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Background
The advancement of precision radiotherapy techniques, 
such as volumetric modulated arc therapy (VMAT), ste-
reotactic body radiotherapy (SBRT), and particle therapy, 
allows for the delivery of highly conformal doses to tar-
gets. However, the delivery of highly conformal doses to 
targets in the abdomen and thorax is challenging due to 
the respiratory motion affecting the treatment [1, 2]. To 
guide the implementation of respiratory motion man-
agement, the American Association of Physicists in 
Medicine (AAPM) has released several relevant guide-
lines, including TG-76 report [3] for photon therapy, 
TG-101 report [4] for SBRT, and TG-290 report [5] for 
particle therapy. These guidelines provide comprehen-
sive summaries of intra-fractional respiratory motion 
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Abstract
The advancement of precision radiotherapy techniques, such as volumetric modulated arc therapy (VMAT), 
stereotactic body radiotherapy (SBRT), and particle therapy, highlights the importance of radiotherapy in the 
treatment of cancer, while also posing challenges for respiratory motion management in thoracic and abdominal 
tumors. MRI-guided radiotherapy (MRIgRT) stands out as state-of-art real-time respiratory motion management 
approach owing to the non-ionizing radiation nature and superior soft-tissue contrast characteristic of MR imaging. 
In clinical practice, MR imaging often operates at a frequency of 4 Hz, resulting in approximately a 300 ms system 
latency of MRIgRT. This system latency decreases the accuracy of respiratory motion management in MRIgRT. 
Artificial intelligence (AI)-based respiratory motion prediction has recently emerged as a promising solution 
to address the system latency issues in MRIgRT, particularly for advanced contour prediction and volumetric 
prediction. However, implementing AI-based respiratory motion prediction faces several challenges including 
the collection of training datasets, the selection of prediction methods, and the formulation of complex contour 
and volumetric prediction problems. This review presents modeling approaches of AI-based respiratory motion 
prediction in MRIgRT, and provides recommendations for achieving consistent and generalizable results in this field.
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management approaches, such as abdominal compres-
sion [6], breath hold [7], respiratory beam gating [8], 
and tumor tracking, which comprises both robotic, gim-
baled and multi-leaf-collimator (MLC)-based tracking 
[9, 10]. Among these respiratory motion management 
approaches, real-time tumor tracking captured the most 
widespread attention for its precision and improved effi-
ciency compared to, for instance, gating [11].

MRI-guided radiotherapy (MRIgRT), integrating MR 
imaging with a medical linear accelerator, stands out as 
state-of-art real-time motion management approach 
owing to the non-ionizing radiation nature and supe-
rior soft-tissue contrast characteristic of MR imaging 
[12, 13]. While clinical MRIgRT currently relies on gat-
ing [14, 15], several research studies have focused on the 
implementation of MLC-tracking [16–18]. However, the 
implementation of real-time tumor tracking in MRIgRT 
is associated with approximately a 300–350 ms system 
latency [17, 19], while the system latencies of real-time 
tumor tracking systems were 115 ms for a robotic linac 
system [20] and 48 ms for a gimbaled linac system [21]. 
Therefore, to avoid a decrease in dosimetry accuracy, it 
is important to implement respiratory motion prediction 
for the compensation of system latency in MRIgRT. Fur-
thermore, the superior soft-tissue contrast characteristic 
provided by MR imaging facilitates target localization, 
thereby allowing for the extension of respiratory motion 
prediction from prediction of rigid shifts to two-dimen-
sional (2D) contour or three-dimensional (3D) volume 
[19]. Notably, the implementation of contour and volu-
metric prediction mainly relies on artificial intelligence 
(AI)-based methods, which highlights the potential of 
AI-based respiratory motion prediction for MRIgRT [22].

However, previous studies of AI-based respiratory 
motion prediction for MRIgRT exhibited significant 
inconsistencies in the collection of training dataset, the 
selection of prediction methods, and the formulation of 
complex contour and volumetric prediction problems. 
For example, the difficulty of data collection limits the 
size of patient samples, resulting in a lack of diversity in 
respiratory motion patterns within the training datasets, 
which detrimentally affects the generalizability of pre-
diction methods [23]. Theoretically, compared to linear 
predictors, complex recurrent neural networks (RNNs) 
require larger training datasets to capture temporal 
dependencies in training datasets [24]. In other words, 
the performance of prediction methods is associated 
with the characteristics of training datasets, which might 
be a potential explanation for the inconsistent results 
observed across different studies. This indicates the 
importance of data homogenization in AI-based respira-
tory motion prediction for MRIgRT. Therefore, this paper 
aims to provide a comprehensive review on the modeling 
approaches of AI-based respiratory motion prediction for 

MRIgRT, and to discuss potential solutions for achieving 
consistent results in this domain.

Literature search
Following the Preferred Reporting Items for systematic 
reviews and meta-analyses (PRISMA) guidelines [25], 
this study was conducted as a systematic review focusing 
on AI-based respiratory motion prediction (Fig.  1). The 
search terms used in the PubMed database were (mag-
netic resonance imaging) AND (motion tracking) AND 
((radiotherapy) OR (radiation oncology)), resulting in a 
total of 203 articles until June 2024. The relevant stud-
ies were selected by screening the title and abstract of 
these articles according to these criteria: (1) design for 
MRIgRT; (2) utilization of AI algorithms; and (3) involve-
ment of respiratory motion prediction. Subsequently, we 
searched the references and citations of these relevant 
studies in the Google Scholar search engine, finding a 
total of 12 studies within the scope of AI-based respira-
tory motion prediction.

Problem definition
The aim of respiratory motion prediction is to obtain 
future information on respiratory motion from current 
data, thereby compensating for the system latency in 
real-time. Formally, respiratory motion prediction tasks 
can be formulated as

 ŷt+∆t = f (xt) (1)

where ∆t  is a prediction method, xt  is the current respi-
ratory motion data, ŷt+∆t  is the future motion, and ∆t  
is the prediction window of the motion prediction task, 
typically corresponding to the system latency of real-time 
beam adaptation systems.

In MRIgRT, respiratory motion prediction can be clas-
sified into shift (i.e. centroid position) prediction, contour 
prediction, and volumetric prediction. The aims of shift 
prediction, contour prediction, and volumetric predic-
tion are to obtain the future centroid position, 2D con-
tour, and 3D volume of tumors, respectively. For contour 
and volume prediction, deformation vector fields (DVFs) 
or directly contours/volumes can be output by the model. 
Notably, the ultimate goal of MRIgRT is to achieve real-
time 3D motion management, requiring 3D motion pre-
diction [19].

Data characteristics
Input and output data
The input data xt  for AI-based respiratory motion pre-
diction in MRIgRT is the current centroid shift/the 2D 
contour of tumors extracted from 2D cine MR images 
[26, 27] or the 2D cine MR images themselves. Accord-
ingly, the AAPM TG-264 report [10] recommended a 
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minimum imaging frequency of 3 Hz for real-time tumor 
tracking systems to uphold end-to-end system latencies 
below 500 ms. In clinical practice, 2D cine MR imag-
ing often operates at a frequency of 4–8  Hz, typically 
in a sagittal plane [28] or across interleaved orthogo-
nal planes [29]. For the purpose of training and predic-
tion, the input data X = {x1, x2, . . . , xt, . . . , xT}  is 
reconstructed into subsequences of length w  at each 
timestep. For example, the subsequence at timestep t  is 
S = {xt− w, xt−w + 1, . . . , xt} . Notably, the length w  of 
subsequences often serves as a hyper-parameter during 
model optimization.

The output data ŷt+∆t  for respiratory motion predic-
tion in MRIgRT is the future centroid position (from 
which the shift to the current centroid can be derived) or 
the future 2D tumor contour/cine MR image. The pre-
diction window ∆t  is chosen to match the system laten-
cies of real-time tumor tracking systems. As shown in 
Table  1, reported end-to-end system latencies for MRI-
gRT were on average about 300 ms for 4  Hz imaging 
[16–18, 30, 31] and 200 ms for 8 Hz imaging [16, 17, 32]. 
Furthermore, Liu et al. [33] developed a real-time distor-
tion correction method for correcting geometric distor-
tions in MR images, and reported an end-to-end system 

Table 1 The reported tracking or beam gating end-to-end system latency for different MRIgRT systems. (*) asterisk denotes research 
prototypes
Publication Device platform Clinical scenario Imaging frequency Average latency
Crijns et al., 2012 [32] Utrecht MR-linac* MLC tracking / 200 ms
Yun et al., 2013 [30] Alberta linac-MR* MLC tracking 4 Hz 340 ms
Liu et al., 2020 [18] Australian MR-linac* MLC tracking 4 Hz 328 ms
Lombardo et al., 2023 [34] Australian MR-linac* MLC tracking 4 Hz 389 ms
Lamb et al., 2017 [98] ViewRay MR-60Co Beam gating 4 Hz 436 ms
Green et al., 2018 [99] ViewRay MR-60Co Beam gating 4 Hz 394 ms
Kim et al., 2021 [100] ViewRay MRIdian MR-linac Beam gating 4 Hz 128–243 ms

8 Hz 47–302 ms
Glitzner et al., 2019 [17] Elekta Unity MR-linac* MLC tracking (IMRT) 4 Hz 347 ms

8 Hz 204 ms
Uijtewaal et al., 2021 [16] Elekta Unity MR-linac* MLC tracking (IMRT) 4 Hz 313 ms

8 Hz 215 ms
Uijtewaal et al., 2022 [31] Elekta Unity MR-linac* MLC tracking (VMAT) 4 Hz 328 ms

Jaw tracking (VMAT) 317 ms

Fig. 1 Flowchart of article identification, screening, and inclusion criteria for studies on AI-based respiratory motion prediction in MRIgRT

 



Page 4 of 11Zhang et al. Radiation Oncology          (2024) 19:140 

latency of 319 ± 12 ms without distortion correction and 
335 ± 34 ms with distortion correction. Therefore, the 
prediction window ∆t  for AI-based respiratory motion 
prediction in MRIgRT is often set to 250 ms and 500 ms 
for a typical 4 Hz imaging frequency and can be adapted 
to the specific latency of the system via linear interpola-
tion [28, 34].

Diversity in respiratory motion patterns
The generalizability of AI-based systems heavily relies 
on the diversity of training datasets [35]. However, the 
diversity of training datasets is typically achieved by col-
lecting a large amount of data, which is challenging in 
MRIgRT as most radiotherapy patients receive treatment 
on conventional linacs. Therefore, a quantitative descrip-
tion of respiratory motion patterns is needed in AI-based 
respiratory motion prediction for MRIgRT. For shift pre-
diction, variability in the training data can be inferred 
by calculating the mean amplitude, period, and speed 
of respiratory motions [36–41]. For contour prediction, 
in addition to the previous values, multiple tumor sites, 
such as lung, pancreas, heart, liver, and mediastinum 
should be used [28], aligning with the fact that respira-
tory motion varies among tumor sites and can lead to 
different deformations/rotations of the irradiation target 
[42].

The regularity of respiratory motion also has signifi-
cant impact on the performance of AI-based respiratory 
motion prediction [43]. For traditional real-time tumor 
tracking systems, Ernst et al. [44] analyzed 304 respira-
tory motion traces, extracted a total of 21 features for 
each trace to represent the regularity of motion and con-
firmed the correlations between these extracted features 
and the prediction performance of 6 prediction methods. 
In MRIgRT, the performance of AI-based respiratory 
motion prediction during irregular motion was investi-
gated through case analyses with limited patient sample 
size [45].

Evaluation metrics
For shift prediction, the evaluation metrics mainly com-
prise mean absolute error (MAE) and root mean square 
error (RMSE). For contour prediction, the evaluation 
metrics include the Dice Similarity Coefficient (DSC) 
[46] and the Hausdorff distance [47]. For volumetric pre-
diction, the reported evaluation metric is target registra-
tion error (TRE) [48].

The MAE quantifies the mean absolute difference 
between predicted and ground truth values:

 
MAE =

1

N

N∑

i=1

|yi − ŷi|  (2)

where ŷi  and yi  are the predicted and ground truth cen-
troid data, respective. N  is the total number of points in 
the motion trace.

The RMSE is a metric used to quantify the difference 
between predicted and ground truth values:

 
RMSE =

√
1

N

N∑

i=1

(yi − ŷi)
2  (3)

The DSC is a metric used to measure the spatial overlap 
between the predicted contour and ground truth contour 
of tumors:

 
DSC(A,B) =

2(A ∩B)

A+ B
 (4)

where A and B refer to the predicted contour and ground 
truth contour of tumors, respectively. The DSC ranges 
from 0 to 1, with 1 indicating perfect overlap and 0 indi-
cating no overlap between the two sets.

The Hausdorff distance measures the similarity 
between the points in the predicted contour and ground 
truth contour:

 H(A,B) = max(h(A,B), h(B,A))  (5)

 
h(A,B) = max

a∈A
min
b∈B

‖a− b‖  (6)

where A = {a1, . . . , ap} , B = {b1, . . . , bp} , and ?· ? 
is some underlying norm on the points of A and B (e.g., 
the L2 or Euclidean norm) [47]. The Hausdorff distance 
ranges from 0 to positive infinity, with 0 indicating per-
fect overlap between the two sets of points.

The TRE is the Euclidean distance between corre-
sponding points in the predicted DVFs and ground 
truth (the motion estimated by a pre-trained registration 
network):

 
TRE =

1

n

n∑

i=1

‖pi −GTi‖  (7)

where P = {p1, p2, . . . , pn}  and GT = {g1, g2, . . . , gn}  
represent the points in the predicted DVFs and ground 
truth.

Prediction methods
Shift prediction
The shift prediction methods for MRIgRT are similar 
with those used in traditional real-time tumor track-
ing systems. As shown in Table 2, Yun et al. [49] utilized 
artificial neural networks (ANN) for 1D superior-infe-
rior (SI) shift prediction among 29 lung cancer patients, 
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and obtained mean RMSEs ranging from 0.5 to 0.9 mm 
across system latencies of 120 to 520 ms. Seregni et al. 
[29] compared linear extrapolation, autoregressive linear 
prediction (AR), and support vector machines (SVM) for 
3D shift prediction in 6 lung cancer patients, and found 
that linear prediction method outperformed non-linear 
prediction method. Bourque et al. [50, 51] proposed a 
particle filter combined with an autoregressive model 
for 3D shift prediction among 5 healthy volunteers and 8 
cancer patients, and verified that their prediction method 
was highly accurate and robust against varying imaging 
quality. Lombardo et al. [28, 34] compared ridge regres-
sion and long short-term memory (LSTM) networks for 
1D SI shift prediction in-silico and experimentally con-
firmed the superiority of the LSTM. Their results also 
demonstrated that continuous online re-optimization 
can enhance the performance of prediction methods. 
Conversely, Li et al. [24] recently reported that linear 
prediction methods outperformed recurrent neural net-
works (RNNs) including LSTMs, bidirectional LSTMs 
(Bi-LSTMs), and gated recurrent unit networks (GRUs), 
among 21 liver cancer patients and 10 lung cancer 
patients.

Recent literature [24, 28, 29] therefore reported incon-
sistencies in the superiority between linear and non-lin-
ear prediction methods for MRIgRT. This phenomenon 
can also be observed for motion prediction methods in 
the context of traditional real-time tumor tracking sys-
tems. Sharp et al. [37] reported that the linear predic-
tion methods outperformed more complex prediction 
methods such as ANN and Kalman filter (KF). Jöhl et al. 
[41] compared 18 prediction methods for shift prediction 

among 93 respiratory motions, concluding that linear 
prediction methods were sufficient and non-linear pre-
diction methods were not necessarily needed. On the 
contrary, Murphy et al. [43] demonstrated that non-linear 
prediction methods were more robust than linear predic-
tion methods for irregular respiratory motions. Wang et 
al. [52] found that Bi-LSTM outperformed linear predic-
tion methods using 103 respiratory motions, especially in 
cases with relatively long system latency. Wang et al. [53] 
also reported that an LSTM outperformed a SVM using a 
publicly available dataset. A possible explanation of these 
contradictory results might be that non-linear predic-
tion methods have been relying more and more on RNNs 
compared to the ANNs in early studies. For example, Lin 
et al. [54] trained RNNs for shift prediction among 1703 
respiratory motions, and showed the obtained LSTM to 
outperform an ANN. Furthermore, the performance of 
complex RNNs is more dependent on the optimization 
of model hyperparameters. As reported in Samadi et al. 
[23], tuning the hyperparameters of RNNs resulted in a 
25–30% improvement for all models compared to previ-
ous studies.

Contour prediction and volumetric prediction
Contour prediction and volumetric prediction are rela-
tively new research interests in motion management for 
radiotherapy. Theoretically, contour prediction and volu-
metric prediction can provide more accurate real-time 
tumor tracking over shift prediction. Contour prediction 
can be achieved through either directly predicting the 2D 
contour or by 2D image prediction. Contour prediction 
directly predicts future tumor contours from a sequence 

Table 2 Methods for future shift prediction in MRIgRT
Publication Prediction methods and patient sample size Main results
Yun et al., 
2012 [49]

Utilizing ANN for shift prediction (1D SI direction) among 29 lung cancer patients. The obtained mean RMSEs ranged from 0.5 to 
0.9 mm across system latencies of 120 to 520 ms.

Seregni et al., 
2016 [29]

This study compared linear extrapolation, AR, and SVM for shift prediction (1D SI 
and AP direction from sagittal slices and SI and LR from coronal slices) among 6 
lung cancer patients.

AR outperformed SVM, achieving a mean RMSE 
of approximately 0.5 mm at a prediction window 
of 300 ms and an imaging frequency of 4 Hz.

Bourque et al., 
2017 [50]

Utilizing a particle filter combined with an autoregressive model for shift predic-
tion (1D SI and AP direction from sagittal slices) among 7 lung cancer patients.

The RMSEs were 1.3 ± 0.5 mm and 2.0 ± 0.8 mm 
with and without prediction, respectively.

Bourque et al., 
2018 [51]

Utilizing an improved particle filter combined with an autoregressive model for 
shift prediction (1D SI, AP or LR direction from sagittal and coronal slices) among 5 
healthy volunteers and 8 cancer patients.

The tracking error, combined over all MRI acqui-
sitions, was 1.1 ± 0.4 mm.

Lombardo et 
al., 2022 [28]

This study compared ridge regression and LSTM for shift prediction (1D SI direc-
tion) using 88 patients from an internal cohort and the 3 patients from an external 
cohort.

LSTM outperformed ridge regression, achiev-
ing a mean RMSE of 1.20 mm at a prediction 
window of 500 ms.

Lombardo et 
al., 2023 [34]

This study aimed at experimentally validating the previous in-silico comparison 
(see [28]) of ridge regression and LSTM for shift prediction (1D SI direction) among 
8 publicly available motion traces.

LSTM outperformed ridge regression, achieving 
a median MLC-tracking RMSE over all traces of 
2.8 ± 1.3 mm.

Li et al., 2023 
[24]

This study compared linear regression, ridge regression, L2-L1 regression, LSTM, Bi-
LSTM, GRUs, and Kalman filter (KF) for shift prediction (1D LR and SI direction from 
coronal slices and AP direction from sagittal slices) among 21 liver cancer patients 
and 10 lung cancer patients.

Linear prediction methods outperformed 
recurrent neural networks (RNNs). The obtained 
RMSEs at a prediction window of 400 ms of 
linear regression were 1.61 ± 0.64 mm for liver 
cancer patients and 1.84 ± 0.84 mm for lung 
cancer patients.
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of observed contours, while image prediction predicts, 
from a series of past images, future images or DVFs 
which can be used to warp the last observed tumor con-
tour. For real-time tumor tracking, contour prediction 
is the clinically more relevant method. However, image 
prediction eliminates the need for manual target delinea-
tion, allowing unsupervised training on larger datasets. 
Table 3 summarized the methods for contour prediction 
and volumetric prediction in MRIgRT.

For contour prediction, Noorda et al. [45] combined a 
subject-specific motion model with respiratory motion 
surrogate prediction on 4 healthy volunteers. However, 
this method could not extrapolate respiratory motion 
states not included in the constructed subject-specific 
motion model. Ginn et al. [22] proposed an image regres-
sion (IR) algorithm for image prediction using 8 healthy 
volunteers and 13 cancer patients. This method out-
performed linear prediction methods in predicting the 
centroid position of 2D contour by utilizing a weighted 
combination of previously observed respiratory motion 
states, with weights determined via sum of squared dif-
ferences (SSD) between current and past images. Nev-
ertheless, the calculation of SSD is susceptible to image 
noise and IR may not provide accurate predictions for 
irregular respiratory motion not captured in the selected 
most similar images. Romaguera et al. [55] utilized a 

convolutional LSTM combined with spatial transformer 
layers (ConvLSTM-STL) for image prediction on 12 
healthy volunteers, achieving median vessel misalign-
ments of 0.45 mm and 0.57 mm for prediction windows 
of 320 ms and 640 ms, respectively. In a follow-up study, 
Romaguera et al. [48] demonstrated the superiority of a 
transformer network compared to ConvLSTMs and Con-
vGRUs for contour prediction. Interestingly, Lombardo 
et al. [56] found that an LSTM-shift prediction method, 
in which the last available contour is shifted by the dif-
ference between the predicted and last centroid position, 
outperformed both ConvLSTM contour and image pre-
diction methods when looking at the accuracy of the pre-
dicted contours. More specifically, patients with larger 
respiratory motion are more likely to benefit from using 
the LSTM-shift prediction method.

In addition to spatiotemporal prediction, the imple-
mentation of volumetric prediction involves inferring 
3D volumetric information from 2D cine MR images. 
This can be achieved through 2D-3D deformable image 
registration, which deforms a 3D pre-treatment refer-
ence volumetric image to align with orthogonal 2D cine 
MR images [57, 58]. However, the 2D-3D deformable 
image registration is time-consuming and infeasible 
for real-time applications. Alternatively, several stud-
ies constructed subject-specific or population-based 

Table 3 Methods for future contour and volumetric prediction in MRIgRT
Publication Prediction methods and patient sample 

size
Main results

Noorda et al., 2017 
[45]

Combining subject-specific motion model 
with respiratory motion surrogate prediction 
for contour prediction (image prediction) in 4 
healthy volunteers.

For prediction windows of 300 ms and 600 ms, the average DSC between 
the predicted liver contour and the ground truth were 0.944 ± 0.020 and 
0.943 ± 0.021, respectively. Additionally, the vessel misalignment were 
3.33 ± 0.90 mm and 3.53 ± 0.89 mm, respectively.

Ginn et al., 2020 
[22]

Utilizing IR for contour prediction (image 
prediction) among 8 healthy volunteers and 
13 cancer patients.

For prediction windows of 250 ms and 330 ms, the median distance between 
the predicted and the ground truth contour centroid positions using IR was 
0.63 mm, while those of autoregressive linear prediction, linear extrapolation, 
and no-predictor were 0.84 mm, 1.15 mm, and 1.67 mm, respectively.

Romaguera et al., 
2020 [55]

Utilizing ConvLSTM-STL for contour predic-
tion (image prediction) among 12 healthy 
volunteers.

The median vessel misalignment were 0.45 mm and 0.57 mm for prediction 
windows of 320 ms and 640 ms, respectively.

Liu et al. 2021 [62] Combining subject-specific motion model 
with PCA coefficients prediction for volumetric 
prediction among 8 patients with intrahepatic 
tumors.

For prediction window of 340 ms, median distances between predicted and 
ground truth centroid positions of targets were less than 1 mm on average.

Lombardo et al., 
2023 [56]

This study compared LSTM-shift, ConvLSTM, 
ConvLSTM-STL for contour prediction using 
88 patients from an internal cohort and the 3 
patients from an external cohort.

For prediction window of 500 ms, the obtained DSC between the predicted tar-
get contour and the ground truth for LSTM-shift, ConvLSTM, ConvLSTM-STL and 
no-predictor were 0.92 ± 0.04, 0.91 ± 0.05, 0.91 ± 0.05, and 0.89 ± 0.05, respective-
ly. Additionally, the RMSEs in the SI direction for these prediction methods were 
1.3 ± 0.6 mm, 1.9 ± 1.0 mm, 1.9 ± 1.1 mm, and 2.8 ± 1.6 mm, respectively.

Romaguera et al., 
2023 [48]

Combining population-based motion model 
with transformer network for contour and 
volumetric prediction among 25 healthy 
volunteers.

For image prediction at a prediction window of 450 ms, the obtained geometri-
cal errors between the predicted image and the ground truth for ConvGRU, 
ConvLSTM, and transformer network were 1.60 ± 1.09 mm, 1.37 ± 0.92 mm, and 
1.25 ± 0.74 mm, respectively.
For volumetric prediction at a prediction window of 450 ms, the obtained TREs 
between the predicted volumetric image and the ground truth for ConvGRU, 
ConvLSTM, and transformer network were 1.75 ± 1.19 mm, 1.66 ± 1.21 mm, and 
1.56 ± 1.13 mm, respectively.
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motion models to overcome this limitation. Subject-
specific motion models [59–61] parameterize motion 
information within the pre-treatment 4D datasets using 
principal component analysis (PCA), and can thereby 
accelerate the inference of DVFs. For example, Liu et al. 
[62] combined a subject-specific motion model with PCA 
coefficient prediction to achieve volumetric prediction 
using diagnostic MRI. Nevertheless, inferring DVFs that 
are not expected from the constructed subject-specific 
motion model might be problematic, and pre-treatment 
4D MRI is not always available in clinical scenarios. To 
address these issues, various studies have proposed pop-
ulation-based motion models [63–65] that utilize large 
datasets to capture a broader range of respiratory motion 
patterns. Recently, Romaguera et al. [48] combined a 
population-based motion model with transformer net-
work for volumetric motion prediction using 25 healthy 
volunteers, and achieved prediction of future 3D DVFs 
with a mean TRE of 1.2 ± 0.7 mm.

Inference of 3D volumetric information in real-time 
can also be achieved via deep learning-based fast image 
reconstruction [66, 67]. Terpstra et al. [68] trained a 
multi-resolution convolutional neural network for infer-
ring 3D DVFs, achieving a TRE of 1.87 ± 1.65 mm. Simi-
larity, Shao et al. [69] proposed a deep learning-based 
deformable registration network for downsampled 
4D-MRI image reconstruction with sub-second latency. 
Xiao et al. [70] proposed a downsampling-invariant 
deformable registration model for inferring 3D DVFs, 
obtaining a reconstruction time of less than 500 ms. 
Liu et al. [71, 72] developed a geometry-informed deep 
learning framework for inferring 3D volumetric informa-
tion with sub-second acquisition time, and incorporated 
implicit neural representation learning with prior infor-
mation to enable fast volumetric image reconstruction 
from orthogonal cine MR images. These studies offer 
alternative approaches for inferring 3D volumetric infor-
mation and facilitating further volumetric prediction in 
MRIgRT.

Discussion
Several clinical studies [73–77] have demonstrated that 
the superior treatment accuracy provided by MRIgRT 
is associated with improved clinical outcomes. Notably, 
Neylon et al. [78] found that large intrafraction motion 
in patients correlates with increased toxicity, which high-
lights the importance of real-time motion management 
in MRIgRT. Furthermore, real-time beam adaptation 
with either gating or MLC-tracking can provide a reduc-
tion of the CTV-PTV margin, boosting the potential of 
dose escalation [27, 79–81]. To maintain the accuracy of 
MLC-tracking, respiratory motion prediction becomes 
imperative to alleviate the system latency inherent to 
MRIgRT systems. In contrast to traditional real-time 

tracking systems, MRIgRT has the potential to achieve 
more advanced contour prediction and volumetric pre-
diction, mainly relying on AI-based methods.

However, the implementation of AI in health and medi-
cine faces challenges such as data limitations and mod-
eling divergence [82]. For AI-based respiratory motion 
prediction in MRIgRT, complex clinical workflows and 
therefore reduced patient numbers limit the collection 
of large datasets, making it challenging to gather the 
amount of data required for robust model training, vali-
dation, and testing. Additionally, many studies utilized 
private datasets for the AI modeling [83, 84], and the 
lack of data transparency and code availability may fur-
ther reduce the replicability of the reported results [85]. 
For example, Lombardo et al. [28, 34] reported that an 
LSTM outperformed a linear method, whereas Li et al. 
[24] recently obtained the opposite result. Therefore, in 
future work, the authors aim to establish a publicly avail-
able benchmark dataset for AI model comparison within 
AI-based respiratory motion prediction in MRIgRT.

Inspired by the University of California, Riverside 
(UCR) time series classification archive [86–90], this 
publicly available benchmark dataset should aim to 
standardize the modeling approaches, thereby promot-
ing fair comparisons and accelerating advancements for 
AI-based respiratory motion prediction in MRIgRT. To 
ensure diversity in respiratory motion patterns, the data 
collection for this publicly available benchmark dataset 
should follow these criteria: (1) including irregular respi-
ratory motions; (2) comprising multiple tumor sites to 
represent varying moving anatomies; and (3) incorporat-
ing multi-institutional data with varying image quality to 
assess the robustness of the prediction methods. To foster 
collaboration and reproducibility, this publicly available 
benchmark dataset will include detailed documentation, 
such as guidelines for data usage, model training, and 
evaluation metrics. Researchers will be encouraged to 
share their code and results through an open repository, 
enabling the community to build upon each other’s work 
and validate findings independently.

The reported average or median tracking accuracies 
of shift prediction methods (Tables  2 and 3) achieved 
in-silico were consistently within 3 mm. However, these 
in-silico studies did not evaluate and report the uncer-
tainties associated with rapid target localization algo-
rithms [69, 91–93]. This indicates that the accuracy in 
clinical scenarios might be inferior to the in-silico one, 
highlighting the need of developing more advanced pre-
diction methods. As reported in Ginn et al. [22], their 
proposed contour prediction method outperformed 
common shift prediction methods. In contrast, Lom-
bardo et al. [56] concluded that a shift prediction method 
overall outperformed both contour and image predic-
tion methods. Also, their results indicated that patients 
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with smaller respiratory motion are more likely to benefit 
from using the contour prediction methods. The execu-
tion time of their LSTM-shift model, ConvLSTM, and 
ConvLSTM-STL were 17 ± 3 ms, 14 ± 1 ms, and 45 ± 1 ms, 
respectively, which is clinically acceptable. Additionally, 
contour prediction and volumetric prediction can also 
provide the information of surrounding organs at risk 
(OARs), which may enhance the sparing of these critical 
OARs.

Model optimization strategies can also influence the 
final performance of AI-based respiratory motion pre-
diction methods [54]. An interesting model optimization 
strategy is adaptive learning (also called continuous or 
online learning), which continuously updates the model 
weights to enable adaptation to recent respiratory motion 
patterns [94, 95]. Sun et al. [96] have confirmed that 
adaptive learning improves the performance of shift pre-
diction models among 202 respiratory motions obtained 
from a real-time position management (RPM) device. 
Lombardo et al. [28, 56] also found that LSTMs with 
adaptive learning outperformed standard LSTM for shift 
prediction and contour prediction in MRIgRT. However, 
unlike RPM which directly provides respiratory motion 
signals, 2D cine MR images require additional prepro-
cessing to extract these signals. For this reason, in their 
experimental study on a prototype MR-linac, Lombardo 
et al. [34] utilized a template matching algorithm for tar-
get centroid position extraction, and further confirmed 
the efficacy of adaptive learning in boosting LSTM per-
formance for shift prediction during MRI-guided MLC 
tracking.

A straightforward approach to evaluate the end-to-end 
uncertainties in real-time motion management systems 
is to conduct experimentally studies. Uijtewaal et al. [16, 
31] have experimentally demonstrated the combination 
of IMRT/VMAT with MLC-tracking on a prototype of 
a commercial MR-linac, obtaining 2%/1 mm pseudo-3D 
gamma passing-rates of 22–77% without MLC-tracking 
and 92–100% with MLC-tracking. However, this 3D 
gamma analysis might not be applicable for evaluating 
contour prediction and volumetric prediction. Lombardo 
et al. [34] proposed an alternative EPID-based perfor-
mance analysis to evaluate the end-to-end uncertainties 
of MLC-tracking on a protype research MR-linac. The 
2D cine MR images offered by MR-linacs allow for pre-
cise target localization, yet constrained by low temporal 
resolution. Integrating MR-linacs with the high temporal 
resolution of optical surface systems might enhance the 
tracking accuracy of MRIgRT [97].

Conclusions
In conclusion, AI-based methods have extended respira-
tory motion prediction from shift prediction to contour/
image and volumetric prediction for MRIgRT. However, 

the inconsistent results observed in literature underscore 
the need of establishing a benchmark dataset for compar-
ing traditional and AI-based respiratory motion predic-
tion methods in MRIgRT. Additionally, investigating the 
impact of uncertainties associated with the real-time tar-
get localization step prior to the application of AI-based 
respiratory motion prediction might represent another 
research direction in MRIgRT.
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