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Apoptosis induction and tumor cell repopulation:
The yin and yang of radiotherapy
Kirsten Lauber1*, Luis E Munoz2, Christian Berens3, Verena Jendrossek4, Claus Belka1 and Martin Herrmann2

The induction of tumor cell death is a central goal of
radiotherapy. Surprisingly, a recent study sheds new light
on this process, and the results presented by Huang et al.
strongly question the benefit of radiation-induced apopto-
sis for the outcome of cancer radiotherapy.
In their study, Huang and coworkers describe that

induction of apoptosis by radiotherapy stimulates rapid
tumor cell repopulation - a process crucially dependent
on caspase 3 activity [1]. These findings are of immense
relevance for the clinical use of radiotherapy, particu-
larly when combined with targeted agents aiming at
radiosensibilization and enhanced apoptosis induction
[2-8]. In contrast to the results presented by Huang et
al., previous work has convincingly demonstrated that
the increased induction of apoptotic cell death, for
example by the combination of agonistic TRAIL antibo-
dies with radiation, results in a pronounced benefit for
long term tumor control in a colorectal xenograft model
[9-11]. Parallel in vitro studies have revealed that
enhanced caspase-mediated apoptosis is the underlying
mechanism for the improved eradication of clonogenic
tumor cells [10,12]. Thus, the effect described by Huang
and coworkers should be considered as a repopulation
mechanism, which is of importance under specific, cur-
rently unknown circumstances. In this regard, it can be
speculated that the balance between the apoptotic net
cell kill, and the PGE2-driven tumor cell survival and
repopulation accounts for the reported discrepancies.
Nevertheless, the study by Huang and coworkers is

highly interesting, in particular because of the elegant
experiments, with which the signaling cascade of apop-
tosis-induced tumor cell repopulation was unraveled.
The downstream mechanisms identified by Huang et al.
involve the caspase 3-dependent cleavage and activation
of iPLA2 and the subsequent production of PGE2. Dur-
ing radiation-induced cell death in vitro PGE2 was
shown to be released by tumor cells as well as by

fibroblasts. In vivo (in experimental mouse models),
both tumor and tumor stroma cells reportedly contribu-
ted to rapid tumor cell repopulation by few residual
tumor cells in response to radiotherapy.
We would like to point out that the tumor stroma

contains a highly interesting cell population, which
might contribute to or even dominate the tumor-
growth-stimulating PGE2 production: macrophages that
govern the elimination of apoptosing cells and instigate
tissue healing by producing a clearance-related cytokine
milieu, including PGE2 [13-15]. Of note, Huang and
coworkers observed that more macrophages were pre-
sent in irradiated (apoptotic) tumors than in non-irra-
diated ones. These phagocytes have presumably been
recruited by apoptotic cell-derived find-me signals, such
as nucleotides and lysophosphatidylcholine, which - akin
to PGE2 - are released in a caspase 3- or caspase 3- plus
iPLA2-dependent manner, respectively [16-19]. Caspase
3 apparently is a key player in this context. So it should
be taken into consideration that caspase 3 controls
more processes than the release of PGE2 or phagocyte-
recruiting attraction signals by apoptotic cells. Caspase 3
also shifts the balance between apoptosis, necrosis and
autophagy as described by Huang et al., and orchestrates
the central features of apoptosis, which have profound
impact on macrophage activation and cytokine produc-
tion after the engulfment of apoptotic cells. As such,
externalization of phosphatidylserine, bleb formation
and internucleosomal DNA fragmentation, known to be
crucial for the subsequent anti-inflammatory cytokine
production by macrophages [20-22], have been reported
to depend on caspase 3 activity during apoptosis
[23-27]. Thus, caspase 3-positive apoptosing cells recruit
more macrophages, are more efficiently phagocytosed,
and induce a stronger anti-inflammatory, wound-healing
and growth promoting phagocyte response, including
PGE2 production, than their caspase 3-negative counter-
parts. This might contribute or translate to the clinical
observation by Huang et al. that elevated expression
levels of activated caspase-3 were associated with a poor
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outcome in two patient cohorts with head and neck car-
cinoma or with advanced stage breast carcinoma.
Overall, Huang and coworkers suggest a scenario, in

which the caspase 3-driven iPLA2-dependent PGE2 pro-
duction by irradiated tumor and tumor stroma cells
plays a pivotal role for radiation-induced tumor cell
repopulation and for poor therapeutic outcome. We
would like to add the clearance of apoptosing cells by
macrophages, and the subsequently produced clearance-
related anti-inflammatory milieu, including PGE2, to this
model (Figure 1). Intriguingly, in their final step both
processes rely on cyclooxygenase activity, thus re-open-
ing the therapeutic perspective of cautious cyclooxygen-
ase inhibition as an adjuvant to radiotherapy [28-30].
Up to now several clinical trials have documented that a
safe combination of cyclooxygenase inhibitors (cele-
coxib) and radiotherapy is feasible, yet most of the trials
were not adequately powered to detect meaningful dif-
ferences in tumor control [31,32]. Thus, further clinical
trials, in particular phase III studies, are required to
shed light onto this issue. In the same line, it should be
addressed, whether caspase inhibition (upstream of
PGE2 production) in combination with radiotherapy dis-
plays a benefit for the overall therapeutic outcome -
provided that tumor cell systems utilizing the caspase 3-

dependent, PGE2-driven tumor cell repopulation can
reliably be identified.
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