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Abstract

Background: To assess the value of diffusion weighted imaging (DWI) as an early surrogate parameter for
treatment response of colorectal liver metastases to image-guided single-fraction 192Ir-high-dose-rate brachytherapy
(HDR-BT).

Methods: Thirty patients with a total of 43 metastases underwent CT- or MRI-guided HDR-BT. In 13 of these
patients a total of 15 additional lesions were identified, which were not treated at the initial session and served for
comparison. Magnetic resonance imaging (MRI) including breathhold echoplanar DWI sequences was performed
prior to therapy (baseline MRI), 2 days after HDR-BT (early MRI) as well as after 3 months (follow-up MRI). Tumor
volume (TV) and intratumoral apparent diffusion coefficient (ADC) were measured independently by two
radiologists. Statistical analysis was performed using univariate comparison, ANOVA and paired t test as well as
Pearson’s correlation.

Results: At early MRI no changes of TV and ADC were found for non-treated colorectal liver metastases. In
contrast, mean TV of liver lesions treated with HDR-BT increased by 8.8% (p = 0.054) while mean tumor ADC
decreased significantly by 11.4% (p < 0.001). At follow-up MRI mean TV of non-treated metastases increased by
50.8% (p = 0.027) without significant change of mean ADC values. In contrast, mean TV of treated lesions
decreased by 47.0% (p = 0.026) while the mean ADC increased inversely by 28.6% compared to baseline values
(p < 0.001; Pearson’s correlation coefficient of r = -0.257; p < 0.001).

Conclusions: DWI is a promising imaging biomarker for early prediction of tumor response in patients with
colorectal liver metastases treated with HDR-BT, yet the optimal interval between therapy and early follow-up
needs to be elucidated.

Background
The liver with its dual blood supply is a predisposed
organ for metastatic disease [1]. Colorectal carcinoma
(CRC) represents the most frequent malignancy with
isolated hepatic metastases [2]. Hepatic resection has
become the standard of care and has been shown to
lead to a significant improvement of long-term survival,

however curative resection is possible in less than 25%
of the patients with isolated hepatic metastases [3]. For
unresectable metastases selective internal radiation ther-
apy (SIRT) and radiofrequency ablation (RFA) have
been shown to be efficient treatment alternatives [4,5].
Image-guided single-fraction 192Ir-high-dose-rate bra-

chytherapy (HDR-BT) is a high precision percutaneous
ablation technique which has been shown to yield pro-
mising results with regards to safety and efficacy in the
treatment of unresectable colorectal liver metastases
[6-8]. Precise application of high irradiation doses to
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tumor tissue with steep dose gradients resulting in
sparing of adjacent liver parenchyma allows this techni-
que to be applied repeatedly for treatment of recurrent
hepatic metastases [9,10]. Nonetheless, it would be of
great benefit to be able to evaluate treatment response
as early as possible. This would be particularly impor-
tant in individual cases in which irradiation doses have
to be reduced because of diminished functional hepatic
reserve or adjacent organs at risk such as stomach or
intestine [11]. Early response evaluation in such patients
would be of major clinical significance to allow for
prompt modification of anticancer treatment, e.g.
repeated HDR-BT or additional radiofrequency ablation
in underdosed regions, and avoid unnecessary treatment
delays.
Diffusion-weighted imaging (DWI) supplies informa-

tion of water proton mobility [12,13]. This can be
employed to assess the microstructural organization of a
tissue like cell density, cell membrane integrity and ulti-
mately cell viability which affect water diffusion proper-
ties in the extracellular space [14]. Liver DW MR
imaging has in the past been hampered by technical
challenges, mostly related to motion sensitivity and eddy
currents [15]. However, owing to improvement, the
technique has also successfully been used in the liver to
predict and monitor a variety of anticancer therapies
[16-21]. The purpose of this study was to test the
hypothesis that DWI can predict tumor response in
patients with colorectal liver metastases as early as
2 days after interstitial HDR-BT.

Methods
Patient population
The study was approved by the local institutional review
board and written informed consent was obtained from
each patient. 30 patients (14 women and 16 men; mean
age 65.6 years; range: 43 - 84 years) with a total of 43
unresectable colorectal metastases underwent HDR-BT
in a total of 37 sessions. Sixteen patients were found
surgically unresectable due to unfavourable anatomic
localization (bilobar metastases, infiltration of liver ves-
sels), 10 patients had limited extrahepatic disease, and 4
patients presented with comorbidities which excluded
resection.
Seven patients underwent previous liver surgery, 25

patients were previously treated with chemotherapy, and
two patients received adjuvant chemotherapy within the
follow-up period. The follow-up MRI data of these two
patients was excluded from analysis. In 13 of these
patients, who presented with more than one colorectal
liver metastasis, a total of additional 15 lesions were
identified which were not treated at the initial session
(mean time interval between HDR-BT sessions: 40 days;
range: 26 - 66 days). In order to minimize the risk of

hepatic toxicity patients with multiple metastases were
treated in sequential HDR-BT sessions. These 15 lesions
served as control in order to compare changes in tumor
volume (TV) and apparent diffusion coefficient (ADC)
between treated and non-treated colorectal liver metas-
tases. Patients with tumor diameters less than 1 cm, or
poor image quality, e.g. respiratory motion or pulsation
artifacts, in which valid quantification of the mean ADC
was questionable were excluded from the study.

Image-Guided Interstitial HDR Brachytherapy
Brachytherapy catheters were positioned in analgoseda-
tion using either CT fluoroscopy (n = 20; Aqilion 16,
Toshiba medical systems, Otawara, Tochigi, Japan) or
high field open MRI guidance (n = 23; Panorama, Philips
Healthcare, Best, the Netherlands) based on conspicuity
of the metastases in either imaging modality. Patients
received 0.1 ml/kg body weight of a 0.25 mol/L solution
of Gd-EOB-DTPA (Primovist, BayerSchering, Berlin,
Germany) prior to MRI guided catheter placement to
improve tumor visualization, for which a T1-weighted
gradient echo sequence (T1 FFE; TR = 11 ms, TE = 6 ms,
flip angle = 35°, section thickness of 8 mm, image acqui-
sition every 1.1 s) was used. For adequate coverage of the
target volume one catheter was placed per 1 - 2 cm
tumor diameter which resulted in a mean of 2.5 ± 1.8
catheters (range: 1 - 6 catheters) utilized per intervention
depending on tumor size and configuration. After cathe-
ter positioning, either contrast enhanced multi-slice CT
(collimation: 16 × 0.5 mm, slice thickness: 1 mm; table
feed: 5.5 mm/rotation; 90 ml Imeron 300; flow, 3 ml/s;
start delay 70 s) or T1-weighted fat signal saturated 3D
high resolution isotropic volume examination (THRIVE;
TR = 5.4 ms, TE = 2.6 ms, flip angle = 12°, section thick-
ness of 3 mm) were acquired to depict the exact position
of brachytherapy catheters in relation to tumor extension
for treatment planning (Figure 1a). This was performed
with the Oncentra-MasterPlan, BrachyModul planning

Figure 1 Illustration of MR-guided HDR-BT and 3D dosimetry.
77-year-old man with colorectal liver metastasis in segment VII
scheduled for high-dose-rate brachytherapy (HDR-BT). The
implantation of one brachytherapy catheter was performed under
MRI guidance (A). The tumor enclosing dose (D100) was 21.8 Gy (B).
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software package (Nucleotron, Veenendaal, the Nether-
lands; Figure 1b). The HDR afterloading system (micro-
Selectron Digital V3, Nucleotron, Veenendaal, the
Netherlands) employed a 192Ir point source of 10 Ci (370
GBq). The minimal target dose prescribed for colorectal
metastases was 19.4 ± 3.1 Gy (range: 10.3 - 24.0 Gy).

MR Imaging Protocol
Magnetic resonance imaging was performed with a 1.5
T MR system (Gyroscan, Intera, Phillips Medical Sys-
tems, Best, The Netherlands) employing a SENSE torso
surface coil. Imaging was performed at three time
points: Baseline MRI was performed at a mean of 5 days
(range: 0 - 36 days) prior to CT- or MRI-guided HDR-
BT. All but one patient received early MRI one to three
days after HDR-BT. Another patient was scanned five
days after treatment. Follow-up MRI was performed a
mean of 79 days (range: 36 - 120 days) after HDR-BT.
Unenhanced T1-weighted gradient echo (TR = 211

ms, TE = 5 ms, 350-mm FOV, 256 × 144 matrix,
SENSE factor 2, section thickness 8 mm) and T2-
weighted fast spin echo (TR = 1,600 ms, TE = 100 ms,
flip angle = 80°, 350-mm FOV, 384 × 196 matrix,
SENSE factor 2, section thickness 8 mm) axial imaging
were performed before DWI and Gd-EOB-DTPA con-
trast medium administration.
Breath-hold axial single shot echo planar (EPI) DWI

was acquired using the following parameters: TR = 1850
ms; TE = 68 ms; b factors 0 and 500 s/mm²; 112 × 111
matrix size, 350-mm FOV; section thickness 8 mm;
NSA 2; half-scan factor 0.608. Twelve sections through
the liver were acquired in each 20-s breath-hold, and
the entire liver (from the level of the diaphragm to the
inferior edge of the liver) was typically evaluated in two
to three breath-holds (Figure 2a). ADC maps were cal-
culated on a voxel-by-voxel basis with an implemented
algorithm according to the following equation:

ADC (mm2s−1) = [ln(S0Sb)]/b

in which S0 and Sb represent the signal intensities of
the images with different gradient b factors, and b is the
difference between gradient b factors (Figure 2b).
Then, 0.1 mmol/kg body weight of Gd-EOB-DTPA

was administered with an infusion rate of 1.5 ml/s fol-
lowed by a 30-ml saline flush. THRIVE images were
acquired with the following parameters: TR = 3.9 ms,
TE = 1.9 ms, flip angle = 10°, 350-mm FOV, 192 × 136
matrix, SENSE factor 2, section thickness 6 mm, spectral
adiabatic inversion recovery (SPAIR). In order to mini-
mise differences in contrast media circulation time, the
first post-contrast (arterial phase) sequence was started
manually by using the bolus tracking technique at the

Figure 2 Baseline MRI preceding HDR-BT . Pre-treatment
diffusion-weighted image (DWI) with b = 500 s/mm2 (A),
corresponding apparent diffusion coefficient (ADC) map (B) and
T1w Gd-EOB-DTPA enhanced MR image in hepatocyte-selective
(hepatobiliary) phase (C) of the same patient as in Figure 1 depict
the colorectal metastasis in liver segment VII with a mean ADC of
1.29 × 10-3 mm2s-1 and a mean volume of 23.3 cm3 (arrow).
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time when contrast agent reached the ascending aorta,
typically 14-17 s after the start of injection. For subse-
quent acquisitions, intervals allowing patient’s free
breathing were placed between the arterial and portal
venous phase (20 s) and the portal venous and equili-
brium (i.e. interstitial) phase (40 s), respectively.
THRIVE as well as T1-weighted 2D gradient echo with
selective water excitation (WATS) images (TR = 131
msec, TE = 5 msec, flip angle = 70°, 350-mm FOV, 256
× 135 matrix, SENSE factor 2, section thickness 8 mm)
were acquired 20 min after contrast material administra-
tion at the hepatocyte-selective (hepatobiliary) phase
(Figure 2c).

Tumor Volume Assessment and ADC Calculation
Assessment of tumor areas was performed with the
OsiriX imaging software version 3.6.1. Tumor borders
were segmented manually on transversal Gd-EOB-
DTPA enhanced THRIVE images by two independent
investigators. The mean of the volumetric measurements
was taken as representative TV for each lesion. TV was
expressed by OsiriX in cubic centimeters (cm3).
For ADC calculation up to three slices of the ADC

map depicting the largest tumor diameter were selected,
depending on the volume of the tumor. In each slice a
region of interest (ROI) was delineated according to the
tumor geometry. The border of the ROI was placed in
the tumor periphery close to the tumor margin, so that
the ROI encompassed almost the whole tumor area
(Figure 3). The measurements were performed indepen-
dently by two experienced investigators and the mean of
the measurements was recorded as representative ADC
value for each lesion. Initial and follow-up images were
matched and ADC calculations were performed on cor-
responding sections on follow-up MRI (Figure 4).

Statistical Analysis
SPSS, version 17.0 (Chicago, IL) was used for statistical
analysis. Interobserver agreement was assessed with
Cohen’s Kappa (� ≤ 0.40 poor agreement, � = 0.41 -
075 good agreement, � ≥ 0.76 excellent agreement).
To discuss the treatment effect, we performed a univari-

ate comparison between treated and non-treated colorec-
tal metastases with regards to changes in mean ADC and
TV at early and follow-up MRI compared to baseline MRI
using the t test (Welch test, Satterthwaite’s approximation
to compute the degrees of freedom).
After that we performed an ANOVA with the adjusted

F-Test by Greenhouse-Geisser to get a global test for
time effects in each of the two groups. Paired t test with
Bonferroni correction for multiple testing was applied to
test the significance of the differences of treatment
induced changes of ADC values and TV between early

Figure 3 Early MRI 3 days after HDR-BT . Early DWI (A) and
corresponding ADC map (B) performed 3 days after HDR-BT (same
patient as in Figure 1) reveal a decrease in mean ADC by 27.1% to
0.94 × 10-3 mm2s-1. The ROI within the lesion indicates an ADC
value of 1.09 × 10-3 mm2s-1 in this slice of the ADC map (arrow).
T1w Gd-EOB-DTPA enhanced MR image in hepatobiliary phase (C)
indicates no relevant change in size of the treated lesion (24.1 cm3).
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and follow-up MRI compared to baseline MRI. The
correlation between the change of the mean ADC and
TV was expressed with the Pearson’s correlation coeffi-
cient r. A two-tailed p-value of 0.05 was set to be the
level of statistical significance.

Results
There was an excellent interobserver agreement between
the two readers with a kappa coefficient of 0.93 for the
assessment of TV and 0.89 for ADC values.
At baseline, mean TV of treated colorectal liver

metastases was 62.2 cm3 (range: 0.5 - 786.2 cm3) while
mean tumor ADC was 1.75 × 10-3mm2s-1 (range: 0.65 -
3.22 × 10-3mm2s-1). In non-treated lesions mean TV
was 50.0 cm3 (range: 2.3 - 136.9 cm3) with a mean
tumor ADC of 1.88 × 10-3mm2s-1 (range: 1.40 - 2.67 ×
10-3mm2s-1). The difference between treated and non-
treated lesions with regards to mean TV and mean
tumor ADC at baseline was non significant (p> 0.25).
The change in mean TV (p = 0.007) and mean tumor

ADC (p < 0.001) differed significantly between treated
and non-treated colorectal liver metastases at early MRI.
No changes of TV (50.2 cm3; range: 2.3 - 140.6 cm3) as
well as mean tumor ADC (1.90 × 10-3 mm2s -1; range:
1.41 - 2.64 × 10-3mm2s-1) were found for the non-trea-
ted lesions (Figure 5 and 6). In contrast, mean TV of
colorectal liver metastases treated with HDR-BT
increased by 8.8% to 67.7 cm3 (range: 0.5 - 886.0 cm3),

Figure 4 Follow-up MRI. DWI (A) and ADC map (B) performed 105
days post intervention (same patient as in Figure 1) show a rise of
mean tumor ADC of 75.2% to 2.26 × 10-3 mm2s-1 (arrow). This
finding correlates with a decrease in tumor volume by 90.6% (2.2
cm3), depicted in T1w Gd-EOB-DTPA enhanced MR image in
hepatobiliary phase (C). The circular hypointense region around the
treated lesion in (C) indicates the area of irradiation induced
reversible hepatocyte dysfunction.

Figure 5 Boxplot depicting changes of mean volume of non-
treated and treated tumors at early and follow-up MRI
compared to baseline MRI. Boxplot shows changes of mean tumor
volume (TV) of non-treated (*: p = 0.027) and treated colorectal liver
metastases (*: p = 0.026) 2 days (early MRI) as well as 3 months
(follow-up MRI) after HDR-BT as compared to baseline MRI.

Wybranski et al. Radiation Oncology 2011, 6:43
http://www.ro-journal.com/content/6/1/43

Page 5 of 8



but only a trend towards a statistically significant differ-
ence was observed (p = 0.054; Figure 5). Remarkably,
mean tumor ADC of treated colorectal liver metastases
decreased significantly by 11.4% to 1.55 × 10-3 mm2s -1

(range: 0.64 - 2.60 × 10-3mm2s-1; p < 0.001; Figure 6).
The change between mean TV and mean tumor ADC
of the treated lesions did not differ significantly between
one and three days (p = 0.708 and p = 0.945).
The change in mean TV (p = 0.002) and mean tumor

ADC (p < 0.001) differed significantly between treated
and non-treated colorectal liver metastases at follow-up
MRI. At follow-up MRI mean TV of non-treated color-
ectal liver metastases increased significantly by 50.8% to
75.4 cm3 (range: 10.2 - 170.3 cm3) as compared to base-
line (p = 0.027; Figure 5). Mean tumor ADC at the time
of follow-up MRI was 1.92 × 10-3 mm2s -1 (range: 1.32 -
3.23 × 10-3mm2s-1), which resembled a non significant
change of only 1.0% (p> 0.9; Figure 6). In contrast,
mean TV at follow-up MRI of colorectal liver metastases
treated with HDR-BT decreased by 47.0% to 33.0 cm3

(range: 0.5 - 397.8 cm3) as compared to baseline (p =
0.026; Figure 5). This reflected a local tumor control
rate of 97.7% with absence of progression in 40 of 41
treated lesions. The mean tumor ADC increased signifi-
cantly by 28.6% to 2.25 × 10-3 mm2s -1 (range: 0.72 -
3.31 × 10-3mm2s-1) as compared to baseline (p < 0.001;
Figure 6). Pearson’s correlation indicated a weak but sta-
tistically significant linear relationship between the

change of mean TV and mean tumor ADC of r = -0.257
(p < 0.001; Figure 7). Hence, differences in ADC were
inversely correlated with morphological changes.

Discussion
Our study demonstrated HDR-BT to be highly efficient
for the treatment of unresectable colorectal liver metas-
tases [8,10,22,23]. Furthermore, tumor size reduction
was inversely correlated with a significant increase in
mean tumor ADC values after 3 months. These results
are well in agreement with the current understanding of
therapy induced changes assessed by DWI: effective
anticancer treatment results in tumor lysis, loss of cell
membrane integrity, increased extracellular space, and,
therefore, an increase in water diffusion [24,25]. Our
results were also in accordance with results of previous
studies of primary and secondary liver tumors, which all
have shown an increase in ADC after a number of
different therapeutic modalities [16-21].
On early MRI performed in mean 2 days after HDR-

BT, DWI was able to depict tumor response as only in
treated lesions mean tumor ADC values decreased sig-
nificantly. A slight increase in TV accompanied the
decrease in ADC (compare Figures 5 and 6). How may
this decrease in mean tumor ADC and increase in TV
be explained? Current models of tumor response postu-
late cell swelling to occur soon after initiation of antic-
ancer therapy. This can lead to a transient decrease in

Figure 6 Boxplot depicting changes of mean ADC of non-
treated and treated tumors at early and follow-up MRI
compared to baseline MRI. Boxplot illustrates changes of mean
ADC of non-treated and treated colorectal liver metastases 2 days
(early MRI) as well as 3 months (follow-up MRI) following HDR-BT as
compared to baseline MRI (*: p < 0.001).

Figure 7 Scatter plot depicting the relationship between
changes of mean tumor volume and mean tumor ADC at
follow-up MRI compared to baseline MRI. Scatter plot depicts
the relationship between changes of mean tumor volumes and
mean ADC values of colorectal liver metastases 3 months after
treatment with HDR-BT as compared to baseline MRI. A decrease in
tumor size is inversely associated with an increase in ADC. Pearson’s
correlation indicated a weak but statistically significant linear
relationship of r = -0.257 (p < 0.001).
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tumor ADC [14,24,26]. Such cellular changes have been
recognized as an early hallmark of cellular necrosis
[27-29]. In HDR-BT applied doses in next proximity to
the brachytherapy catheters can exceed 100 Gy inducing
even immediate cell lysis [30,31]. Additionally, irradiation
compromises tumor microvasculature by causing
endothelial damage at an early stage [32]. Endothelial
damage may lead to increased transient vascular perme-
ability to macromolecules like albumin, which can
become insoluble in the interstitium [33-36]. Consecutive
restriction of extracellular microcirculation leads to a
decrease in ADC. Restriction of the extracellular micro-
circulation in turn may compromise microperfusion
through compression of capillaries and terminal lymph
vessels [34]. As DWI provides simultaneous information
on diffusion as well as microperfusion this effect may
also have contributed to this early decrease in mean
tumor ADC [37-39]. Cell swelling and transudation of
plasma components into the extravascular-extracellular
space of the tumor are also the most likely mechanisms
responsible for the transient increase in TV.
Obviously, the timing of the evaluation of tumor

response after the start of treatment is a key issue. For
the present study, we chose to perform MRI including
DWI very early at a median of 2 days following HDR-
BT. Thus, we were enabled to obtain first information
on the treatment response before the patient was dis-
charged, which is routinely 2 to 3 days after HDR-BT at
our institution. Although decrease in mean tumor ADC
of treated colorectal liver metastases at early MRI was
significant, the observed range of ADC values was rela-
tively wide. Thus, at this early interval after HDR-BT
this difference was not distinct enough to base clinical
decisions in individuals exclusively on these findings.
Perhaps a larger time interval of 1-2 weeks would have
been superior, but we did not want to prolong hospitali-
zation of these advanced cancer patients. Hence, larger
clinical studies have to confirm the ability of DWI to
identify treatment response to anticancer therapy and
identify the best time point to perform early MRI,
before inferences can be drawn that influence the thera-
peutic strategy.

Conclusions
In conclusion, DWI is a promising imaging biomarker
for early prediction of tumor response in patients with
colorectal liver metastases treated with HDR-BT, yet the
optimal interval between therapy and early follow-up
needs to be elucidated.
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