM) for
24 h, and then were irradiated with 2 Gy of y-rays. The
Annexin V/PI staining was then determined with FACS
analysis. Cells treated with either 200 nM of BO-1051
alone or combined with irradiation exhibited less than

Table 1 Relative reduction in surviving fraction of three
glioma cells due to combination of irradiation and BO-
1051 treatment

Irradiation dose (Gy)

Relative reduction (%)

U87MG U251MG GBM-3
2 417 426 40.6
4 704 45.6 47.0
6 74.2 479 64.3
8 763 50.0 739

Percentage relative reduction of the observed surviving fraction (SF)
compared to the expected SF (calculated on the basis of combing individual
treatment component, each with respective SF value).

5% of apoptosis (Figure 4). Moreover, treatment with
1200 nM BO-1051 significantly induced approximately
20% of apoptosis in all 3 cell lines, but the combined
protocol did not show obvious enhancement on the pro-
portion of apoptotic cell deaths (Figure 4). An increase
in radiosensitivity may be caused by radiation-induced
mitotic catastrophes. Nevertheless, no significant mitotic
catastrophes were detected in glioma cells treated with
both BO-1051 and irradiation up to 72 h (unpublished
data). These data indicate that the BO-1051-mediated
increase in radiosensitivity is not due to the apoptosis
and mitotic catastrophes.

BO-1051 combined with y-rays causes prolonged DNA
damage response in glioma cells

DNA damage is the most important biological effects
caused by ionizing radiation. It has been reported that
the nuclear foci of y-H2AX is one of the canonical
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Figure 3 Effect of BO-1051 on cell cycle profile in human glioma cells. Cultures were exposed to BO-1051 for 24 h before collection and
FACS analysis of the propidium iodide-stained cells. (A) The DNA histograms depict cell cycle phase distributions of U87MG 24 h post-treatment.
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markers for evaluating the level of DNA damage [24].
To investigate if BO-1051 can affect the extent of DNA
damage by y-rays, the formation of y-H2AX foci in cell
nuclei was determined. Cells were treated with or with-
out BO-1051 for 24 h prior to irradiation (2 Gy) and fed
with BO-1051-free medium, and the average number of
foci per cell was measured beginning at 1 h after irradia-
tion and followed thereafter for 24 h. The results
showed that exposure of glioma cells to either BO-1051
or irradiation (2 Gy) resulted in a significant increase of
v-H2AX foci at 1 h that was sustained for 6 h, and then
the y-H2AX foci declined to almost basal level at least
24 h after irradiation or drug removal (Figure 5A and
5B). The combined protocol resulted in a greater num-
ber of y-H2AX foci than either of the individual treat-
ments at 1 or 6 h. However, the number of residual
v-H2AX foci per cell 24 h post-irradiation was greater
in BO-1051 plus irradiation (19.9 = 2.5 per cell)

compared with the number of foci in cells treated with
either irradiation or BO-1051 alone (7.9 + 2.8 and 11.2
+ 1.9 per cell, respectively) (Figure 5A and 5B). Further-
more, the frequency of y-H2AX foci distribution at 24 h
post-irradiation showed that the percentage of > 30 foci
of y-H2AX was higher than additive in BO-1051 plus
irradiation (24.9%) compared with the percentage of foci
in cells treated with either irradiation or BO-1051 alone
(0.3% and 12.0%, respectively). These results suggest
that BO-1051 produces supra-additive and prolonged
effects of irradiation on glioma cells.

BO-1051 delays the growth of xenograft gliomas exposed
to irradiation

To determine if the enhanced radiosensitivity of
BO-1051 treated glioma cells could be translated into an
in vivo tumor model, a tumor growth delay assay using
GBM-3 cells grown s.c. in the hind leg of nude mice
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Figure 4 Apoptotic effects of BO-1051 in combination with irradiation in glioma cells. U87MG, U251TMG and GBM-3 were exposed to
200 nM or higher concentration (1200 nM) of BO-1051 for 24 h and irradiated with 2 Gy, followed by FACS analysis of Annexin V-FITC and PI
staining 24 h later. Control: no treatment; IR: ionizing radiation at 2 Gy; BO: BO-1051; BO+IR: cells exposed to BO-1051 for 24 h and then
irradiation with 2 Gy of y-ray. Values are the means + SD of 3 independent experiments. * p < 0.05.
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was used. Mice bearing s.c. xenografts (~150 mm?®) were
stratified by size and randomized into 4 groups: control,
BO-1051 alone, irradiation alone (4 Gy), or combined
BO-1051 plus radiation. For the BO-1051 treatments,
mice were i.p. injected with dosage at 50 mg/kg on days
0, 3 and 6. The growth rates for the GBM-3 tumors
exposed to each treatment are shown in Figure 6A. For
each group, the time for tumors to grow from 150 to
1500 mm?® (i.e., a 10-fold increase in tumor size) was
calculated using tumor volumes from the individual
mice in each group (mean + SD). The time required for
tumors to reach 10-times the starting volume increased
from 20.2 days for control mice to 29.5 days for BO-
1051-treated mice. Irradiation treatment alone increased
the time to reach 10-times the initial volume to 23.6
days. However, in mice that received the combination
therapy, the time for tumors to reach 10-times the
initial volume increased to 36.2 days, which is signifi-
cantly greater than the individual treatment groups
(Figure 6A; Table 2, p > 0.05). Thus, the growth delay
after the combined treatment was more than the sum of
the growth delays caused by either BO-1051 or radiation
alone. To calculate an SER comparing the tumor radia-
tion responses in mice with and without the BO-1051
treatment, the normalized tumor growth delay was

measured to determine the role of BO-1051 on tumor
growth delay induced by the combination treatment.
The SER of the xenograft gliomas was 1.97 with versus
without the combined treatment of BO-1051 and irra-
diation (Table 2). Thus, BO-1051 alone slows tumor
growth and enhances the effect of radiation, which is
similar to the results obtained in vitro. Finally, the
Kaplan-Meier survival curves of the combined treated
mice revealed a trend toward longer survival in mice
(Figure. 6B). We also noticed that the maximal toxicity
of these agents decreased with body weight, and there
was no more than a 15% weight reduction compared to
the pretreatment body weight. However after cession of
treatment, the body weight recovered (data not shown).

Discussion

Although human GBM is one of the most radio-resis-
tant tumors, radiotherapy remains routinely applied for
patient treatment. Lots of efforts are made to develop
methods for enhancing the radiosensitivity of GBM for
promising therapy. Previous studies have shown that
temozolomide (TMZ) combined with radiation exposure
results in an increase of survival rate in a subset of
human tumors [3,25,26]. Clinical studies also indicate
that delivery of TMZ during radiotherapy increases
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Figure 5 Influence of BO-1051 on the repair of radiation-induced DSBs. GBM-3 cells growing on slides in 35-mm dishes were exposed to
200 nM of BO-1051 for 24 h, irradiated (2Gy), and then fixed at the specified times for immunofluorescent analysis of nuclear y-H2AX foci using
a confocal microscope. (A) Immunofluorescent microscopy images of GBM-3 cells untreated or treated with 200 nM BO-1051 24 h before
irradiation, fixed after 0, 1, 6, 24 h and then stained for y-H2AX foci. (B) Quantitative analysis of y-H2AX foci presented in irradiated cells following
the above treatments. Filled columns: data from vehicle-treated cells; open columns: data from cells exposed to BO-1051. Values are the means
+ SD of 3 independent experiments. * p < 0.05. (C) Distribution of y-H2AX foci numbers per cell for one representative experiment at 24 h after
iradiation. Ctrl: no treatment; IR: ironing radiation at 2 Gy; BO: cells exposed to 200 nM BO-1051; BO/IR: cells exposed to 200 nM BO-1051 for 24
h and then irradiated with 2 Gy of y-rays. Foci were evaluated in 100 nuclei per treatment for each cell type. Values are the means at least of 3
independent experiments.

.

survival rates of GBM patients, which suggests that this
DNA alkylating agent can enhance the radiosensitivity
of GBM [2,27,28]. Based on these previous studies,
more efficient and safe DNA alkylating agents should be
developed to increase the radiosensitivity in human
GBM. Use of BO-1051 for cancer treatment has been
supported by in vitro and in vivo preclinical studies
[3,26]. The data presented here showed that the treat-
ment of primary glioma cells and established cell lines
with BO-1051 resulted in a dose-dependent induction of
clonogenic cell death. It is supposed that BO-1051 can
enhance the radiosensitivity via a synergistic effect since
the survival fractions of combined treatment are lower
than that of each individual treatment on glioma cell.

However, additional studies are required to confirm
that BO-1051 plays a synergistic or additive role on
radiotherapy of gliomas. The anti-tumor and radiosensi-
tizing effects of BO-1051 are encouraging because drugs
showing efficacy against malignant glioma are still
uncommon.

Bifunctional N-mustard alkylating agents, such as BO-
1051, exhibits anticancer activity due to its ability to
produce DNA interstrand and/or intrastrand cross-links
[29,30]. As has been known, bifunctional alkylating
agents induce collapsed replication forks that can lead
to either cell cycle arrest, DNA repair, or apoptosis [31].
For example, the new synthesized alkylating agent
BO-1012 shows anticancer activity on xenograft tumors
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Figure 6 The effects of BO-1051 on radiation-induced tumor growth delay and prolongation of TTF (time to treatment failure) in
nude mice bearing GBM-3 xenografts. When tumors reached 150 mm?, the nude mice with established GBM-3 flank xenografts were
randomized into 4 groups: control (black circle), radiation (white circle), BO-1051 (black triangle) or BO-1051 plus radiation (white triangle).
BO-1051 (50 mg/kg) was delivered via i.p. injection on days O, 3 and 6, where day 0 begins on the day of randomization. Radiation (4 Gy) was
delivered 24 h after the first injection of BO-1051 (day 1 after randomization), which corresponded to the same tumor size. Each group
contained at least 8 mice. (A) Tumor growth rates for each treatment group were plotted as the mean relative tumor volume + SD. Arrows
indicate the time of BO-1051 and irradiation treatment. (B) Kaplan-Meier survival rates of nude mice with GBM-3 flank xenografts for each of the

development of severe necrosis requiring euthanasia.

four treatments is depicted. Survival analysis was monitored daily. Treatment failure was defined as tumor size greater than 1500 mm? or the

that are formed by various human lung and bladder
cancer cells [32]. BO-1051 and its analog(s) also exhibit
similar behavior, and several related synthetic bifunc-
tional N-mustards are under development [33]. Because
BO-1051 contains the inherent lipophilicity for penetra-
tion through blood-brain barrier, it has efficiently
demonstrated the ability to inhibit the growth of xeno-
graft glioma in nude mice. Compared to other clinically
used alkylating agents, such as melphalan and cisplatin,
BO-1051 induced a higher level of ICLs [14]. BO-1051

also enhances the radiosensitivity of human glioma cell
lines.

Although repair mechanisms such as homologous
recombination and nonhomologous end-joining are
important mammalian responses to double-strand DNA
damage, cell cycle regulation is perhaps the most impor-
tant determinant of irradiation sensitivity [22,34]. The
cell cycle is strongly affected by DNA damage, and a
cell’s radiosensitivity depends on cell cycle position and
progression [22]. Conventionally, the G,/M phase is the

Table 2 BO-1051-induced tumor growth delay in GBM-3 xenografts

Treatment group

Tumor growth period, days*

Absolute growth delayt

Normalized growth delay# Enhancement ratio#

Control 20.2
BO-1051 295 93
IR 236 34
BO-1051+IR 36.2 16 6.7 197

* Time for subcutaneous tumors to grow from the initial tumor volume to 10 times (see text).
1 The number of days for the treated tumors to reach 10 times the initial tumor volume minus the number of days for the control group to reach the same size.
# The number of days for the tumors in the BO-1051+IR group to reach 10 times the initial tumor volume minus the number of days for tumors in the BO-1051-

only group to reach the same size.

# Normalized growth delay for the BO-1051+IR group divided by absolute growth delay for the radiation-only group.
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most radiosensitive phase compared to others. Several
chemotherapeutic agents have been reported to enhance
the radiosensitivity of cancer cells by accumulating the
G,/M population, such as paclitaxel, indomethacin,
2-methoxyestradiol and TMZ [3,22,25,35-37]. From the
results in this study, BO-1051 works by partially synchro-
nized glioma cells in the most radiosensitive phase of the
cell cycle, and it is suggested that BO-1051 may be a use-
ful agent for adjuvant therapy on the glioma.

The phosphatidyl-inositol kinase-related protein ATM
(ataxia-telangiectasia mutated), the most proximal signal
transducer initiating cell cycle changes after the DNA
damage/genomic stress [38], can be activated by BO-1051
in a dose-dependent manner in SAS cell line. It also acti-
vates the checkpoint kinase 2 (Chk2) in squamous cell car-
cinoma cell line after exposure to BO-1051 (unpublished
observation). Chk2 activity is necessary for the phosphory-
lation of the dual-specificity phosphatases Cdc25A/C,
which inactivates the enzymes, blocks CDK1 activation
and causes a G, arrest [39]. Furthermore, ATM’s essential
role in DNA damage and repair is highlighted by the
extreme sensitivity to ionizing radiation of cells with defec-
tive ATM [40,41]. It, together with DNA-dependent pro-
tein kinase, phosphorylate the histone y-H2AX foci, which
can be visualized by immunofluorescence microscope as a
discrete nuclear foci reflecting sites of DNA DSBs [42,43].
Although the specific relationship between the appearance
of y-H2AX foci and the repair of DSBs has not been com-
pletely defined, the reduction in the number of y-H2AX
foci in irradiated cells correlates with DNA repair, which
is associated with the radiosensitivity [44-46]. It is also
known that y-H2AX is present in focal aggregates at sites
of double-strand DNA damage and complex with other
important repair molecules. y-H2AX is required for foci
formation for numerous factors including p53, MRN com-
plex (MRE-11, RAD50, and NBS1), and BRCA1 [47].
MRN complex has also been implicated in the repair of
small fraction of DSBs detectable as y-H2AX foci that
remain 24 h post-irradiation [48] Therefore, the observa-
tion that combined BO-1051 plus radiation significantly
increased the levels of y-H2AX foci. Because the pro-
longed expression of radiation-induced y-H2AX foci may
reflect the end result of disparate processes and events
leading to maintenance of unrepaired DSBs, a distinctly
different mechanism may be involved. Whereas the
mechanism of this repair inhibition is not revealed in this
investigation, additional investigations are required to
define the molecular processes responsible for BO-1051-
mediated radiosensitization.

Radiation sensitization could occur through any one of
multiple modes of cell death. Zou et al. observed radio-
sensitization through the promotion of apoptosis [35],
while another research group reported radiosensitization
through a mitotic catastrophe [26,49] or senescence [50].
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However, theses phenomenon were not detected in
glioma cells exposed to BO-1051 following irradiation.
Recently, we found that BO-1051 can induce autophagy
in glioma cell lines (unpublished observation), and sev-
eral lines of evidence have supported that autophagy is
one of the causes of radiosensitization instead of apopto-
sis [51-53]. Therefore, the correlation between autophagy
and radiosensitivity needs to be further investigated.

Given that human GBM usually exhibits high radiore-
sistance, it is necessary to search for a specific radiosen-
sitizer to enhance the radiosensitivity of GBM during
radiotherapy. Kil et al. have demonstrated that TMZ
may be used as a radiosensitizer because it can enhance
the radiosensitivity of U251MG cells formed xenograft
tumors [26]. Nevertheless, we found that TMZ was
neither able to increase the radiosensitivity of xenograft
tumors derived from GBM-3 cells nor able to delay
tumor growth and improve animal survival after treat-
ment (unpublished observation). Therefore, TMZ may
exhibit cell specific effects for the treatment of different
sources of human GBM. However, BO-1051 enhances
the radiosensitivity of various glioma cell lines, as well
as that of the corresponding xenograft tumors formed
by GBM-3 cells. These results suggest that BO-1051 is a
radiosensitizer with broader effects on different human
GBM, and it may possess a clinical potential in the ther-
apeutic strategy for treating malignant gliomas.

Conclusions

GBM is the most malignant primary brain tumor in
adults, but the effective therapeutic strategies remain
under investigation. BO-1051 has been shown to inhibit
the growth of gliomas. Here we further demonstrate
that BO-1051 can significantly enhance the radiosensi-
tivity. The enhanced radiosensitivity was found to be
associated with G,/M phase arrest as well as the sus-
tained DNA damage. In vivo studies further demon-
strated that BO-1051 enhanced the radiotherapeutic
effects on GBM-3-beared xenograft tumors. In this
model, the combination of BO-1051 plus radiation pro-
duced the best response in terms of both local control
and survival. These data suggest that BO-1051 provides
a new strategy to improve therapeutic gain for radiation
therapy.
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