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Abstract
Objective To identify variables associated with a patients’ ability to reproducibly hold their breath for deep-
inspiration breath-hold (DIBH) radiotherapy (RT) and to develop a predictive model for DIBH eligibility.

Methods This prospective, single-institution, IRB-approved observational study included women with left-sided 
breast cancer treated between January 2023 and March 2024. Patients underwent multiple breath-hold sessions 
over 2–3 consecutive days. DIBH waveform metrics and clinical factors were recorded and analysed. Logistic 
mixed modelling was used to predict DIBH eligibility, and a temporal validation cohort was used to assess model 
performance.

Results In total, 253 patients were included, with 206 in the model development cohort and 47 in the temporal 
validation cohort. The final logistic mixed model identified increasing average breath-hold duration (OR, 95% CI: 0.308, 
0.104–0.910. p = 0.033) and lower amplitude (OR, 95% CI: 0.737, 0.641–0.848. p < 0.001) as significant predictors of DIBH 
eligibility. Increasing age was associated with higher odds of being ineligible for DIBH (OR, 95% CI: 1.040, 1.001–1.081. 
p = 0.044). The model demonstrated good discriminative performance in the validation cohort with an AUC of 80.9% 
(95% CI: 73.0-88.8).

Conclusion The identification of variables associated with DIBH eligibility and development of a predictive model 
has the potential to serve as a decision-support tool. Further external validation is required before its integration into 
routine clinical practice.
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Introduction
Irradiation of patients with left-sided breast cancer using 
deep-inspiration breath-hold (DIBH) radiotherapy (RT) 
technique is now the standard of care. An abundance 
of dosimetric literature concludes that DIBH with for-
ward Intensity-Modulated Radiation Therapy (IMRT) 
planning, can achieve a remarkable reduction in whole 
heart mean dose (Dmean), which is the strongest predic-
tor for late cardiac morbidity [1, 2]. Center-specific pro-
tocols for assessing eligibility for DIBH RT technique are 
infrequently reported, resulting in slow adoption due to 
limited access to practical knowledge and motivated the 
development of a recent ESTRO-ACROP guideline on 
DIBH techniques [3, 4]. 

At most centers, patients undergo a training ses-
sion before simulation, during which the procedure is 
explained and practised. Measures that may influence 
the decision to proceed with DIBH RT technique include 
reproducibility (defined as inter-fraction or intra-fraction 
breath-hold variation), duration of reproducible breath-
hold (as short breath-holds will increase the ‘on-couch 
time’ during treatment delivery) and patient-specific fac-
tors (age, BMI, smoking history) [4]. The different equip-
ment used for DIBH (surface or marker-based systems, 
spirometry-based systems and equipment-free DIBH) 
also contribute to the variation between different centers’ 
protocols. While the choice of equipment does not affect 
the reduction in heart Dmean achieved with DIBH RT 
technique, the literature on characteristics that influence 
patient eligibility for DIBH RT technique is sparse [5]. 

This analysis attempts to identify variables associated 
with a patient’s ability to reproducibly hold their breath 
for the DIBH RT technique (PROGRESS Type II study) 
[6]. Furthermore, we attempted to develop and validate a 
model (PROGRESS Type III study) to predict whether a 
patient will be eligible for DIBH RT technique [7]. 

Materials & methods
Population – model development and temporal validation 
cohorts
This prospective, single-institution, IRB-approved [pro-
tocol ID: RES/SCM/62/2024/01, IRB Approval ID: 
RGCIRC/IRB-BHR/30/2024] observational study was 
conducted between January 2023 and March 2024. 
We developed the model using data from January 2023 
to December 2023 and used data from January 2024 to 
March 2024 for temporal validation (TRIPOD Analysis 
Type 2b). Only women with left-sided breast cancer were 
eligible. Inclusion criteria were: (a) age over 18 years with 
pathological stage I-III disease after surgery (breast con-
servation or mastectomy), and; (b) requiring adjuvant RT 

(42.5 Gy/16Fx, 5 days/week) to whole breast or chest wall 
with/without elective regional nodal irradiation (sequen-
tial lumpectomy boost permitted; 10 Gy in 4Fx). Neoad-
juvant and adjuvant chemotherapy and/or trastuzumab 
was permitted.

Exclusion criteria were: (a) metastatic breast cancer or 
an indication for palliative radiotherapy, or; (b) an East-
ern Cooperative Oncology Group performance status of 
3 or higher, or; (c) individuals unable to follow or under-
stand the instructions for DIBH due to any reason (lan-
guage barriers, hearing loss, or cognitive impairment), or; 
(d) any cardiac or pulmonary condition with NYHA class 
III-IV or MRC dyspnea grade IV-V, respectively.

All included patients were assessed for treatment in 
DIBH (RPM system, Varian Medical Systems, USA) 
and received RT via Field-in-Field IMRT or Volumetric 
Modulated Arc Therapy on a 6MV LINAC with daily 
kV-MV verification (Clinac 2100c, Varian Medical Sys-
tems, USA). There are no treatment time limits on our 
LINACs, allowing the accommodation of varying DIBH 
performance amongst patients.

To achieve our primary objective of identifying vari-
ables to predict DIBH eligibility, we used DIBH wave-
forms and clinical factors associated with reproducible 
breath-hold in patients undergoing assessment for DIBH 
RT technique. The identified variables were then used to 
develop a prediction model.

Study procedure - DIBH assessment
All patients underwent 2–3 consecutive days of DIBH 
assessment performed by a team of technologists (radia-
tion therapists), medical physicists and radiation oncol-
ogy registrars. After explaining the DIBH procedure to 
the patients, they underwent multiple breath-hold ses-
sions each day, interspersed with 20–30  s breaks. The 
difference between chest versus abdominal breathing 
was explained to them and they were coached to avoid 
arching the spine to reach the DIBH threshold. Each day, 
at least 15 sessions were performed depending on the 
patient’s comfort and visual feedback was provided via an 
in-room display. A 40 min slot was kept for each patient 
on each assessment day. After the day’s assessment was 
completed, the team reviewed the waveforms and vari-
ables were extracted as defined below.

Let n be the total number of breath-hold attempts a 
patient underwent on a day, then:

1. Upper Amplitude: The highest stable amplitude 
reached in any of the n attempts.

2. Lower Amplitude: The lowest stable amplitude 
reached in any of the n attempts)
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Fig. 1 (See legend on next page.)
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3. Average Amplitude (in all n attempts): 
(Amplitude_1 + Amplitude_2 + . + Amplitude_n) ÷ n.

4. Average Breath-hold Duration (in all n attempts; 
only the duration when the amplitude was 
within the gating window is measured): 
(Duration_1 + Duration_2 + . + Duration_n) ÷ n.

5. Consistent Breath-hold (within ± 3 mm gating 
window): (Yes/No)

An example calculation is shown in Fig.  1 for two 
patients.

On the last day of assessment (Day 3), the team decided 
whether to treat the patient with DIBH or not. First, a 
nominal gating window of 6 mm (± 0.5 mm) was chosen 
based on the average amplitude that the patient could 
reach on previous assessment days. Next, the patient was 
asked to reach and stay within the specified gating win-
dow for three consecutive breath-holds, with two specific 
criteria needing to be met:

1. The patient must remain within the gating window 
for at least 80% of the total breath-hold duration.

2. The 80% duration within the gating window must 
amount to at least 15 s long.

The gating window was adjusted based on the patient’s 
performance (if required), as follows:

1. If both criteria (defined above) were met, the patient 
proceeded to DIBH CT simulation directly.

2. If the amplitude exceeded the upper limit of the 
planned gating window, we adjusted the window to 
the higher amplitude and if both criteria (defined 
above) were met, the patient proceeded to DIBH CT 
simulation.

3. If the amplitude fell below the lower limit of the 
planned gating window or the duration of time 
within the gating window was less than 15 s, we 
reviewed the previous performance with the patient, 
allowed a 10–15 min rest, and asked the patient to 
try again. If both criteria (defined above) were met, 
we proceeded with a DIBH CT simulation, otherwise 
the patient underwent a non-DIBH CT simulation.

Data from the DIBH assessment waveforms was pro-
spectively collected and recorded in our workflow man-
agement system (OncFlow™, Dashamlav AI Labs, India; 
dashamlavlabs.ai) and upon extraction, were assessed by 
the principal investigators (IA, KSC, AAM). Inconsisten-
cies due to incorrect data entry were resolved by review-
ing the original waveform data.

Statistical analysis
Data description and sample size calculation
Baseline characteristics were reported as the median 
with interquartile range (IQR) (continuous variables) or 
frequencies and percentages (categorical variables). Our 
previous institutional experience found that 50–55% of 
patients assessed over 3 days were suitable for the DIBH 
RT technique. In this study, only 3% (7/253) of patients 
started treatment in DIBH but required conversion to 
free-breathing. These patients were unable to reach the 
amplitude which was set during assessment in the first 
three treatment fractions, and for modelling, they were 
classified as non-DIBH. Guidance on a priori sample size 
calculation for prediction modelling is emerging but spe-
cific guidance for a logistic mixed modelling approach is 
absent [8]. 

Model development, variable selection and optimisation
A logistic mixed modelling approach was used to pre-
dict whether patients would be eligible for DIBH. This 
improves parameter estimation accuracy by account-
ing for the correlation between repeated measurements 
within individuals and can handle missing data. Includ-
ing all available data in the analysis reduces bias and 
optimizes power [9, 10]. The variables were modelled as 
follows:

  • Continuous variables were kept as continuous 
(without dichotomisation) to avoid information loss.

  • Age, BMI, comorbidities and surgery type were 
modelled as fixed effects.

  • DIBH Measurements taken on three consecutive 
days (upper amplitude, lower amplitude, average 
amplitude of DIBH, average breath-hold duration 
and consistent breath-hold) were modelled as 
fixed effects with random slopes for the day of 

(See figure on previous page.)
Fig. 1 Illustrative summary of DIBH assessment workflow for two patients across three consecutive days. The numbers shown above the blue line and 
below the orange line on the waveform represent the gating window, and the breath-hold trace is in black. The amplitude of the breath-hold is measured 
using the right y-axis
All patients attempted at least 15 breath-hold each day, following which waveform metrics were calculated (for definitions, see materials and meth-
ods). The target amplitude for Day 3 was determined using the average amplitudes recorded on Days 1 and 2 and a nominal gating window of 6 mm 
(± 0.5 mm) was applied. The decision to proceed with DIBH was based on fulfilment of eligibility criteria (for description, see materials and methods)
Patient 1 illustrates a candidate fit for DIBH technique, with consistent breath holds, indicated by the nearly identical waveforms across multiple attempts. 
Patient 2 illustrates an unfit candidate, with erratic breath holds and slight exhalation during the breath-hold attempts, as shown by the red stars (indicat-
ing the fall in amplitude). The red arrows on the waveform for patient 2 represent the start and end of breath-hold duration for each attempt. The data 
was collected and analyzed over three consecutive days and the final decision on suitability for DIBH treatment was taken on the third day
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measurement to account for the possibility that 
the rate of change over the days may differ. Due 
to deviation from normality, average breath-hold 
duration was log-transformed.

  • Individual patients were modelled as a random effect 
to account for correlated measurements from the 
same patient, thereby allowing each patient to have 
their own baseline probability of the outcome.

Variable selection was performed via manual stepwise 
backward selection after fitting a maximal model, which 
included all variables, their respective fixed and random 
effects, and random slopes for the day of assessment 
[11]. Initially, multicollinear variables were removed, 
and then variable selection was performed by comparing 
the log-likelihood between models with and without the 
variable. Goodness-of-fit was assessed using the Akaike 
Information Criterion (AIC), Bayesian Information Cri-
terion (BIC) and log-likelihood of the final model. The 
BOBYQA (Bound Optimization BY Quadratic Approxi-
mation) optimiser was used with an iteration limit of 
200,000 to efficiently locate the minima using a deriva-
tive-free method. The results of mixed-effects modelling 
were reported as odds ratios (OR) with respective 95% 
confidence intervals (CI), the level of significance was 
set at 5% and the modelling was performed with R v4.3.2 
[R core team (2023), Austria] and lme4 package [12]. 
Patients and the general public were not involved in this 
analysis.

Model performance
Logistic mixed models have two components: a fixed 
effect (which models average trends that persist across 
the population) and a random effect (which models the 
extent of variation in fixed effects by a grouping factor). 
As outlined above, the grouping factor in our model were 
individual patients (each with a unique ID). An assess-
ment of the model’s performance on the development 
data would exhibit near-perfect evaluation metrics. This 
is likely a consequence of overfitting to the development 
data, utilising unique IDs for precise, individualised pre-
dictions. To overcome this issue, we performed a tem-
poral validation of the model’s overall performance. The 
model’s discriminative performance was assessed by the 
area under the receiver-operating characteristic curve 
(AUC) and classification measures (Accuracy, Recall, 
Precision and F1 score) [13, 14]. This report was prepared 
in accordance with the TRIPOD + AI and STROBE guide-
lines (supplemental materials) [15, 16]. 

Results
A total of 253 patients were included in this analysis, 
of which 206 were in the development dataset (Janu-
ary 2023 to December 2023), and 47 patients were in 
the temporal validation dataset (January 2024 to March 
2024). Their demographic and assessment details are 
shown in Tables  1 and 2, respectively. A visual com-
parison of the evaluated waveform metrics (stratified by 
patients who were deemed eligible or ineligible for DIBH) 
is shown in the supplemental materials (Figure S1). Over-
all, 54% (112/206) of patients in the development dataset 
and 60% (28/47) in the temporal validation dataset were 
eligible for the DIBH RT technique.

Logistic mixed model
The final variables in the logistic mixed model are shown 
in Fig.  2. Increasing average breath-hold duration (OR, 
95% CI: 0.308, 0.104–0.910. p = 0.033) and lower ampli-
tude (OR, 95% CI: 0.737, 0.641–0.848. p < 0.001) were sig-
nificantly associated with higher odds of being eligible for 
DIBH. Increasing age was significantly associated with 
higher odds of being ineligible for DIBH (OR, 95% CI: 
1.040, 1.001–1.081. p = 0.044), while the inability to stay 
within the defined gating window consistently showed 
a trend towards significance (OR, 95% CI: 2.741, 0.961–
7.818, p = 0.059). The model’s discriminative performance 
metrics on the development data are reported in supple-
mental materials (Figure S2).

Temporal validation
Figure  3 shows the logistic mixed model’s performance 
on the temporal validation dataset. The model’s accu-
racy in predicting patients who will not be eligible for the 
DIBH RT technique was 76.9 (95% CI: 68.8–83.7), and its 

Table 1 Baseline characteristics of the patient population 
(model development dataset, n = 206; temporal validation 
dataset, n = 47)

Model 
Development

Temporal 
Validation

n % n %
Median Age - years (IQR)
 DIBH cohort 48 (42–54) - 45 (39–55) -
 Non-DIBH cohort 52 (47–59) - 53 (49–56) -
BMI (Kg/m2) (IQR)
 DIBH cohort 27 (24–30) - 28 (25–29) -
 Non-DIBH cohort 28 (26–31) - 27 (24–30) -
Comorbidities
 None 118 57% 0 64%
 Hypertension or CVD 33 16% 9 25%
 Others 55 27% 38 11%
Type of Surgery
 Breast conservation surgery 112 54% 30 64%
 Modified radical mastectomy 94 46% 17 36%
Chemotherapy
 Adjuvant 105 51% 18 38%
 Neoadjuvant 96 47% 25 53%
 Not delivered 5 2% 4 9%
Abbreviations: BMI: Body Mass Index; CVD: Cardiovascular Disease; IQR: Inter-
Quartile Range



Page 6 of 9Ahmad et al. Radiation Oncology          (2024) 19:115 

AUC was 80.9 (95% CI: 73.0–88.8). The kappa statistic of 
0.5191 indicates a moderate agreement beyond chance, 
and the model significantly surpassed the No Informa-
tion Rate of 62.69% (p = 0.0003), demonstrating its pre-
dictive performance over a naïve classification approach.

Discussion
To the best of our knowledge, this analysis of DIBH eligi-
bility based on waveforms and clinical factors is the first 
of its kind reported in the literature. We report several 
important findings. First, besides age, no other base-
line patient characteristics influenced DIBH eligibility. 
Second, average breath-hold duration and lower ampli-
tude were associated with DIBH eligibility. Finally, our 
model demonstrated moderate accuracy in predicting 

Table 2 Results of assessments performed during DIBH training on the patient population (model development dataset, top; 
temporal validation dataset, bottom)

Assessment Day 1 Assessment Day 2 Assessment Day 3
DIBH (n = 112) Non-DIBH 

(n = 94)
DIBH (n = 112) Non-DIBH 

(n = 94)
DIBH (n = 112) Non-DIBH 

(n = 94)
Median Upper Amplitude (mm)(IQR) 20 (18–24) 18 (13–20) 20 (17–22) 18 (13.75–20) 20 (17.5–23) 18 (12–20)
Median Lower Amplitude (mm)(IQR) 12 (10–14) 8 (7–10) 12 (10–14) 8 (7–10) 12 (10–14) 8 (7–10)
Median Average Amplitude (mm)(IQR) 15 (12–17) 10 (9–14.5) 15 (12–17) 10 (8–14) 15 (13–18) 10 (9–12)
Median Average BH duration (sec)(IQR) 20 (19–20) 15 (10–20) 20 (20–21) 15 (10–20) 20 (20–21) 15 (10–18)
Consistent BH (Yes/No) 91% / 9% 62% / 38% 96% / 4% 55% / 45% 99% / 1% 57% / 43%
Missing Data (n) 3 1 3 12 3 31

Assessment Day 1 Assessment Day 2 Assessment Day 3
DIBH (n = 28) Non-DIBH 

(n = 19)
DIBH (n = 28) Non-DIBH 

(n = 19)
DIBH (n = 28) Non-DIBH 

(n = 19)
Median Upper Amplitude (mm)(IQR) 20 (20–21.7) 20 (20–20) 20 (20–21.7) 20 (19–20) 24.5 (21.2–25) 20 (19.7–

20.2)
Median Lower Amplitude (mm)(IQR) 10 (10–12) 10 (9–10) 10 (10–11.7) 10 (8–10) 13.5 (10.2–15) 10 (8–10.2)
Median Average Amplitude (mm)(IQR) 13 (12–14.7) 11 (10–12) 13 (12–15) 10 (10–11.5) 16 (14.2–19) 11 

(9.7–14.7)
Median Average BH duration (sec)(IQR) 20 (15–22) 15 (10–20) 22 (20–24) 15 (12–20) 22 (22–25) 15 (14.2–

20.5)
Consistent BH (Yes/No) 64% / 36% 11% / 89% 89% / 11% 47% / 53% 100% / 0% 36% / 64%
Missing Data (n) 0 0 0 2 0 5
Abbreviations: BH: Breath Hold; IQR: Inter-Quartile Range

Fig. 2 Results of logistic mixed modelling of variables influencing DIBH eligibility. Variables marked with red dots on the forest plot are significant
Abbreviations: BCS: Breast Conservation Surgery; BH: Breath-hold; BMI: Body Mass Index; CVD: Cardiovascular Disease
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an individual patient’s eligibility for DIBH RT technique. 
The key strengths are the large sample size, assessment 
performed over three consecutive days, and robust sta-
tistical analysis with temporal validation of the developed 
model. We have also defined variables to be extracted 
from assessment waveforms, which allows objective eval-
uation of DIBH eligibility, provides institution-specific 
data for analysis, and tracks patient performance.

A few differences between our analysis and the litera-
ture are worth highlighting. While the literature states 
that up to 90% of patients are eligible for DIBH, our real-
world analysis found that overall, 55% of patients were eli-
gible. Since we did not place any pre-assessment criteria 
for DIBH eligibility (except for those with ECOG PS 3/4 
or significant cardio-pulmonary comorbidity), our results 
may represent the experience of large-volume centres 
treating patients with default DIBH approach, outside of 
a study protocol. A similar experience has been reported 
by other centres, where up to 29–33% of patients were 
found ineligible for DIBH after initial assessment [17, 18]. 

Similar to the definition of a moderately deep breath-
hold, which is approximately 70–85% of the maximum 
BH level (using spirometer-based techniques), our analy-
sis found that using the RPM-based system, our patients’ 
average breath-hold amplitude (analogous to the mod-
erately deep BH) was also 72.2% (IQR: 61.1–81.8%) 

when compared to the upper amplitude (analogous to 
maximum BH) [4]. Interestingly, both upper and aver-
age amplitude were not significantly associated with eli-
gibility for the DIBH technique in our analysis and were 
excluded from the developed model. Instead, the lower 
amplitude determined eligibility, implying that patients 
who could adequately hold their breath at a higher level 
(despite being their worst attempt) were more likely to be 
eligible for DIBH.

A potential criticism of our assessment protocol is the 
time and resources expended. We contend that the time 
spent on DIBH assessment is less resource-intensive than 
that spent on the treatment machine. Over-zealous util-
isation of DIBH in patients with short BH can increase 
on-couch time, and repeated BH attempts can potentially 
exhaust their BH capacity faster, creating a vicious cycle. 
This has potential downstream effects on patient waiting 
time and satisfaction [19]. Ultimately, the conversion of 
a patient’s treatment from DIBH to non-DIBH may be 
more resource-intensive and may increase their anxiety 
[18]. The relationship between waveform metrics during 
assessment and on-couch time during treatment, as well 
as patients’ perception of our assessment protocol are 
avenues for future research that our group will undertake.

In contrast to our three day assessment protocol for 
a default DIBH approach, some centres prefer an initial 

Fig. 3 Performance of the logistic mixed model on the temporal validation dataset. (A) Receiver Operating Characteristic (ROC) curve illustrating the 
model’s performance in distinguishing between DIBH (Deep-inspiration Breath-hold) and non-DIBH cases. (B) Density plot and histogram of predicted 
probabilities for DIBH and Non-DIBH cases. The blue and red curves represent the density distributions of predicted probabilities for DIBH and Non-DIBH, 
respectively. Grey bars indicate the histogram of predicted probabilities across the dataset. Blue and red circles along the x-axis denote individual predic-
tions for DIBH and Non-DIBH cases, respectively. The vertical black line represents the decision threshold for classification between DIBH and Non-DIBH
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quantification of the magnitude of benefit which will be 
achieved with DIBH compared to FB [20, 21]. This pref-
erence arises from the increased workload associated 
with assessing all patients for DIBH treatment delivery 
and the average heart Dmean in high-income countries 
(HIC) ranging from 2.8 to 3.8  Gy [22]. The problem in 
lower-middle income countries (LMIC) is that the aver-
age heart Dmean is higher (6.2 Gy), the overall population 
is at higher risk of major cardiovascular disease and less 
than a third of practicing radiation oncologists utilise 
any form of respiratory motion management [3, 22, 23]. 
Therefore, from the LMIC perspective any reduction 
in heart Dmean is important and since situations where 
DIBH would lead to higher cardiac exposure are rare, 
a ‘DIBH for all’ approach has the potential to reach the 
most patients despite constrained resources [24]. 

Another potential criticism of our analysis could be 
the use of a logistic mixed modelling approach, which is 
more complex and may be less familiar to readers than 
more straightforward techniques such as repeated mea-
sures analysis of variance (RM-ANOVA). The use of 
RM-ANOVA would have excluded patients with miss-
ing assessment data because it handles missing observa-
tions via listwise deletion, thereby reducing the sample 
size with potential implications for the real-world usage 
of the model [25]. We also acknowledge that our sample 
size may not have been large enough to detect more sub-
tle associations. Our group will also report alternative 
modelling approaches using machine learning and deep 
learning techniques in the near future [26]. 

The developed model will now be tested at our institu-
tion to check the agreement between the team’s decision 
and model predictions, and it is anticipated that it may 
serve as a decision-support tool in the future by reducing 
subjectivity. It may also serve as a tool for trainees to gain 
confidence in their decision-making abilities. To per-
form external validation, we intend to release the model’s 
code to interested researchers pending further testing at 
our institution. Once completed, we intend to design a R 
Shiny application for broader use and envision a hybrid 
DIBH assessment protocol in the future, where model 
predictions assist, but do not replace clinical judgement.

In conclusion, our analysis identified variables associ-
ated with a patient’s ability to consistently maintain DIBH 
which were then used to develop a prediction model. 
External validation of the model on a more diverse 
patient population is required before integration into 
routine departmental workflows.
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