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Abstract

Background: To analyse limits and capabilities in dose calculation of collapsed-cone-convolution (CCC) algorithm
implemented in helical tomotherapy (HT) treatment planning system for thorax lesions.

Methods: The agreement between measured and calculated dose was verified both in homogeneous (Cheese
Phantom) and in a custom-made inhomogeneous phantom. The inhomogeneous phantom was employed to
mimic a patient’s thorax region with lung density encountered in extreme cases and acrylic inserts of various
dimensions and positions inside the lung cavity. For both phantoms, different lung treatment plans (single or
multiple metastases and targets in the mediastinum) using HT technique were simulated and verified. Point and
planar dose measurements, both with radiographic extended-dose-range (EDR2) and radiochromic external-beam-
therapy (EBT2) films, were performed. Absolute point dose measurements, dose profile comparisons and
quantitative analysis of gamma function distributions were analyzed.

Results: An excellent agreement between measured and calculated dose distributions was found in homogeneous
media, both for point and planar dose measurements. Absolute dose deviations <3% were found for all considered
measurement points, both inside the PTV and in critical structures. Very good results were also found for planar
dose distribution comparisons, where at least 96% of all points satisfied the gamma acceptance criteria (3%-3 mm),
both for EDR2 and for EBT2 films. Acceptable results were also reported for the inhomogeneous phantom. Similar
point dose deviations were found with slightly worse agreement for the planar dose distribution comparison: 96%
of all points passed the gamma analysis test with acceptable levels of 4%-4 mm and 5%-4 mm, for EDR2 and EBT2

overestimate the measured dose around 4-5%.

films respectively. Lower accuracy was observed in high dose/low density regions, where CCC seems to

Conclusions: Very acceptable accuracy was found for complex lung treatment plans calculated with CCC
algorithm implemented in the tomotherapy TPS even in the heterogeneous phantom with very low lung-density.

1. Introduction
Image-guided intensity modulated radiation therapy (IG-
IMRT) techniques are becoming more popular due to
the possibility to create and monitor escalated dose dis-
tributions highly conformed to irregular-shaped targets.
The implementation of such new technology requires a
precise and accurate dose calculation algorithm which
can generate reliable dose distributions and dose-volume
information for treatment planning calculation and
evaluation.

An ideal dose calculation algorithm should take into
account relative electron density and dimensions of
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inhomogeneous media, electronic disequilibrium for
high energy photon beams and electron transport at
interfaces between media of different densities [1].
Monte Carlo (MC) simulation is well known as the
most accurate algorithm for dose calculation in the pre-
sence of inhomogeneous media [2-4]. However, other
semi-empirical dose calculation algorithms are generally
clinically implemented and used in the treatment plan-
ning systems [5,6]. Convolution/superposition models
are now commonly used in treatment planning systems
[7-9]. Although they present major improvements com-
pared to older pencil beam algorithms [10] due to
empirical approximations, they may introduce appreci-
able inaccuracies in the dose distributions, especially in
case of small or superimposed small fields (typically
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found in IMRT treatments) irradiating low density
media; comparing the collapsed cone convolution
approach to MC, Chow et al [11] reported significant
dose deviation with 6 MV photon beam when the elec-
tron density is less than 0.3 and small field sizes are
used. Fogliata et al [12] investigated the influence of dif-
ferent air filling in lungs on the calculation accuracy of
photon dose algorithms compared with MC: with a 6
MV photon beam, all the investigated algorithms had a
peak of failures for densities of the order of 0.05 g/cm?,

Due to the rapid evolution of the available treatment
techniques, irregular fields and steep dose gradients are
applied in order to achieve highly conformal dose distri-
butions; under these conditions high dosimetric accu-
racy of any IMRT treatment planning system is of
crucial importance for the effectiveness and success of
the treatment prescribed [13].

The aim of this paper was to investigate the dose cal-
culation accuracy in (very) low-density lung media for
treatments delivered by a Helical Tomotherapy unit
(HT), where the calculation dose is performed using a
convolution-superposition algorithm (C/S) based on a
collapsed cone (CCC) approach [14-16]. The CCC
superposition (CCC/S) dose algorithm has been shown
to accurately predict dose distributions for IMRT tech-
niques, including helical tomotherapy, although most
published results refer to water equivalent phantom
with simple geometries.

Several papers [17-20] have investigated the accuracy
of the CCC/S dose algorithm implemented in HT treat-
ment planning in case of inhomogeneous tissues for
some limited cases. Chaudhari et al [17] analyzed only
two clinical esophageal cancers simulated in a custom-
designed heterogeneous phantom mimicking the med-
iastinum geometry by considering two different lung-
equivalent materials with density equal to 0.28 g/cm?
and 0.16 g/cm®, respectively.

Zhao et al [18] investigated the accuracy of the algo-
rithm by considering only one clinical lung treatment
delivered on a CIRS (Computerized Imaging Reference
Systems, Inc) anthropomorphic heterogeneous phantom,
where dose distributions calculated from HT treatment
planning were compared both with measurements and
with MC calculations. Also in the Sterpin et al paper
[20] the CCC/S algorithm implemented in the HT unit
was compared with MC simulations only for small lung
tumors with diameter <3 cm.

In this work we focused our analysis by simulating
some thorax treatments (mediastinal lesions, single or
multiple metastasis) of different geometries. For the
considered cases, the dose calculation algorithm accu-
racy was investigated in both a homogenous (15 plans)
and inhomogeneous (4 plans) phantom (where the lungs
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consisted of material with a density equal to 0.04 g/cm?)
by absolute ionization dose measurements, dose profile
comparisons and quantitative analysis of dose distribu-
tions. A comparison between dose distributions mea-
sured on EDR2 and EBT?2 films was also reported.

2. Materials and methods

2.1 Phantoms design

Measurements were performed in both a homogeneous
and a custom-made heterogeneous phantom mimicking
a patient’s thorax region.

As homogeneous phantom we used the Cheese Phan-
tom, typically employed in our clinic for routine patient
QA (DQA) measurements. It is a solid water cylindrical
phantom of 15 ¢m radius and 18 cm length cut into
two semi-cylindrical halves to allow the insertion of a
film along the central plane. Along the other direction a
series of holes, interspaced by 1 cm (one hole is set 0.5
cm from the central plane of the film), allows the inser-
tion of ionization chambers for point measurements.
Film and chamber measurements can be performed at
the same time by considering both the sagittal and coro-
nal plane. In this paper for all simulated plans the film
was set along the coronal plane and the absolute ioniza-
tion measurements were performed in points along the
sagittal direction.

A custom designed phantom mimicking the patient’s
thorax region was defined (Figure 1a). It is composed of
six slabs of 30 cm x 40 cm x 3 cm of acrylic (density 1.16
g/cm®) simulating the homogeneous media. Three slabs,
two positioned on the top and one on the bottom of the
phantom were completely homogeneous; inside one
homogeneous slab an aluminum cylindrical insert (2.7 g/
c¢m?) was considered. The other two slabs simulate the
lung region using Styrofoam: two low density (0.04 g/
cm®) inserts were symmetrically positioned and separated
by an acrylic area (mediastinum). Fogliata et al [12],
showed that the lung mass density varies during respira-
tory phases; in free breathing and in deep inspiration
breath hold the mean densities are 0.27 and 0.16 g/cm?
respectively with peak densities of 0.17 and 0.09 g/cm? .

Inside lung volumes, acrylic inserts of various dimen-
sions and positions, simulating the tumor lesions (metas-
tasis), were positioned. They are cylindrical with a radius
of 1, 2 or 3 cm, positioned completely inside or in the
boundary of the lung; these different geometries are use-
ful to simulate several clinical situations. The phantom
was designed in order to allow both planar and point
dose measurements. Films can be placed along horizontal
planes between the different slabs; absolute point dose
measurements can be performed both in all tumor
inserts and in the homogeneous mediastinum region,
thanks to several inserts created inside the phantom.
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Figure 1 Heterogeneous thorax phantom. 1a) Six slabs of acrylic (density 1.16 g/cm?) simulating the homogeneous media, with an aluminum
cylindrical insert (2.7 g/cm?) simulating bone equivalent material and two low density (0.04 g/cm®) inserts symmetrically positioned and
separated by an acrylic area (mediastinum), simulating lung region. 1b) For film measurements film 1 is positioned between the second
(homogeneous slab) and the third slab (inhomogeneous slaby); film 2 is positioned between the two inhomogeneous slabs with lung media.

2.2 Treatment planning
For homogeneous phantom measurements, specific
DQA plans of fifteen patients (pts) previously treated
for lung tumour using the Helical Tomotherapy techni-
que were created. The treatment volumes considered
can be divided into three groups: mediastinal lesions (9
pts), single lung metastasis (2 pts), multiple lung metas-
tases (4 pts). Single and multiple metastases were trea-
ted based on a hypofractionated approach with 9 Gy of
daily dose; different fractionated regimes (2 Gy/day; 2.5
Gy/day, 4 Gy/day) were applied for mediastinal tumours.

All plans were generated using a 25 mm field width, a
pitch equal to 0.287 for conventional fractionation or in
the range of 0.2-0.3 for hypofractionated regimes and a
modulation factor of approximately 2.5 -3.

In all patient treatment plans considered, the aim of the
optimisation process was the homogeneous coverage of the

PTV, concomitant with organ at risks (spinal cord, heart,
lung, oesophagus) sparing. For the heterogeneous phan-
tom, four treatment plans were generated simulating four
different clinical volumes: a single lung metastasis, multiple
lung lesions and two different mediastinic target volumes;
two different mediastinic targets (Medl and Med2) were
considered with two different volumes and with a different
target portion in the lung region. Doses and planning para-
meters used in our clinical practice were adopted for these
treatment planning simulations. Coronal dose distributions
for each hetereogeneous plan are shown in Figure 2.

2.3 Film and ionization chamber dosimetry

Radiographic (Kodak EDR2) and radiochromic (Gafchro-
mic EBT?2) films were used for planar measurements. In
both cases a calibration curve was created to correlate the
measured film’s optical density with the delivered dose,

-

Figure 2 Coronal dose distributions of the four treatment plans generated on the thorax heterogeneous phantom: mediastinic
lesions, Med1(2a) and Med2 (2b), single metastasis (2c) and multiple metastasis plan (2d).
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irradiating the film with a static uniform field at 5 cm
depth; two sensitometric curves in the dose range from
0.12 Gy to 6.88 Gy for EDR2 films and between 0.12 Gy
and 8 Gy for EBT2 respectively were created. Different
calibration curves were created for each films batch used.

A commercial Vidar film digitizer (DosimetryPro
Advantage, Vidar Systems Corp., Herndon, VA) was
used to scan EDR2 films.

Gafchromic EBT2 films were scanned with EPSON
Pro V750 Expression scanner A4 size at least 10 h after
irradiation [21]. The software package “EPSON scan”
(professional mode with all image adjustments and col-
our corrections turned off) was used to scan and acquire
images. Films were scanned in the 48 bit red-green-blue
(RGB) mode with a resolution of 72 dpi. A median filter
(3 x 3) was applied to reduce noise. Data were saved in
a tagged image file (TIFF). Film sheet orientation was
maintained in the centre of the scan to guarantee better
response stability. A correction matrix dependent on the
pixel position and the different dose levels was applied
in order to manage the light scattering of the scanner
lamp and its non- uniform response [22].

For absolute point dose measurements, an Exradin
A1SL ion chamber (Standard Imaging, Middleton, WI)
was used. The A1SL has a small volume of 0.056 c¢cm?,
which makes it a good candidate for point dose mea-
surements. The absolute dose was defined according to
the International Atomic Energy Agency’s (IAEA)
recommended absolute dosimetry protocol (TSR 398)
applying appropriate correction factors for beam quality
and environmental conditions [23].

2.4 DQA procedure

A patient specific DQA plan was generated for each
treatment plan by considering the export of the treat-
ment’s fluence and the dose distribution recalculation,
both on the homogeneous phantom (Cheese Phantom)
and on the heterogeneous thorax phantom.

For each DQA plan, film and ion chamber measure-
ments were taken in order to verify the agreement
between measured and calculated dose distributions, both
for absolute dose points and for planar dose distribution.

For homogeneous DQA plans, films (EDR2 and EBT2)
were set in the coronal plane with concomitant point
dose measurements in the sagittal direction.

To minimize chamber position uncertainty, dose mea-
surements points were selected in the high dose/low gra-
dient or low dose/low gradient regions; absolute dose
measurements were performed in 22 points inside the
high dose/low gradient PTV region (15 points for med-
iastinic lesion, 4 and 3 points for single and multiple
metastasis, respectively) and in 27 points (15 for medias-
tinic lesions, 7 for single and 5 for multiple metastasis)
inside the low dose/low gradient OAR structures.
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Relative EDR2 film dose distributions were normalised
to the absolute dose measured with ionization chamber
in the PTV points, proximal to the film’s coronal plane;
EBT?2 absolute dose distributions were considered.

Similar procedures were performed for the DQA plans
in the heterogeneous thorax phantom. Obviously in this
case, treatment plan and relative DQA plan haven’t any
differences, due the same thorax inhomogeneous phan-
tom was used to simulate inhomogeneous treatment
plans and for DQA measurements. For each DQA plan
two to four absolute dose points were acquired, both in
the high dose/low gradient PTV region and in the low
dose region corresponding to critical structures or
healthy tissue. Two films were used for each DQA plan:
the first (reported in the text as Film1) was placed
in the interface region between a homogeneous slab and
the low density lung slab, the second (Film 2) between
the two slabs with the low density lung inserts
(Figure 1b). Similarly to homogeneous measurements,
relative EDR2 film dose distributions were normalised
to the absolute dose measured with the ionization
chamber; EBT2 films were used in a relative way by nor-
malising both measured and calculated dose distribu-
tions in a point inside the PTV region.

2.5 Data analysis

The agreement among measured and calculated dose
distributions was evaluated in terms of percentage dif-
ference between absolute point dose measurements,
qualitative dose profile comparisons and a quantitative
analysis of dose distribution through gamma function
analysis [24]. For the point dose measurement the per-
cent discrepancy was calculated according to: %A = 100*
(Dm-Dc)/Dc, where Dm is the measured point dose and
Dc is the calculated dose at the same position.

The y - map analysis is a method that conjugates both
the dose difference (ADD) and the distance to agree-
ment (ADTA) pass/fail criteria. The planar map of y
values gives a qualitative representation of the agree-
ment of two distributions; a quantitative evaluation
could be defined based on the analysis of y -area histo-
grams, defining the percentage of y -values below a cer-
tain threshold.

Profiles and dose map comparisons [13] were per-
formed using TomoTherapy Inc. software. We quanti-
tatively analysed the gamma function by considering
the y-area histograms and distribution using the
Tomotherapy Inc software (Research station), by con-
sidering all the points of the film that are included in
the homogeneous/inhomogeneous phantoms. In our
analysis the dose difference criteria is defined respect
to the prescribed dose calculated in the DQA dose dis-
tribution (the calculated dose distribution exported on
the phantom).
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Different acceptance criteria were used for y analysis:
3%-3 mm and 4%-3 mm for the homogeneous phantom;
3%-3 mm, 4%-3 mm, 4%-4 mm and 5% -4 mm for the
heterogeneous thorax phantom.

In the clinical practice we consider as acceptance cri-
teria ADD = 3% and ADTA = 3 mm in case of simple
case as spherical lesions and without stressing modu-
lated dose distributions; ADD = 4% and ADTA = 3 mm
in case of more complex geometries including irregular-
shaped targets, proximity of critical OARs to spare and
then dose distributions with very high and deep dose
gradients. We were confident that these criteria agree
with those suggested in the ESTRO Booklet n°7 [25]

3. Results

3.1 Homogeneous phantom

Absolute point measurements are shown in Table 1,
where the average percent discrepancy between mea-
sured and calculated dose is reported, respectively for
PTV points (22 points) (high dose/low gradient dose
points) and for critical structure regions (27 points)
(high dose/high gradient, low dose/low gradient dose
points), by considering, separately, the three anatomical
districts. Excellent agreement (< 2%) between measured
and calculated dose was found: an overall average dis-
crepancy equal to 0.7% (1SD = 1.2%) and to 1% (1SD =
0.4%) was found for PTV and for OARs respectively.
The largest average difference (1.9%) was found for sin-
gle metastasis treatment plans, possible due to the more
critical positioning in small target volumes.

Film data (EDR2 and EBT2) were analyzed in two
ways: first, with a qualitative comparison of dose pro-
files; second by a quantitative gamma index analysis.

In Table 2 the percentage of points with gamma
values < 0.7, 1.0 and 1.5 were reported for different
gamma index criteria, for both EDR2 and EBT2 films
and for the three anatomical regions. Excellent agree-
ment was also found for planar dose distributions: on
average more than 97% of points passed the gamma test
(y £ 1) for EDR2 films with a 3%-3 mm criteria; a
slightly worse, but acceptable agreement (94%) was
found for EBT2 films; however, this value significantly

Table 1 lonization chamber measurements in
homogeneous phantom (Cheese phantom) for the
different treatment plans

Target (22 points) OAR (27 points)

Mediastinum -0.5 £ 1.6% 05+ 2.7%
Single metestasis 19+ 1.5% 13+ 3.1%
Multipla metastasis 08 + 1.0% 1.1+ 25%
Average 0.7 £1.2% 1.0 £ 04%

Percentage deviation between measured and calculated dose, for target and
OAR point measurements.
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increases using 4%-3 mm and 4%-4 mm criteria: 95.7%
and 98% respectively.

3.2 Heterogeneous phantom

Table 3 shows the average percentage discrepancy
between ion chamber measurements and TPS calcula-
tion for each simulated treatment plan and separately
for PTV and OARs.

An average discrepancy equal to -1% (1SD = 2.5%)
and 2.3% (1SD = 4.5%) was found for target and OARs
respectively. The worst agreement (-3% for PTV and
around 9% for OARs) was found for multiple metastasis,
probably due to the more stressed modulation applied
in the irradiation.

Good agreement was qualitatively reported in Figure 3
and 4 where the comparison between measured and cal-
culated isodoses (Figure 3a and 4a) and dose profiles
(Figure 3b and 4b) was shown in a coronal plane for all
four simulated treatment plans, both for EDR2 (Figure
3) and EBT2 (Figure 4)

In table 4 and 5 the percentage of points with gamma
values < 0.7, 1.0 and 1.5 were reported for several accepta-
ble dose/distance criteria, respectively for EDR2 (Table 4)
and EBT?2 films (Table 5) and for the three anatomical
regions, by separately considering the results for two differ-
ent films, with film1 placed between the second (homoge-
neous) and the third slab (lung region) and film 2 placed
between the third and the fourth slabs (lung/lung region).

For EDR2 films, 95% of points passed the gamma test
(y £ 1) with 4%-4 mm criteria, with slightly better
results for film 1 (95.7% vs 94.7%). However, even with
3%-3 mm criteria the results were acceptable: 93.5% of
points with y < 1 and only 3% of points with y > 1.5.

Comparable results were found for EBT2 films where
on average 95% of points satisfy the 4%-4 mm criteria;
the percentage of points with y < 1 was 98% and 92%
for film 1 and film 2 respectively. Slightly worse results
were found with 3%-3 mm criteria, where on average
91% of points have y < 1 have, with 95% of points for
film 1 and around 87% of points for film 2.

4. Discussion and Conclusions
The Helical Tomotherapy treatment planning system
uses a relatively accurate collapsed cone convolution/
superposition algorithm for dose calculation and, as
with other non -Monte Carlo algorithms, charged parti-
cle equilibrium is assumed in the dose calculation. For
this reason we can expect inaccuracy in predicting dose
distribution in the presence of significant inhomogene-
ities in patient geometry where this assumption is not
satisfied. The dose distribution accuracy of the HT TPS
was then tested in case of low density lung lesions.
Before the validation of the dose calculation algorithm
in inhomogeneous media, the agreement between
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Table 2 Gamma analysis distribution for the different treatment plans in homogeneous phantom (Cheese phantom)
for different acceptance criteria, both for EDR2 and EBT2 film

EDR?2 film EBT2 film
3%-3 mm 4%-3 mm 3%-3 mm 4%-3 mm 4%-4 mm
0.7 1 1.5 0.7 1 1.5 0.7 1 1.5 0.7 1 1.5 0.7 1 1.5
Mediastinum 85 96 29 94 98 99 72 85 94 78 920 98 88 95 99
Single met. 9% 98 100 97 929 100 95 98 100 97 929 100 98 929 100
Multipla met. 9% 929 100 99 100 100 95 929 100 98 929 100 99 100 100

Percentage of points with y value < 0.7, 1 and 1.5 was reported.

measured and calculated dose distributions for lung
treatments was verified in a homogeneous phantom.
Excellent agreement was found for point dose measure-
ments with most of the data within + 2%; an average
percentage discrepancy equal to 0.85% (1SD = 0.5%) was
estimated by considering all the points, both in PTV and
in OAR regions. Good agreement (3%- 3 mm criteria)
was also found for planar dose distributions, with 97%
and 94% of points with y < 1, for EDR2 and EBT2 films
respectively. The slightly worse results found with EBT2
could be probably correlated with the inaccuracy of the
correction matrix applied to manage light scattering and
non-uniform response of scanner lamp. The results
found with EDR2 are in agreement with data published
by Thomas et al [26], where the treatment plans of ten
patients (head-neck, prostate, brain, bone metastasis)
planned and treated with helical Tomotherapy were
checked. An average point dose discrepancy of -1.3%
was reported by con sidering high dose (-0.5 + 1.1%),
low dose (-2.4 + 3.7%) and critical structure points (-1.1
+ 7.3%). By considering the 4 mm/3% criteria for EDR2
films, 92.6% and 99% of the measured points passed the
test with y < 1 for the absolute and normalized planar
dose distribution respectively; for these criteria our
results were 99%.

The quality of the collapsed cone convolution algo-
rithm implemented in the treatment planning of HT for
homogeneous media was also confirmed in Zhao’s paper
[18], where a good agreement among MC simulations,
TPS calculations, film and point dose measurements
were reported and verified for a helical dose calculation

Table 3 lonization chamber measurements in
inhomogeneous thorax phantom for the different
treatment plans

Target OAR
Mediastinum 1 -1.7% 0.7%
Mediastinum 2 2.6% -1.1%
Single metastasis -2.1% 0.8%
Multipla metastasis -2.9% 8.9%
Average -1.0 £ 2.5% 23 £ 45%

Percentage deviation between measured and calculated dose, for target and
OAR point measurements.

performed on the cheese phantom. Point dose measure-
ments in the PTV agree very well with TPS and MC cal-
culations with deviations of 0.5% and 0.75%,
respectively. TPS results agreed very well with MC
simulation for 90%-10% Dmax dose levels; good agree-
ment of 30%-90% isodose lines between calculation and
film measurements were found for both TPS and MC
results with acceptance criteria of 2%-2 mm, with a
slightly larger discrepancy in regions with dose lower
than 30% Dmax. Analysis of the gamma value distribu-
tions shows that for a 3%-3 mm criteria 100% of the
points in the PTV pass the test both for MC and TPS
calculations; for OARs around 90% and 93.5% of points
agree with film measurements for MC and TPS calcula-
tions respectively. All the regions agree with film mea-
surements, both for MC and TPS calculations, by
considering a 5%-3 mm criteria.

In Zhao’s paper [19] the accuracy of the CCS imple-
mented in the HT treatment planning was evaluated
against MC calculations and measurements in the CIRS
anthropomorphic thorax phantom (lung density equal to
0.21 g/cm?), simulating a single helical treatment with a
lung PTV containing water/tissue and part of the right
lung. Considering points within 33% of the maximum
dose, the average percentage discrepancy between ion
chamber measurements and calculations was equal to -
1.4 + 2.3% and 0.0 = 0.81 for CCS HT and MC respec-
tively. A wider difference was reported for planar dose
distributions, where MC and TPS dose calculations were
compared with relative dose distributions measured with
EDR2 films. Using 3%-3 mm acceptance criteria, the
MC agreed with measurements in around 90% of points,
while the HT TPS is only 50%. With a clinically accep-
table 5%-3 mm criterion, the MC agreed with film mea-
surements in most of the phantom plane but the CCS
HT failed in some of the high dose low density lung
region, low dose boundary regions and high dose gradi-
ent regions, where TPS overestimates the PTV dose in
the lung region and underestimates the dose in the
lung-tissue interface.

Similar results were also reported in Sterpin’s paper
[20], where CCS HT dose distributions may result in an
overestimation of the dose to PTVs encompassing lung
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mediastinum targets (A-B), multiple metastases (C) and single metastasis (D).
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Figure 3 Planar comparison between calculated and measured dose distributions with EDR2 films. 3a) Coronal isodoses comparison for
mediastinum targets (A-B), multiple metastases (C) and single metastasis (D) plans in heterogeneous thorax phantom. The calculated distribution
is identified by solid lines and the measured (EDR2 films) by dashed line. 3b) Measured (red) and calculated (blu) dose profiles comparison for
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Figure 4 Planar comparison between calculated and measured dose distributions with EBT2 films. 4a) Coronal isodoses comparison for
mediastinum targets (A-B), multiple metastases (C) and single metastasis (D) plans in heterogeneous thorax phantom. The calculated distribution
is identified by solid lines and the measured (EBT2 films) by dashed line. 4b) Measured (red) and calculated (blu) dose profiles comparison for
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Table 4 Gamma analysis distribution for the different
treatment plans in inhomogeneous thorax phantom for
different acceptance criteria, for EDR2 films

EDR2 film
3%-3 mm 4%-4 mm 5%-4 mm
07 1 15 07 1 15 07 1 15
Med. 1(film 1) 91 96 99 95 98 100 96 98 100
Med. 1 (film2) 92 96 98 94 97 100 95 97 100
Med. 2(film 1) 89 91 93 90 93 95 91 93 95
Med. 2 (film2) 81 89 94 84 91 94 87 93 %4

Single Met. (film 1) 88 96 97 92 96 98 94 97 99
Single Met. (film 2) 88 93 97 91 95 99 93 96 99
Multipla Met. (film 1) 93 95 98 93 96 98 9% 97 98
Multipla Met. (film2) 85 93 99 89 96 100 92 97 100

Percentage of points with y value < 0.7, 1 and 1.5 was reported, separately for
film 1 and film2.

tissues and/or air cavities. The reported results clearly
show that the CCS algorithm predicts higher dose cov-
erage of the target volume compared with MC calcula-
tions for small lung tumors; no significant differences
were found for most of the other clinical cases.

In a recent paper of Chaudhari et al [17], HT calcu-
lated dose distributions were compared with the mea-
surements in two treatment plans of oesophageal
cancer; a cubic phantom with a mediastinum geometry
was used and two different lung-equivalent materials
(density equal to 0.28 and 0.16 g/cm?) considered. The
agreement between point dose measured values and
TPS was in most cases within 1% with an average dis-
crepancy of -0.3 + 0.8%. For tolerance criteria of 3%-3
mm, using gafchromic films, around 95% and 98% of
points passed the test (y < 1), respectively for Balsa
wood (0.16 g/cm3 ) and for the LN300 ((0.28 g/cm3 ),
the two different media simulating the lung region.
These both results were obtained by considering two

Table 5 Gamma analysis distribution for the different
treatment plans in inhomogeneous thorax phantom for
different acceptance criteria, for EBT2 films

EBT2 film
3%-3 mm 4%-4 mm 5%-4 mm
07 1 15 07 1 15 07 1 15
Med. 1(film 1) 9% 98 100 8 99 100 90 100 100
Med. 1 (film2) 70 8 92 83 90 95 87 92 9%
Med. 2(film 1) 82 93 99 91 98 100 94 99 100
Med. 2 (film2) 8 91 94 90 93 97 91 94 99

Single Met. (film 1) 88 95 98 94 97 99 95 98 100
Single Met. (film 2) 80 91 98 89 97 100 92 98 100
Multiple Met. (film 1) 89 95 98 94 98 100 9 98 100
Multiple Met. (film 2) 66 81 92 78 89 9 82 91 97

Percentage of points with y value < 0.7, 1 and 1.5 was reported, separately for
film 1 and film2.
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film planes, both inserted between slabs of inhomoge-
neous low density media. No measurements were
reported in the interface region between homogeneous
and low density media. Our results for the inhomoge-
neous phantom (lung surrogate density equal to 0.04 g/
c¢m?®) and mediastinum clinical situations were worst:
using the same criteria we found around 89% of points
with v < 1, if we consider similarly to Chaudhari’s paper
only the film completely inserted in low density media
(film2); better result were found (around 96% of pints) if
we consider the film 1 inserted between homogeneous/
inhomogeneous media.

In summary, based on the reported situations, the
Tomotherapy TPS provides an accurate dose calculation
with clinically acceptable results for the pre-treatment
verification of all considered thoracic irradiations in
(very) low density media. The results, both in terms of
point measurements and in terms of profiles and planar
dose distribution comparison, were in agreement with
the acceptance criteria defined for IMRT verification. A
direct comparison with Monte Carlo simulations should
be investigated in the future.
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