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Abstract
Background Volumetric modulated arc therapy (VMAT) planning optimization involves iterative adjustment of 
numerous parameters, and hence requires repeatedly dose recalculation. In this study, we used the deep learning 
method to develop a fast and accurate dose calculation method for VMAT.

Methods The classical 3D UNet was adopted and trained to learn the physics principle of dose calculation. The 
inputs included the projected fluence map (FM), computed tomography (CT) images, the radiological depth and the 
source-to-voxel distance (SVD). The projected FM was generated by projecting the accumulated FM between two 
consecutive control points (CPs) onto the patient’s anatomy. The accumulated FM was calculated by simulating the 
movement of the multi-leaf collimator (MLC) from one CP to the next. The dose, calculated by the treatment planning 
system (TPS), was used as ground truth. 51 head and neck VMAT plans were used, with 43, 1 and 7 cases as training, 
validation, and testing datasets, respectively. Correspondingly, 7182, 180 and 1260 CP samples were included in the 
training, validation, and testing datasets.

Results This presented method was evaluated by comparing the derived dose distribution to the TPS calculated 
dose distribution. The dose profiles coincided for both the single CP and the entire plan (summation of all CPs). But 
the network derived dose was smoother than the TPS calculated dose. Gamma analysis was performed between the 
network derived dose and the TPS calculated dose. The average gamma pass rate was 96.56%, 98.75%, 98.03% and 
99.30% under the criteria of 2% (tolerance) -2 mm (distance to agreement, DTA). 2%-3 mm, 3%-2 mm and 3%-3 mm. 
No significant difference was observed on the critical indices including the max, mean dose, and the relative volume 
covered by the 2000 cGy, 4000 cGy and the prescription dose. For one CP, the average computational time of the 
network and TPS was 0.09s and 0.53s. And for one patient, the average time was 16.51s and 95.60s.

Conclusion The dose distribution derived by the network showed good agreement with the TPS calculated dose 
distribution. The computational time was reduced to approximate one-sixth of its original duration. Therefore the 
presented deep learning-based dose calculation method has the potential to be used for planning optimization.
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Introduction
Volumetric modulated arc therapy (VMAT), as one of 
the most promising radiotherapy technologies emerged 
in recent decades, has the potential to improve the treat-
ment quality and the delivery efficiency [1]. During the 
VMAT delivery, the aperture shape (formed by multi-leaf 
collimator, MLC) and the beam intensity were modu-
lated with the precise synchronization of gantry rotation. 
Correspondingly, the VMAT optimization is challeng-
ing because of the large optimization size and complex 
constraints. In order to get a deliverable VMAT plan, 
the leaf movements between adjacent gantry angles can-
not exceed the product of maximal leaf speed and gantry 
rotation time. During planning optimization, numerous 
parameters are iteratively adjusted and the dose is recal-
culated [2]. Therefore a fast and accurate dose calculation 
method is the prerequisite of VMAT optimization.

The early dose calculation methods are referred to as 
correction-based methods [3]. The dose is calculated by 
interpolating or extrapolating based on the basic mea-
surements in water. The empirical calculation is fast, but 
the calculation is inaccurate especially in the heteroge-
neous region [4]. Later developed model-based methods 
[5–7] convolute the primary photon energy fluence with 
a kernel that describes the contribution from scatter-
ing photons and electrons. The accuracy is significantly 
improved but at the cost of increased computational time. 
The principle-based method, commonly known as Monte 
Carlo method [8, 9], following the fundamental physics 
principle, simulates the radiation transport and energy 
deposition of individual particles. With enough simu-
lated events, it can be used as the benchmark to verify 
the accuracy of other dose calculation algorithms. Cor-
respondingly, the computational speed of Monte-Carlo 
(MC) is slow and the process is very time-consuming.

In order to balance the computational time and accu-
racy, modern commercial treatment planning systems 
(TPS) use the model-based dose calculation methods in 
the clinic, like the analytical anisotropic algorithm (AAA) 
(Varian Medical System) and the collapse cone convo-
lution (CCC) algorithm (Pinnacle System). But still, the 
computational time is rather long to calculate the inter-
mediate results during the optimization process due to 
the repeatedly adjusted planning parameters. So the sim-
plified dose calculation method is used, like the singular 
vector decompose method of Pinnacle, which may cause 
the discrepancy between the intermediate dose and the 
finally calculated dose.

The recently emerged deep learning technique has 
provided an alternative “data-driven” approach for dose 
calculation. The initial application was to “denoise” the 
gross dose distribution calculated using the model-based 
method, so as to approach the accurate dose distribution 
calculated using the MC simulation [10]. Recently, Fan 

et al. [11] and Kontaxis et al. [12] developed the deep-
learning based dose calculation methods for the static 
IMRT, which used the CT and fluence map (FM) as input 
and direct yielded the dose distribution. The network 
itself could be interpreted as a dose engine. These studies 
proved the feasibility of using deep learning for dose cal-
culation. The network-based dose engine saved the trou-
ble of modeling the complicate physics process, and also 
significantly increased the computational speed. How-
ever, these methods were developed for the static IMRT. 
For static IMRT, the FM was simple and straight, it was 
directly formed by the segment. But for VMAT, the MLC 
was modulated in the dynamic mode. This issue has not 
been addressed. Another issue was the divergence effect 
when projecting the FM onto the 3D volume, which 
may cause the omission of certain voxels within the 3D 
volume.

In this study, we proposed to expand the deep learning-
based dose calculation method from IMRT to VMAT. 
The FM between the sequential control points (CPs) was 
accumulated to handle the dynamic MLC mode. A new 
projection method was developed to address the issue 
of divergence effect. The objective was to achieve rapid 
computation of the intermediate dose distribution during 
the process of VMAT planning optimization.

Methods and materials
Patient dataset
51 head and neck (H&N) VMAT plan data were used, 
with 43, 1 and 7 cases as training, validation, and test-
ing datasets, respectively. The VMAT plans were opti-
mized using the direct machine parameter optimization 
(DMPO) method of Pinnalce system. The MLC coordi-
nates and MU at each CP were exported. The FM was 
derived by accumulating the fluence of every two sequen-
tial CPs. The corresponding dose was also exported. Each 
plan contained two full arcs. With 3°or 4°CP spacing, the 
number of CPs was 241 or 181, and the number of the 
FM and corresponding dose was 240 or 180, correspond-
ingly. In total 7182, 180 and 1260 samples were included 
in the training, validation, and testing datasets.

Data preparation
FM accumulation
Figure  1 illustrated the FM accumulation between two 
sequential CPs with a simple example. The example 
supposed the leading MLC was static, and the tracking 
MLC moved from the position plotted in solid line to the 
position in dashed line. With this example, it was easy 
to deduct more complicate cases. Since the magnitude 
of the MLC movement was marginal, we supposed the 
MLC moved in a uniform speed for the sake of simplicity. 
The intensity at any position (x) was calculated as:
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I(x) =






1 x2 � x < x3
x−x1
x2−x1

x1 � x < x2
0 x < x1, x � x3

 (1)

Figure 2 showed the accumulated FM and its correspond-
ing dose of the CPs at 181°, 185°and 189°gantry angle. 
The MLC position was exported from the dicomRT plan 
file. The leaf gap and transmission were also considered, 
which were set to 0.25 mm and 1% according to the com-
missioning data. The corresponding dose were shown 
in coronal view. Due to the leaf transmission, low dose 
within the body was observed at the region where the 
MLC was closed.

FM projection
As shown in Fig. 2, the accumulated FM was in 2D for-
mat. But the desired dose distribution was in 3D format. 
It was difficult for the DL network to use the 2D FM as 
input and to derive the 3D dose distribution. The 2D FM 
needed to be projected onto 3D volume representing the 
patient body for further proceeding. That was to assign 
corresponding FM intensity to the 3D volume. The com-
monly used 3D-DDA [13] or Bresenham [14] traversal 

Fig. 2 Examples of the accumulated FM and corresponding dose. The corresponding dose were shown in coronal view

 

Fig. 1 Illustration of FM accumulation
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methods first constructed the vector connecting the 
source point and the FM pixel, and then calculated the 
intersection voxels within the 3D volume. These methods 
were sensitive to the resolution of FM due to the diver-
gence effect. The divergence effect was significant espe-
cially for the FM pixels far away from the center. If the 
resolution of FM was coarse, the divergence effect may 
cause the omission of certain voxels within the 3D vol-
ume. In order to handle this issue, we constructed the 
vectors by connecting the source point and the voxels. 
The intersection points on the FM plane were calculated. 
And the voxels were assigned to the value of correspond-
ing intersection point. The comparison of the 3D-DDA 

and Bresenham methods against our method was shown 
in Fig. 3.

Model input
The input of the network included the projected 3D FM, 
CT, radiological depth and the source to voxel distance 
(SVD). All inputs were in 3D format. Figure  4 showed 
the inputs at one axial layer. The CT value was converted 
to Hounsfield unit (HU) value. The radiological depth 
was calculated using the ray-tracer method proposed by 
Siddon [15]. The SVD was calculated as the magnitude 
of the vector connecting the source point and the voxel 
with 3D volume. The range of 3D FM and HU was 0 to 1 
and 0 to around 2, respectively. In order to keep the data 

Fig. 4 Network input

 

Fig. 3 FM Projection. 3-a and 3-b ploted only one row of voxels and one row of FM pixels for clarity. 3-c showed our method on a patient case. One coro-
nal layer of the 3D volume was shown. The example voxel was plotted with blue dot, and the intersection point and source point in orange and red dots
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consistence, the radiological depth and SVD was normal-
ized by 10 and 100, respectively.

Model architecture
We used the classical 3D UNet [16] in this study. The 
architecture was shown in Fig. 5. UNet was currently one 
of the most widely used networks in the field of medi-
cal image processing. The network included encoder 
and decoder modules. The encoder module sequentially 
performed convolution, rectified linear unit (Relu), and 
down-sampling operations, and the decoding module 
sequentially performs up-sampling, convolution, and 
Relu operations. Additionally, UNet useed skip (copy and 
crop) connections to fuse the features at different scales 
to improve the network’s performance.

Training and evaluation
All plans were delivered on the Varian Novalis linac. The 
width of MLC was 5 mm at the center, and 10 mm at the 
top and bottom. The resolution of accumulated FM was 
set to 2.5 mm. The dose was calculated using the adaptive 
convolution (AC) method of Pinnalce system. The resolu-
tion was set to 4  mm×4  mm×4  mm.The dimension was 
cropped to 128 × 80 × 80, which was wide enough to cover 
the regions of interest (ROIs) of all patients. The network 
inputs were also sampled and cropped to align with the 
dose volume. The FM accumulation, projection, radio-
logical depth and SVD calculation were implemented 
using Matlab software. The network training was imple-
mented with pytorch [17] on a desktop computer with 
Intel i9-11900  K processor and NVIDA GeForce RTX 
3090 GPU. The batch size was set to 10. The learning rate 
was set to 1.0e-04 with 1.0e-6 weight decay.

Results
Qualitative evaluation
Figure  6 showed the comparison of the TPS calculated 
and network predicted dose at one single CP. The posi-
tions of the comparison profile were selected to intersect 
the region with steep dose gradient. In general, the dose 
profiles coincided with each other. The calculated dose 
profile showed a sharper peak, and the predicted dose 
was smoother. This was because the major operation of 
the network was convolution operation, which tended to 
produce a smoothed result.

Figure  7 showed the comparison of the total dose 
of one testing patient. The positions of the compari-
son profiles were also selected based on the dose gradi-
ent. Figure  7-c showed the isodose line of the absolute 
dose difference. For the major regions, the difference 
was lower than 100  cGy. The discrepancy greater than 
200 cGy was observed at only two small areas at the edge 
region. The profile comparison showed the same trend 
as the single CP: two profiles coincided with each other 
well, expect the predicted profile was smoother. This also 
explained the target curves (PTV1, PTV2 and GTVnd) 
of the calculated dose were slightly steeper than the pre-
dicted curves. Expect this, the rest DVH curves displayed 
good coincidence.

Quantitative evaluation
Figure 8-a showed the gamma analysis of the calculated 
and predicted dose under different criteria. The calcu-
lated and predicted dose were normalized to the max 
dose of the calculated dose (Dcal max). The average 
gamma pass rate was 96.56%, 98.75%, 98.03% and 99.30% 
under the criteria of 2% (tolerance) -2  mm (distance to 
agreement, DTA). 2%-3  mm, 3%-2  mm and 3%-3  mm. 
Figure  8-b showed the relative error of the calculated 
and predicted dose. In order to keep consistent with the 

Fig. 5 Network architecture. The number of channels was denoted at the bottom
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Fig. 7 Comparison of TPS calculated and predicted total dose. The unit of the color bar in figure a, b and c was cGy. The locations of the horizontal 
and vertical profiles were annotated in red and green dash lines. Figure f plotted the curves of calculated and predicted dose in solid and dash lines, 
respectively

 

Fig. 6 Comparison of TPS calculated and predicted dose at one single CP. The unit of the color bar in figure a-b was cGy. The locations of the horizontal 
and vertical profiles were annotated in red and green dash lines
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gamma analysis, the relative error was also normalized to 
Dcal max.

Table  1 listed the max (Dmax), mean dose (Dmean), 
the relative volume irradiated by the dose greater than 
2000 cGy (V40) and 4000cGy(V40) of the critical ROIs. For 
the target, the relative volume irradiated by the prescrip-
tion dose (VDP) and the mean dose were listed. The aver-
age dose calculation time for the testing patients of the 
network and TPS was 16.51s and 95.60s. And the average 
time for one single CP was 0.092s and 0.530s.

Discussion
The motivation of this study was to develop a deep-learn-
ing based dose calculation method to calculate the inter-
mediate dose distribution during planning optimization. 
The AC method, which was used to calculate the final 
dose distribution in the clinic, was used as the ground 
truth. This could avoid the dose discrepancy between the 
intermediate and final dose. However, as a model-based 
method, sharp peaks were observed on the AC dose 
profiles. On the other hand, the deep learning network 
tended to produce an averaged or smoothed results due 
to the basic operation of convolution. This contributed 
the main difference between the predicted and calculated 
dose. Using the MC simulation as ground truth, or a finer 
dose grid may reduce the discrepancy. With improved 
accuracy, the dose calculation method has the potential 
to be used for final dose calculation.

Another limitation of this work was the dataset lacks of 
diversity: all plans were delivered on the same linac. The 
network training feed the network with the compulsory 
data for dose calculation, and then minimized the differ-
ence with the TPS calculated dose. The physical principle 
for dose calculation was acquired by the network in the 
training process. In other words, the training process 

could be interpreted as the commissioning process of the 
model-based method. Compared to the commissioning 
process, the training process is more generic. Because the 
basic physical principle is universal, it is easy to apply the 
well-trained network to different linac using the transfer 
learning strategy. In addition, all training data were head 
and neck plans. The trained model was not validated on 
other sites. The accuracy may be acceptable for the abdo-
men plans, but not for the thorax plans due to the het-
erogeneous tissues. But we would like point out that the 
main contribution of this work was to expand the deep 
learning-based dose calculation method from IMRT to 
VMAT. This study proved the feasibility for head and 
neck VMAT plan. In the future, we plan to train and vali-
date the model using more data from various sites.

The difficulty of the deep learning-based VMAT dose 
calculation method is how to get the paired sample of 
accumulated FM and corresponding dose, i.e. the input 
and labeled ground truth for the network. In this study, 
we simplified the FM accumulation process by supposing 
the MLC moves linearly between adjacent CPs. In addi-
tion, the gantry rotation between adjacent CPs was also 
ignored. In practice, we found that the CP dose was only 
stored in memory. It would be lost once log out. So the 
dose was recalculated before exporting the CP dose. The 
results demonstrated that the simplification did not affect 
the accuracy. But for greater gantry gap, this should be 
taken into consideration. On the other hand, one VMAT 
plan contained around 180 paired samples. So limited 
patient cases were sufficient for the network training.

Fig. 8 Relative error and gamma analysis
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Conclusion
The proposed learning-based dose calculation method 
reduced the computational time to one-sixth of the TPS 
without substantial loss of accuracy. It has the potential 
to be used for VMAT planning optimization.
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