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Abstract 

Purpose Convolutional Neural Networks (CNNs) have emerged as transformative tools in the field of radiation 
oncology, significantly advancing the precision of contouring practices. However, the adaptability of these algorithms 
across diverse scanners, institutions, and imaging protocols remains a considerable obstacle. This study aims to inves‑
tigate the effects of incorporating institution‑specific datasets into the training regimen of CNNs to assess their 
generalization ability in real‑world clinical environments. Focusing on a data‑centric analysis, the influence of varying 
multi‑ and single center training approaches on algorithm performance is conducted.

Methods nnU‑Net is trained using a dataset comprising 161 18F‑PSMA‑1007 PET images collected from four distinct 
institutions (Freiburg: n = 96, Munich: n = 19, Cyprus: n = 32, Dresden: n = 14). The dataset is partitioned such that data 
from each center are systematically excluded from training and used solely for testing to assess the model’s generaliz‑
ability and adaptability to data from unfamiliar sources. Performance is compared through a 5‑Fold Cross‑Validation, 
providing a detailed comparison between models trained on datasets from single centers to those trained on aggre‑
gated multi‑center datasets. Dice Similarity Score, Hausdorff distance and volumetric analysis are used as primary 
evaluation metrics.

Results The mixed training approach yielded a median DSC of 0.76 (IQR: 0.64–0.84) in a five‑fold cross‑validation, 
showing no significant differences (p = 0.18) compared to models trained with data exclusion from each center, which 
performed with a median DSC of 0.74 (IQR: 0.56–0.86). Significant performance improvements regarding multi‑center 
training were observed for the Dresden cohort (multi‑center median DSC 0.71, IQR: 0.58–0.80 vs. single‑center 0.68, 
IQR: 0.50–0.80, p < 0.001) and Cyprus cohort (multi‑center 0.74, IQR: 0.62–0.83 vs. single‑center 0.72, IQR: 0.54–0.82, 
p < 0.01). While Munich and Freiburg also showed performance improvements with multi‑center training, results 
showed no statistical significance (Munich: multi‑center DSC 0.74, IQR: 0.60–0.80 vs. single‑center 0.72, IQR: 0.59–0.82, 
p > 0.05; Freiburg: multi‑center 0.78, IQR: 0.53–0.87 vs. single‑center 0.71, IQR: 0.53–0.83, p = 0.23).
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Introduction
Primary prostate cancer (PCa) represents one of the most 
common cancer types in men with a prevalence of up 
to 15% in industrialized nations [1]. In the treatment of 
localized prostate cancer, radiotherapy holds a pivotal 
position. As there has been an upsurge in more patient-
centric approaches such as the use of focal radiation dose 
escalation, a meticulous delineation of the intraprostatic 
tumor burden is essential [2].

18F-PSMA-1007 PET imaging has emerged as a pow-
erful tool for characterizing intraprostatic tumor lesions 
[3], exhibiting, in some aspects even higher sensitivities 
compared to prostate multiparametric magnetic reso-
nance imaging (mpMRI) [4].

While manual segmentation can be used for delineat-
ing the intraprostatic Gross Tumor Volume (GTV) [5], 
modern deep learning algorithms, especially convolu-
tional neural networks (CNNs), are significantly trans-
forming the contouring process in radiation oncology 
across various dimensions [6–10].

In light of this critical shift towards automated, deep 
learning-based contouring, the feasibility of CNN-
based autocontouring has been demonstrated for both 
68 Ga-PSMA-11 and 18F-PSMA-1007 PET in prior work 
[11–13].

However, these studies primarily focused on the practi-
cal aspects of intraprostatic GTV segmentation, neglect-
ing crucial technical and data-centric considerations 
necessary for the successful integration of CNNs into 
clinical workflows.

Undoubtedly, external validation remains a crucial 
aspect in the evaluation of deep learning models [14, 
15], as the heterogeneity of imaging data across dif-
ferent clinical centers poses a significant barrier to the 
universal adoption and effectiveness of these technolo-
gies. The consideration of multicentric training datasets 
emerges as an important factor in addressing these chal-
lenges, aiming to enhance the robustness and accuracy 
of CNN-based autocontouring solutions. Therefore, the 
motivation behind our study is twofold: to critically ana-
lyze the performance implications of employing a multi-
centric approach in the training of deep learning models 
for intraprostatic GTV delineation while also investigat-
ing the potential benefits of integrating institution-spe-
cific nuances into the training process. By doing so, we 

strive to contribute valuable insights into the optimiza-
tion of deep learning applications in the domain of radia-
tion oncology, ultimately facilitating the advancement of 
patient-centric treatment strategies that are both effec-
tive and adaptable to varied clinical settings.

In this study, we systematically assess the importance 
of using a multicentric training dataset, evaluating the 
generalizability and performance of CNNs for intrapro-
static GTV delineation on 18F-PSMA-1007 PET across 
different clinical settings inside the nnUNet Framework 
[16].

Initially, models are trained on datasets from all cent-
ers except one and subsequently tested on a cohort from 
the excluded center. In a second phase, the models are 
trained using data from a single center and tested on 
datasets from all other centers. Comparative analysis of 
the outcomes is performed against results obtained from 
a dataset that includes mixed data from all centers.

Through the comparison of different training strate-
gies and validation datasets, our research aims to delin-
eate the critical factors that contribute to the success of 
CNN-based auto contouring in a clinical context, ulti-
mately guiding future developments in the field of radia-
tion oncology.

Methods
Patients
A total of 161 patients diagnosed with primary pros-
tate cancer (PCa) from four different medical centers 
(Freiburg: n = 96, Munich: n = 19, Cyprus: n = 32, Dres-
den: n = 14) were included in this study. Inclusion crite-
ria were biopsy-proven diagnosis of primary PCa without 
having received prior treatment at the time of imaging. 
Local ethics committees from all participating centers 
granted approval or exemption for the study. Patients 
with high and intermediate-risk PCa were included ret-
rospectively. The detailed characteristics are shown in 
Table 1 and have been described in prior work [11]. Imag-
ing characteristics can be found in the supplementary.

Preprocessing
For preprocessing, body weight-adapted standardized 
uptake value (SUV) PET scans were resampled to a voxel 
size of 2 × 2 × 2  mm3 using B-spline interpolation. The 
focus was narrowed to the prostate area by cropping to a 

Conclusion CNNs trained for auto contouring intraprostatic GTV in 18F‑PSMA‑1007 PET on a diverse dataset 
from multiple centers mostly generalize well to unseen data from other centers. Training on a multicentric dataset 
can improve performance compared to training exclusively with a single‑center dataset regarding intraprostatic 
18F‑PSMA‑1007 PET GTV segmentation. The segmentation performance of the same CNN can vary depending 
on the dataset employed for training and testing.
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size of 64 × 64 × 64 voxels based on the prostate contour, 
enhancing computational efficiency. Input SUV-PET 
images were further normalized by applying value clip-
ping at a SUV of 20, followed by regular nnU-Net pre-
processing [16]. Voxels outside of the prostate were not 
changed.

Architecture and training
The nnUNet architecture [16] was utilized, taking 
SUV PET and prostate contour as input while output-
ting intraprostatic GTV contours. Training the net-
work involved a specialized approach to accommodate 
the sparsely labeled dataset. Emphasis was placed on 
intraprostatic lesions using a weighted cross-entropy 
(CE) loss, thereby refining the model’s focus and accuracy 
for intraprostatic GTV delineation based on the contour 
of the prostate. Besides training for 200 epochs, nnUNet 
default schedule was used, leveraging its established effi-
cacy in medical image segmentation without the need for 
further hyperparameter optimization.

Data splitting
To compare different types of training data we used five-
fold cross-validation as depicted in Fig.  1. For single 
center training comparison to mixed data, we first per-
formed a split excluding the specific center. To ensure 
a fair comparison, we further partitioned the split into 
five subsets that are collectively exhaustive and mutu-
ally exclusive of the respective split and added training 
data from the other centers to reach the same amount 
of training data. We compared the respective results 
for the leave-one-center-out approach to an adjusted 

five-fold cross-validation on the whole dataset for the 
same respective validation set.

Evaluation
Evaluation metrics include volumetric Dice Similar-
ity Coefficient (DSC) [17] and Hausdorff Distance 95% 
(HD95) [18, 19], providing a comprehensive assessment 
of segmentation accuracy and following metric selection 
guidelines [18]. Statistical analysis was conducted using 
the Wilcoxon signed-rank test and a paired t-test with 
Bonferroni correction, based on the scipy 1.10.1 and sta-
tannot 0.6.0 library.

Contouring
The contouring methodology built upon previously 
established techniques and the exact process has been 
described in previous works [5, 11]. A consensus contour 
was derived from the expertise of two board-certified 
radiation oncologists, both experienced in intraprostatic 
GTV contouring and PET image analysis.

Results
Comparing single-center to multicentric training, 
adjusted for sample size, significant performance 
improvements regarding multi-center training were 
observed for the Dresden cohort (multi-center median 
DSC 0.71, IQR: 0.58–0.8 vs. single-center 0.68, IQR: 
0.50–0.8, p < 0.001) and Cyprus cohort (multi-center 
0.74, IQR: 0.62–0.83 vs. single-center 0.72, IQR: 0.54–
0.82, p < 0.01). While Munich and Freiburg cohorts 
also indicated enhanced performance for multi-center 
training over single-center training, results showed no 

Table 1 Patient characteristics

Dataset (n = 161) Freiburg Cyprus Munich Dresden

n 96 32 19 14

Mean age [years] (standard deviation) 69.3 (8.1) 69.2 (7.5) 67.2 (10.9) 70.4 (8)

Median iPSA [ng/ml] (min–max) 14.6 (4.2–164) 10.2 (2.75–167) 10.4 (4.6–465) 16.5 (5–139)

ISUP

 1 5 (5%) 8(25%) 2 (10%) 1 (7%)

 2 24 (25%) 4(12.5%) 6 (32%) 2 (14%)

 3 29 (30%) 8 (25%) 3 (16%) 4 (29%)

 4 21 (22%) 9 (28%) 6 (32%) 2 (14%)

 5 17 (18%) 3 (9%) 2 (10%) 3 (21%)

 Unknown – – – 2 (14%)

cT stage

 T1 – 11 (34%) – 4 (29%)

 T2 48 (50%) 10 (31%) 12 (63%) 4 (29%)

 T3 46 (48%) 9 (28%) 6 (32%) 4 (29%)

 T4 2 (2%) – 1 (5%) –

 Unknown – 2 (6%) – 2 (14%)
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statistical significance (Munich: multi-center DSC 0.74, 
IQR: 0.60–0.80 vs. single-center 0.72, IQR: 0.59–0.82, 
p > 0.05; Freiburg: multi-center 0.78, IQR: 0.53–0.87 vs. 
single-center 0.71, IQR: 0.53–0.83, p > 0.05). A compara-
tive analysis is depicted in Fig. 2.

Regarding the 95% Hausdorff Distance (HD95) met-
ric, comparisons between multi-center and single-center 
training revealed no significant difference across each 
comparison (p > 0.05). Specifically, the median HD95 val-
ues for Center Dresden were 1.94 (IQR: 1.35–3.22) for 
multi-center training and 1.73 (IQR: 1.00–3.70) for sin-
gle-center training. For Center Munich, the values were 
1.71 (IQR: 1.20–2.90) for multi-center training versus 
1.73 (IQR: 1.01–4.10) for single-center training. Center 
Cyprus reported HD95 values of 1.60 (IQR: 1.14–2.71) 
for multi-center training compared to 1.41 (IQR: 1.0–
4.15) for single-center training. Lastly, Center Freiburg 
exhibited median HD95 values of 1.41 (IQR: 1.41–2.95) 
for multi-center training and 1.85 (IQR: 1.14–3.83) for 
single-center training.

Utilizing a five-fold cross-validation on the entire 
cohort of all centers yielded a median DSC of 0.76 (IQR: 
0.64–0.84). When CNNs were trained excluding data 
from each specific center, results indicated a median DSC 
of 0.74 (IQR: 0.56–0.86). Statistical analysis revealed no 
significant difference in DSC values between these two 
methodologies (p = 0.18). A detailed center-wise analysis 
is depicted in Fig. 3.

Concerning HD95 metric, cross-validation exhibited 
a median HD95 of 1.73 mm (IQR: 1–2). Models trained 
while excluding one center at a time demonstrated a 
median HD95 of 1.41 mm (IQR: 1–4) on the whole data-
set, with these differences reaching statistical significance 
(p < 0.01).

Volumetric analysis showed a median of 0.87 ml (IQR: 
0.41–1.63) for manual contouring, a median of 1  ml 
(IQR: 0.58–1.60) for cross-validation and a median of 
0.86  ml (IQR: 0.43–1.61) for CNNs trained on utilizing 
a leave-one-center-out approach respectively, showing no 
statistically significant differences (p > 0.05).

Fig. 1 Experimental setup is illustrated, comparing a 5‑Fold Cross‑Validation with the systematic exclusion of different centers while training. 
Experiments are conducted within the nnU‑Net Framework using Dice Score Similarity Index (DSC), 95% Hausdorff Metric (HD95) and Volumetric 
analysis for comparison
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Model training required approximately 40–60  s per 
epoch. Inference for a single prediction on resampled 
data was achieved in under one second.

Discussion
In the present study, we undertook a comprehensive 
analysis evaluating the ability of CNNs to generalize 
to novel datasets in the context of intraprostatic GTV 
delineation for 18F-PSMA-1007 PET imaging. Our find-
ings indicate that training the model with datasets from 
multiple centers significantly improves performance 
compared to training solely on data from a single center, 
when compared on an equivalent amount of train-
ing data. This improvement is anticipated, as exposure 
to multicentric data during training enables the model 
to encounter a broader variety of data representations, 
thereby enhancing its generalization capacity. Addition-
ally, although the difference in performance between the 

Leave-One-Center-Out approach and mixed training did 
not reach the required significance level, the mixed train-
ing methodology also exhibited slightly superior perfor-
mance. Overall, results suggest that integrating data from 
all centers in the training process, despite sometimes only 
yielding a small benefit, can contribute to a more robust 
model by providing a more diverse training dataset.

The difficulty of training deep learning models that per-
form well on novel, unseen data represents a fundamen-
tal challenge within the current landscape of machine 
learning [23]. Factors such as AI bias [21], shortcut learn-
ing [21], distribution shifts [22] and heterogenous acqui-
sition and data annotation [19] further complicate this 
issue. Even when performing the same method on similar 
tasks, results can vary greatly depending on the dataset 
used.

This phenomenon is evident across various studies 
regarding automated tumor segmentation in PSMA-PET. 

Fig. 2 Comparative analysis of training performance: multi‑centric vs. single‑center showing a significant performance increase for multi‑centric 
training. The figure presents boxplots illustrating the performance outcomes of models trained on a multi‑centric dataset (in blue) 
through cross‑validation, contrasted against those trained on a single‑center dataset (in orange). Statistical significance is denoted as: ns (not 
significant, p > 0.05), * (p < 0.01), ** (p < 0.001), and *** (p < 0.0001), indicating a substantial performance enhancement with multi‑centric training. 
Dice score is shown on the y‑axis and the respective cohort used for single‑center training is shown on the x‑axis with the respective sample size 
denoted as n that was used during multi‑center training. Results are reported on the same validation samples for each pair
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For intraprostatic GTV segmentation, Kostyszyn et  al. 
(2021) [12] demonstrated that a CNN achieved median 
DSC of 0.81 to 0.84 across internal and external inde-
pendent validation cohorts on 68  Ga-PSMA-11 and 
18F-PSMA-1007 PET scans. Adding to these findings, 
Ghezzo et  al. (2023) [13], conducted an independent 
external validation of Kostyszyn et  al.’s method, observ-
ing lower median DSC values ranging from 0.72 to 0.77, 
with mean DSC values between 0.69 and 0.71 for 68 Ga-
PSMA-11 PET.

Holzschuh et al. (2023) [11], reported a range of median 
DSC values, from 0.70 to 0.82, for 18F-PSMA-1007, 
18F-DCFPyL, and 68 Ga-PSMA-11. Notably, in this study 
an external validation was conducted independently by 
another institute.

Leung et al. reported a mean DSC of 0.7 for 18F-DCF-
PyL PET [23], though it is unknown if only intraprostatic 
or whole-body lesions are considered.

Regarding whole body PSMA PET, Kendrick et  al. 
(2022) [24] reported a median DSC of 0.5 in a single-
center study. Huang et al. (2023) [25] report mean DSC 
values ranging from 0.59 to 0.63 on 68 Ga-PSMA-11 PET. 
Jafari et al. [26] presented results for whole-body 68 Ga-
PSMA-11 PET, showing voxel-level mean DSC values of 
0.65 to 0.7 for different independent centers.

Notably, our results are consistent with previously 
observed data ranges for automated tumor segmentation 
in PSMA-PET imaging. Our analysis also reveals that the 
performance of CNNs in delineating GTV is influenced 
by the dataset employed for training and testing. This 
variance also underscores the complexity of machine 
learning models in adapting to new, unseen data, high-
lighting the critical importance of well annotated, diverse 
and representative training datasets to improve model 
generalization, which is particularly relevant in the con-
text of medical imaging.

Fig. 3 Comparative analysis of training performance: leave‑one‑center‑out vs. mixed training. The figure displays boxplots representing 
the performance outcomes of models trained using a Leave‑One‑Center‑Out approach (orange) compared to those trained with a mixed 
cross‑validation training strategy (blue). While statistical analysis indicates no significant differences (p > 0.05), slightly higher performance can be 
noted in most cases for the mixed training approaches. Dice score is shown on the y‑axis and the respective cohort used for evaluation is shown 
on the x‑axis. Results are reported on the same validation samples for each pair
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However, despite the potential for slight performance 
decrements, our study also demonstrates that models can 
achieve commendable performance in certain cases when 
trained with mixed data from multiple centers, even if 
the quantity of data is small (n = 19), yielding a median 
DSC of 0.74. This underscores the data-dependent nature 
of AI experiments, which can lead to over- or under-esti-
mation of the trained segmentation model’s final perfor-
mance. While the nnU-Net employed in our study aims 
to maintain hyperparameter invariance to data due to 
its end-to-end design, this aspect gains particular sig-
nificance in the context of comparing models that have 
undergone individual hyperparameter optimization.

Regarding limitations, our study’s conclusions are 
inherently confined to the delineation of intraprostatic 
GTV using the 18F-PSMA-1007 PET tracer within the 
nnUNet framework. Although, to the best of our knowl-
edge, this represents one of the most extensive cohorts 
to date concerning 18F-PSMA-1007 PET imaging, it is 
imperative to incorporate more data in future research 
as cohorts from individual centers are relatively small, 
necessitating verification of these results across larger 
cohorts. Moreover, the inherent challenges associated 
with image segmentation metrics must be acknowledged 
[18, 27]. Also, tumor size can represent a potential source 
of bias that could affect segmentation results. In our 
study, the cohorts comprised patients at different tumor 
stages, which were not homogenous across different 
centers. For instance, no stage I patients were included in 
the Freiburg and Munich cohorts while present in other 
cohorts. This resulted in potential variability in tumor 
sizes across the groups.

Additionally, the exploration of alternative deep learn-
ing architectures is warranted in subsequent stud-
ies, given that our analysis was limited to the nnU-Net 
architecture. While our cohorts offer a diverse clinical 
spectrum, results may also vary across different patient 
collectives.

Overall, our research highlights the importance of 
multicentric training datasets in enhancing the generali-
zation capabilities of CNNs, underscoring the relation-
ship between dataset diversity and the performance of 
machine learning models.

Conclusion
CNNs trained for auto contouring intraprostatic GTV in 
18F-PSMA-1007 PET on a diverse dataset from multiple 
centers mostly generalize well to unseen data from other 
centers. Training with a multicentric dataset can improve 
performance compared to training exclusively on single-
center datasets regarding intraprostatic 18F-PSMA-1007 
PET GTV segmentation. The segmentation performance 

of the same CNN can vary depending on the dataset 
employed for training and testing.
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